
Semi-Markovian User State Estimation and Policy
Optimization for Energy Efficient Mobile Sensing

ABSTRACT
User context monitoring using sensors on mobile devices
benefits end-users unobtrusively and in real-time by pro-
viding information support to various kinds of mobile appli-
cations and services. A pervasive question, however, is how
the sensors on a mobile device could be scheduled more effi-
ciently such that they can detect more user information with
as little energy usage as possible. In this paper, we model
the user state sensing problem as the intermittent sampling
of a semi-Markov process. Assuming sensors make perfect
detections, we propose (a) a semi-Markovian state estima-
tion mechanism that selects the most likely user state while
observations are missing, and (b) a tractable approxima-
tion to a semi-Markov optimal sensing policy. The approxi-
mate semi-Markov optimal sensing policy u∗

s determines the
duration the sensor should stay idle based on its current
state detection before making the next observation, such
that the expected state estimation error is minimized while
maintaining a given energy budget. Both the semi-Markov
estimation mechanism and the novel sensing policy u∗

s we
develop are evaluated on simulated two-state processes and
real user state traces, and their performances are shown to
outperform Markov estimation and the Markov-optimal pol-
icy (studied in [25]), where the gain depends on the partic-
ular state distributions. Finally, we implement an energy
efficient human activity recognition system on Nokia N95
smart phones, where the accelerometer is operated accord-
ing to u∗

s . We demonstrate by a set of real experiments
that the battery lifetime could be increased to at least three
times as compared to continuous sensing, while producing
only less than 3% estimation error.

1. INTRODUCTION
User or environmental monitoring using mobile devices

are continuously gaining research and development interest
as they provide useful context information to mobile ori-
ented applications. Meanwhile, mobile devices are powerful
and user-friendly clients that support mobile applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

and web browsing, through which users are able to receive
desired information and services. For example, current gen-
eration smart phones integrate a wide range of sensing and
networking features such as GPS, accelerometer, Bluetooth,
and WiFi, which are able to recognize user’s activity and lo-
cation information in real time. Such contextual information
can be transferred via the Internet to back-end servers with
stronger computation and storage capabilities that are able
to deliver desired personalized services back to user, such
as location based advertising, traffic information reporting,
and health monitoring.

A growing number of these mobile applications and ser-
vices rely on accurate and automatic detection of user con-
text. Similar to the work by Wang et al. [25], we use the
term“state”to represent user context that evolves over time.
A critical performance trade-off is between the accurate de-
tection of user state and the energy consumption spent by
sensor samplings. On the one hand, most applications re-
quire that user state to be correctly recognized and esti-
mated; on the other hand, detecting user state requires
sensor activations that consume significant amount of en-
ergy which may drain the mobile device battery quickly.
For example, although the accelerometer is a relatively low
power sensor as compare to location sensors such as GPS
and WiFi transceiver, our empirical results on Nokia N95
smart phones demonstrate that the battery could only sup-
port approximately 50 hours of continuous running time, if
the accelerometer is the only sensor sampled continuously
without any other phone usages. On the contrary, without
accelerometer sensing, the device could last for more than
200 hours (relevant results are shown later in section 5).
Thus, the sensors need to be duty cycled in order to reduce
the energy consumption, which raises two important prob-
lems: (1) when the sensor is kept idle (i.e., turned off), how
to accurately estimate the underlying user state when obser-
vations are missing? and (2) given an energy consumption
budget, how should sensor sampling be scheduled intelli-
gently such that the expected state estimation error could
be minimized?

The authors of [25] attempted to answer the above ques-
tions while making the assumption that user state evolves as
a Markov process. In particular, the authors introduced a
Markovian state estimation mechanism in order to select the
most likely state when observations are missing. An opti-
mization framework based on Constrained Markov Decision
Process (CMDP) was proposed which is able to obtain the
Markov-optimal sensing policy in a computationally efficient
manner. The Markov-optimal policy is able to minimize the

expected state estimation error while maintaining a given
energy budget for Markovian processes.
However, strict Markovian characteristics are rarely seen

in real user state traces. In this paper, we relax the assump-
tion such that the analysis is no longer limited to Markov
processes. Instead of assuming geometrically distributed
state durations, we consider discrete time semi-Markov pro-
cesses, which allow arbitrary state sojourn time distributions
and provide more general and realistic models than Markov
processes1. We propose a state estimation mechanism for
semi-Markov processes, and provide a linear programming
based approximate sensing policy optimization framework,
which is able to efficiently schedule sensor samplings in or-
der to minimize state estimation error given an energy con-
straint. Both the semi-Markov estimation mechanism and
the optimization framework can be applied to data traces
with any types of state sojourn time distribution, whose
probability mass function (pmf) parameters are not nec-
essarily known a priori and can be obtained through the
learning of historic data.
More specifically, this paper makes the following contri-

butions:
First, for a semi-Markov process, we propose a forward-

backward based approach in order to estimate the most
likely state information whenever observations are missing.
This semi-Markovian estimation mechanism could be exe-
cuted in real-time at each observation interval and is generic
enough such that it works even without the information
about the origin time, the initial state distribution, or how
the state sojourn time is truncated at the beginning of an
observation interval. The semi-Markov estimation mecha-
nism has been evaluated on both simulated state sequences
and real user state traces and we demonstrate that it outper-
forms Markov estimation if the past sojourn time is selected
using the correct method.
Second, we provide a linear programming based optimiza-

tion framework for the intermittently sampling of semi-Markov
processes, which is a tractable approximation to the semi-
Markov optimal sensing policy that minimizes state estima-
tion error while satisfying an energy constraint. This ap-
proximate optimal policy u∗

s is examined on simulated as
well as real state traces and we show that it obtains perfor-
mance improvement over the Markov-optimal policy.
Third, the sensing policy u∗

s is implemented on real mo-
bile sensing system where accelerometer is used to recognize
basic user activity “Moving” and “Stable”. By utilizing the
appropriate sensor duty cycles obtained by the approximate
optimization framework, the mobile device battery lifetime
is improved by multiple times as compared to continuous
sensing, while the user state estimation error is maintained
below 3%.
The remainder of this paper is organized as follows. In sec-

tion 2, we list and discuss relevant prior works. In section
3, we present our problem modeling, introduce the forward-
backward based state estimation mechanism and the corre-
sponding algorithm for semi-Markov processes, and evaluate
its performance on both simulated state processes and real
user state traces. In section 4, we propose a linear pro-
gramming based optimization framework that obtains the
approximate solution to the semi-Markov optimal sensing

1Note that a discrete time Markov process is a special case of
discrete time semi-Markov process where the sojourn times
are geometrically distributed.

policy under energy consumption constraint, whose perfor-
mance is also verified on both simulated state processes and
real user state traces. We introduce our empirical valida-
tion of u∗

s and its results in section 5. Finally, we present
the conclusion and our future work direction in section 6.

2. RELATED WORK
Energy efficient mobile operations such as mobile sens-

ing [14, 26, 16], networking [8, 21, 1], and software design [7,
4] have been widely investigated by researchers in recent
years. For example, in the field of mobile sensing, energy ef-
ficient localization [5, 18, 15, 13, 17, 28] has been extensively
studied recently, as location is one of the most important
types of user context information. To achieve energy efficient
detection of more general user contexts other than location,
Krause et al. [16] investigate the trade-off between predic-
tion accuracy and power consumption in mobile computing.
“SeeMon” system [14] explores the concept of hierarchical
sensor management and achieves energy efficiency by only
performing context recognition when changes occur during
the context monitoring. A generic framework has been pro-
posed in [26] which powers only energy efficient sensors and
triggers power hungry sensors whenever necessary to reduce
mobile device energy consumption.

Duty cycling sensors on a mobile device is one of the most
commonly used ways to extend mobile battery lifetime. Yet,
sensor duty cycling leads to missing user state information
when sensors are idle. To reconstruct the user state process
based on only observed data, in the work by Wang et al. [25],
a Markovian state estimation mechanism has been proposed
to estimate user state information while sensor observations
are missing, assuming user state transitions are Markovian.

Since real state traces need not show strict Markovian
characteristics, in this paper, we adopt a more general model,
i.e., semi-Markov process to model user state traces, and
propose semi-Markovian state estimation mechanism in or-
der to select the most likely user state when sensor observa-
tions are missing. The core of the estimation mechanism is
a forward-backward estimation procedure proposed in sec-
tion 3.2, which follows the conventional approach introduced
by Ferguson in [9]. The traditional algorithm introduced
in [9] deals with full observation sequence and hence cannot
be directly applied to cases where sensors are mostly idle
with sparse observations.

Yu and Kobayashi [27] have studied the hidden semi-
Markov model (HSMM) with missing observations and mul-
tiple observations sequences for mobility tracking applica-
tion. Their problem formulation assumes that HSMM starts
at the first observations and ends at the last one, and state
estimations are conducted off-line for the entire state se-
quence. The forward and backward variables also need to
be defined in different forms given different type of missing
observations, e.g., deterministic observations, random obser-
vations, state-dependent observations, or output-dependent
observations. In comparison, in our study, we provide a
generic estimation mechanism that is executed in real-time
for any estimation interval between two consecutive obser-
vations (hence it works for any types of sampling policy),
and the algorithm does not require the exact information of
when the first observed state started its sojourn time.

Researchers have used stochastic optimization tools to
help design better protocols in mobile operations. For ex-
ample, Cheung et al. [4] propose a Markov Decision Pro-

cess based optimization framework to optimize resource us-
age (e.g., battery-life), such that user-specific reward can be
maximized. In [25], a Constrained Markov Decision Process
and linear programming based optimization framework has
been proposed that schedule sensors intelligently such that
user state estimation error can be minimized while keep-
ing an energy consumption budget, under the assumption
that user state process is Markovian. In this paper we use
a similar linear programming based constrained optimiza-
tion framework in order to find an approximation to the
best semi-Markov sensing policy under energy consumption
constraint.

3. SEMI-MARKOVIAN STATE ESTIMATION
FOR MISSING OBSERVATIONS WITH
SOJOURN TIME TRUNCATION

3.1 Preliminaries
We assume that time is discretized into consecutive time

slots and the user state evolves as a N-state discrete time
semi-Markov process. Recall that semi-Markov model is
similar to Markov model such that state jumps follow a
Markov chain with no self-transitions, and is different such
that state sojourn times could be random variables with any
types of distribution. In our study, sensor observations are
assumed to be perfect, such that if the sensor is activated
in every time slot, the state process could be obtained with
100% accuracy. However, due to energy consumption con-
cern, the sensor needs to perform duty cycling according
to certain sensing policy, which leads to a sparsely sampled
state sequence with multiple intervals of missing observa-
tions (see illustrative figure 1). In this paper, we use the
terms “estimation interval” and “observation interval” inter-
changeably, both denoting the interval of time slots between
two consecutive sensor observations.

Figure 1: The semi-Markov process is sampled at
discontiguous time slots, leading to multiple estima-
tion intervals.

Let Ot represent the observed state at time t, where Ot ∈
{1, 2, ..., N}. We denote pij as the probability of user state
transition from state i to state j. Similar to Markov models,
the transition probabilities satisfy

pij ≥ 0, ∀i, j ∈ {1, 2, ..., N}, i ̸= j, (1)

and

N∑
j=1

pij = 1, ∀i ∈ {1, 2, ..., N}, (2)

with no self-transitions, i.e.:

pii = 0, ∀i ∈ {1, 2, ..., N}. (3)

We further denote wi(a) (a ∈ N∗) as the pmf of sojourn
time of state i, which is the probability that state i will

last for a time slots until the next state transition. We
assume that 1 ≤ a ≤ Ai < ∞, and

∑
a wi(a) = 1, where Ai

is the maximum sojourn duration of state i. For practical
purposes, we approximate distributions with infinite support
with a sufficiently large choice of Ai.

The following state estimation problem is investigated:
given the state distribution parameters pij and wi(a), and
two state observations Otm = o1 and Otn = o2, what is the
most likely state at any given time slot between tm and tn?

It is important to note that, unlike the assumptions made
in previous works [9, 27], the observed states o1 and o2 do
not necessarily need to start at time tm and end at time
tn. Instead, the state estimation is conducted in real-time
for any given estimation interval, where sensor observations
could be made at arbitrary time slots, and the state detec-
tion may belong to any instance of the sojourn time dura-
tion.

We propose a forward-backward based state estimation
mechanism in section 3.2 and 3.3 that estimates the most
likely state for each time slot within an estimation interval.
In section 3.4, we discuss an alternative approach, where
the forward and backward variables are defined using the
knowledge of the origin time, initial state distribution, and
all observations made. This alternative method may lead
to better performance but can only be run off-line, and is
computationally untractable in most scenarios because it is
hard to automatically keep track of when a state enters and
finishes its sojourn time.

3.2 The Forward-backward variables: defini-
tion and initialization

As the state observation o1 may truncate the state sojourn
time and could belong to any instance of the state duration
of o1, we define t′m (where tm − Ao1 < t′m ≤ tm) as the
time at which state o1 is entered, i.e., the observed state
o1 started its sojourn time at time t′m, and lasted through
time tm. In real-time system implementation where state
durations are probabilistic, the exact value of t′m is often un-
available since the sensor makes sparse observation and may
not have the knowledge of complete historic state sequence.
Therefore, for a state evolving process that is divided into
multiple estimation intervals, t′m could be obtained through
the following alternatives:

• Method 1 (M1): Use state estimation result from the
previous estimation interval.

• Method 2 (M2): Use the expected value Ep of past
sojourn time, which can be calculated as follows (for
state i):

Ep(i) =

Ai∑
a=1

a∑
τ=1

wi(a) · τ
a

. (4)

• Method 3 (M3): Simply let t′m = tm.

It can be seen that, M1 conducts state estimation based on
previously estimated results, which may cause error propa-
gation for certain types of state distribution, i.e., the previ-
ous estimation error may accumulate and lead to undesired
performance in future estimations. M2 and M3 do not suf-
fer this problem because they approximate the history of
state sojourn durations using expected and zero past so-
journ time, respectively. We will study the impact of these

three t′m selection methods on simulated state sequences in
section 3.5, under different probabilistic state sojourn time
distributions.
Let A be the maximum length of state sojourn times, i.e.:

A = max
i

{Ai},∀i ∈ {1, 2, ..., N}. (5)

For a given time slot t, we define forward variables ft(i)
and f∗

t (i) as:

ft(i) = Prob[o1, t
′
m, state i ends at t] (6)

=

A∑
a=1

f∗
t−a(i) · w△

i (a), (7)

where

w△
i (a) =

 wi(a), if t− a ≥ tm,

w′
i(a) =

wi(a)∑Ai
k=tm−t′m+1

wi(k)
, else. (8)

and

f∗
t (i) = Prob[o1, t

′
m, state i starts at t+ 1] (9)

=

N∑
j=1

ft(j) · pji. (10)

The reason that w△
i (a) is defined differently from wi(a) (as

given in equation (8)) under the condition that t−a < tm, is
that the observed state at time tm has already spent its so-
journ time for tm−t′m+1 consecutive time slots such that the
rest of the sojourn time distribution needs to be conditioned
upon this fact, i.e., w′

i(a) = Prob[state i lasts for a slots | a ≥
tm − t′m + 1].
In order to compute ft(i), the boundary condition for

f∗
t (i) needs to be initialized as follows:

f∗
t (i) =

{
1, if t = t′m − 1, and i = o1,
0, otherwise.

(11)

and

f∗
tm(i) = po1i · wo1(tm − t′m + 1),∀i ̸= o1. (12)

Equation (11) emphasizes the fact that the detected state o1
has started its sojourn time at time t′m whereas equation (12)
computes the probability that state o1 transits to another
state in the first time slot of the estimation interval (i.e.,
tm + 1).
To initialize ft(i) at time tm, the probability that obser-

vation o1 ends exactly at tm needs to be calculated, which
satisfies:

ftm(i) =

{
w′

o1(tm − t′m + 1), if i = o1,
0, ∀i ̸= o1.

(13)

We further define the backward variables bt(i) and b∗t (i)
for a given time slot t:

bt(i) = Prob[o2| state i starts at t] (14)

=
A∑

a=1

b∗t+a(i) · wi(a), (15)

and

b∗t (i) = Prob[o2| state i ends at t− 1] (16)

=

N∑
j=1

bt(j) · pij . (17)

Since we do not assume the observed state o2 ends at tn,
the initial and boundary conditions for b∗t (i) are therefore
given by:

b∗tn(o2) = 0, (18)

and

b∗tn+x(i) =

{
1, ∀x ∈ {1, 2, ..., Ao2}, if i = o2,
0, otherwise.

(19)

Equation (19) describes that given the fact that state o2
ends at any time slot after time tn, the probability of seeing
o2 at time tn is 1, and correspondingly, the probability of
seeing other states at tn is 0.

The initial conditions for bt(i) need to be specified as:

btn(i) =

{ ∑Ao2
x=1 b

∗
tn+x(o2) · wo2(x), if i = o2,

0, ∀i ̸= o2.
(20)

in which btn(o2) is the average aggregated probability that
state o2 begins at time tn.

3.3 State estimation
Once the values of all the forward and backward variables

have been obtained by recursion, it is feasible to estimate
the state for each time slot between tm and tn. We define a
new forward variable:

ϕt(i) = Prob[o1, t
′
m, st = i]. (21)

ϕt(i) holds the following property:

ϕt(i) = Prob[o1, t
′
m, st−1 = i and st = i]

+ Prob[o1, t
′
m, st−1 ̸= i and st = i] (22)

= Prob[o1, t
′
m, st−1 = i]

− Prob[o1, t
′
m, st−1 = i and st ̸= i]

+ Prob[o1, t
′
m, st−1 ̸= i and st = i] (23)

= ϕt−1(i)− ft−1(i) + f∗
t−1(i). (24)

It can be seen that ϕt(i) can be calculated by recursion as
well. To initialize, we have the following equalities:

ϕtm(i) =

{
1, if i = o1,
0, else.

(25)

Next, we define a new backward variable:

ψt(i) = Prob[o1, t
′
m, o2, st = i], (26)

which is the joint probability of o1, t
′
m, o2, as well as the

unknown state at time t. Following the similar relationship
illustrated in equation(22)-(24), ψt(i) can be further written
in the following recursive form:

ψt(i) = ψt+1(i)− bt+1(i) · f∗
t (i) + ft(i) · b∗t+1(i). (27)

The initial condition for this backward variable ψt(i) is given
by:

ψtn(i) = Prob[o1, t
′
m, o2, stn = o2] (28)

= Prob[o1, t
′
m, stn = o2] (29)

= ϕtn(i), (30)

whose value has been stored at the end of the recursion when
calculating ϕt(i).

Finally, the maximum a posteriori (MAP) estimate of user
state at time t is given by:

s′t = argmax
i∈{1,2,...,N}

Prob[st = i|o1, t′m, o2] (31)

= argmax
i∈{1,2,...,N}

Prob[st = i, o1, t
′
m, o2]

Prob[o1, t′m, o2]
(32)

= argmax
i∈{1,2,...,N}

ψt(i),∀t = tn − 1, ..., tm + 1. (33)

The following algorithm summarizes the complete proce-
dure of estimating user state with missing observations be-
tween two neighboring state detections for a discrete-time,
semi-Markov process:

Algorithm 1 An algorithm that estimates missing state
information between two observations Otm = o1 and Otn =
o2, for a discrete-time, semi-Markov process.

1: Input: pij , wa(i), Ai, and t
′
m (whose value depends on

whether M1, M2, or M3 is used), ∀i, j ∈ {1, 2, ...N}
2: Output:

State estimation result S′ = {s′tm+1, s
′
tm+2, ..., s

′
tn−1}

and the corresponding expected error sequence es =
{etm+1, ..., etn−1}

3: Initialize forward variable ft(i) and f
∗
t (i) using equation

(11), (12), and (13). Solve by recursion using equation
(7) and (10).

4: Initialize backward variable bt(i) and b∗t (i) using equa-
tion (18), (19), and (20). Solve by recursion using equa-
tion (15) and (17).

5: Calculate ϕt(i), ∀i ∈ {1, ..., N}, and ∀t ∈ [tm, tn], based
on equation (24) and (25).

6: Calculate ψt(i), ∀i ∈ {1, ..., N}, and ∀t ∈ [tm, tn], based
on equation (27) and (30).

7: State estimation:

s′t = argmax
i∈{1,2,...,N}

ψt(i),∀t = tn − 1, ..., tm + 1.

8: Expected estimation error:

et = κ ·
{
1− max

i∈{1,2,...,N}
ψt(i)

}
,∀t = tn − 1, ..., tm + 1.

where κ is a normalization factor.

It can be seen that in Algorithm 1, solving for ft(i) and
bt(i) at any given time t consumes at most Amultiplications,
whereas calculating f∗

t (i) and b∗t (i) requires N multiplica-
tions. Therefore, for an estimation interval with size T , the
computational complexity of the semi-Markovian estimation
algorithm is O(TN(N +A)). In comparison, the Markovian
state estimation mechanism proposed in [25] needs T matrix
multiplications where the matrix size is N ×N . This leads
to O(TN3) computational complexity without any speed-up
in matrix multiplications. Thus, although the complexity of
Markovian estimation is not affected by the state sojourn
duration A, as the number of states increases, our semi-
Markovian approach could potentially become more compu-
tationally efficient.

3.4 The forward-backward variables: an al-
ternative

An alternative way to define the forward and backward
variable is to consider not only the neighboring observations
but the entire observed sequence, assuming the knowledge

of (a) the initial state distribution µ, (b) the origin time
t0 that the initial state begins, and (c) the ending time tL
where the last state finishes its sojourn time.

Let O0→t denote the observation sequence up to the cur-
rent time t, whereas Ot→L denote the rest of the observation
sequence after time t. Then the forward and backward vari-
ables could be defined in the following way:

ft(i) = Prob[µ, t0, O0→t, state i ends at t] (34)

f∗
t (i) = Prob[µ, t0, O0→t, state i begins at t+ 1],(35)

and

bt(i) = Prob[tL, Ot→L| state i begins at t] (36)

b∗t (i) = Prob[tL, Ot→L| state i ends at t− 1]. (37)

The forward-backward variables can be initialized accord-
ing to the specific inputs and state estimation can be con-
ducted by similar recursions introduced in section 3.3. Since
the above definitions use the exactly information of where
the initial state started, it may provide better estimation
accuracy as compared to Algorithm 1, which requires an ap-
proximation of the past state sojourn time. However, this
mechanism only allows off-line estimation since it requires
future observation results when applied. Moreover, as the
length of semi-Markov process grows, it becomes harder to
keep track of all observations and the computationally com-
plexity increases correspondingly. Therefore, in this paper,
we do not provide further analysis of this approach, and we
leave the algorithmization and possible optimization of this
mechanism as well as its performance evaluation to future
work.

3.5 State estimation performance on simulated
two-state transition processes

The performance of semi-Markovian state estimation mech-
anism (Algorithm 1) is evaluated on two-state, simulated
state transition processes. Each state sequence is generated
based on pre-specified state sojourn time distributions, and
is then observed at a constant frequency, leading to consec-
utive estimation intervals with equal lengths. Within each
estimation interval, Algorithm 1 is conducted for state es-
timation. Once state estimation is complete for all the es-
timation intervals, the overall estimated state sequence is
compared to the original sequence and the state estimation
error ratio R (which is the total number of incorrect esti-
mations for the entire sequence divided by the length of the
state sequence) is calculated.

Recall that one of our goals is to design a real-time state
estimation mechanism for sparsely sampled real user state
processes. In fact, in many human related traces, state
distributions have been found to exhibit heavy tails, e.g.,
Internet file sizes [6], human contact arrival processes [3,
24], user motion transitions [25], and so on. These types of
traces are often modeled as memoryless distributions such
as geometric distribution in order to reduce the complexity
of study. In this section, we compare the performance of
semi-Markovian state estimation to state estimation under
Markovian assumption, where, no matter what distribution
function does the state duration follow, the state sequence
is always assumed to be a Markov process. The Marko-
vian assumption, although not strictly valid in reality, has
been widely used to model user related state traces such as
speech [12, 20], mobility [11, 23], and activity [10, 22].

Under the Markovian assumption, the state transition
probabilities can be obtained in a standard way [2], which
is to calculate the ratio of state transition frequencies:

pij = nij/nj , (38)

where nij is the frequency of state transition from i to j,
and nj =

∑
i nij .

Estimating state information for missing observations un-
der the Markovian assumption has been discussed in [25].
Here we give a brief overview of the mechanism: given that
state i is detected at time tm, and state j is detected at time
tn (tm, tn ∈ T and tm < tn), the most likely state (denoted
by s′t) at time t is selected as

s′t = argmax
k

{
P

(t−tm)
ik · P (tn−t)

kj

P
(tn−tm)
ij

}
. (39)

To compare its performance with semi-Markovian estima-
tion, we conduct the Markovian state estimation based on
equation (39) for all estimation intervals as well. Note that
Markovian estimation does not suffer the “past sojourn time
selection” problem because it implicitly assumes that the
underlying state process is memoryless.
For the commonly seen heavy-tail distributions in real user

state traces, we choose to investigate Zipf’s Law distribu-
tion, which is a discrete, power law, and heavy-tailed distri-
bution type. Besides, we are also interested in comparing
the performance of semi-Markovian estimation mechanism
with Markovian estimation mechanism on several other dif-
ferent state sojourn time distributions. In particular, four
different types of state sojourn time distribution are stud-
ied whose pmf parameters are illustrated in table 1. Note
that in this paper we focus on evaluating the performance
of semi-Markovian estimation on different types of state dis-
tributions, and we leave the systematic study of how the
estimation performance will be affected when varying distri-
bution parameters to future work.

Deterministic

w1(a) =

{
1, if a = 20,
0, else.

w2(a) =

{
1, if a = 40,
0, else.

Binomial

w1(a) =

(
N1

a

)
pa1(1− p1)

N1−a, p1 = 0.8 and N1 = 100

w2(a) =

(
N2

a

)
pa2(1− p2)

N2−a, p2 = 0.4 and N2 = 100

Geometric

w1(a) = (1− p1)
a−1 · p1, where p1 = 0.2

w2(a) = (1− p2)
a−1 · p2, where p2 = 0.6

Zipf’s Law (smaller tail)

w1(a) =
1/as1∑N1

n=1 1/ns1
, where s1 = 0.1 and N1 = 100

w1(a) =
1/as2∑N2

n=1 1/ns2
, where s2 = 0.2 and N2 = 100

Zipf’s Law (larger tail)

w1(a) =
1/as1∑N1

n=1 1/ns1
, where s1 = 0.01 and N1 = 100

w1(a) =
1/as2∑N2

n=1 1/ns2
, where s2 = 0.02 and N2 = 100

Table 1: Four different distribution types and their
specific parameters utilized in the simulation.

For each state distribution instance, state estimations are
conducted on 10 simulated state processes each containing

1000 state transitions. Specifically, for all non-deterministic
state processes, semi-Markovian estimation mechanism (Al-
gorithm 1) with all variations M1, M2, and M3, as well as
Markovian estimation mechanism are conducted and their
corresponding error ratio R are compared under different es-
timation window sizes ranging from 1 to 500 (we also show
the result for very large window sizes in case of binomial
state distribution which converges slowly). We discuss the
observations individually for each distribution type as fol-
lows:

A. Deterministic
The evaluation of semi-Markovian estimation on deter-

ministic state processes serves as a sanity check of the cor-
rectness of Algorithm 1. As can be seen from figure 2 (left
portion) that, the semi-Markovian estimation mechanism
with M1 is able to reconstruct the entire sequence with-
out any error, whereas applying Markovian estimation leads
to undesired performance. Intuitively, when state sojourn
times are fixed, knowing how long a state has already spent
its sojourn time could lead to perfect state estimations in
each estimation interval.

Figure 2: Semi-Markovian estimation vs. Marko-
vian estimation on simulated two-state process
where state distributions are deterministic (left) and
geometric (right).

B. Geometric2

The right portion of figure 2 shows that semi-Markovian
and Markovian estimation mechanisms lead to very close re-
sults when state sojourn times are geometrically distributed.
It is because geometrically distributed states form a Markov
sequence, on which both estimation mechanisms provide
very similar results. The fact that all four curves overlap
each other in figure 2 (right) indicates that different versions
of semi-Markovian estimation (M1, M2, and M3) provide
almost identical results due to the memoryless property of
geometric distribution, and it serves as another sanity check
of the correctness of semi-Markovian estimation mechanism.

C. Binomial
It can be seen from figure 3 that semi-Markovian esti-

mation algorithm with M1 outperforms Markovian estima-
tion and provides the best performance, whereas M3 leads
to the worst performance. Note the similarity between bi-
nomial distribution and deterministic distribution, where
both pmfs contain probability concentration and are “peak-
like”. As semi-Markovian estimation mechanism provides
state estimations strictly based upon state distribution pmf,
the “peak-like” feature greatly reduces the estimation error;

2As noted in section 3.1, although geometric distribution
supports infinite set of a values, we limit it such that 1 ≤ a ≤
100 in order to satisfy the running condition of Algorithm 1.

therefore, knowing history state sequence information (M1)
will always lead to better state estimation results. In addi-
tion, it can be found from the right portion of figure 3 that
the semi-Markovian estimation mechanism provides better
performance even under extremely large estimation window
sizes.

Figure 3: Semi-Markovian estimation vs. Marko-
vian estimation on simulated two-state process
where state distributions are binomial. Right fig-
ure shows convergence at very large window sizes.

D. Zipf’s Law
In order to provide a comprehensive performance eval-

uation of the semi-Markovian estimation, we study Zipf’s
Law distribution with different tail sizes by varying the dis-
tribution parameters s1 and s2 as illustrated in table 1.
It can be seen from figure 4 that semi-Markovian estima-
tion leads to higher performance improvement under larger
tail sizes. This is due to the fact that assuming the state
process to be Markovian becomes less approximate as the
tail size increases, therefore, semi-Markovian estimation pro-
duces higher gain over Markovian estimation as the tail size
of state distribution increases, since it estimates state infor-
mation based on the exact state distribution functions.

Figure 4: Semi-Markovian estimation vs. Marko-
vian estimation on simulated two-state process
where state sojourn durations follow Zipf’s Law dis-
tributions, with different tail sizes according to the
definitions in table 1.

In order to better understand the results, table 2 summa-
rizes the results of percentage gain over Markovian estima-
tion provided by semi-Markovian estimations corresponding
to figure 4. The average as well as the maximum gain of
all estimation window sizes are shown for methods M1, M2,
and M3. While M1 suffers the error propagation problem
and M3 simply assumes zero past sojourn time, it can be
seen that semi-Markovian estimation with M2 leads to the
best average performance among all versions of Algorithm 1.

Smaller tail Larger tail
(s1 = 0.1 s2 = 0.2) (s1 = 0.01 s2 = 0.02)

Avg. Gain Max Gain Avg. Gain Max Gain
M1 4.97% 19.43% 8.53% 25.10%
M2 6.15% 15.92% 9.32% 26.06%
M3 3.78% 12.97% 6.12% 20.38%

Table 2: Average and maximum percentage gain of
semi-Markovian estimation with M1, M2, and M3
over Markovian estimation under different estima-
tion window sizes ranging from 1 to 500.

We also observe the fact that for probabilistic state distri-
butions, all estimation mechanisms converge as the estima-
tion window size becomes large enough. This is because as
the state process is sampled extremely sparsely, no matter
what estimation mechanism is conducted, it essentially se-
lects a state with higher occurrence probability, i.e., steady
state probability. Therefore, the expected estimation error
R as estimation window size goes to infinity satisfies the
following relationship for an N-state semi-Markov process:

RT→∞ = 1−max
i

{
Mi∑
iMi

}
, (40)

where Mi is the mean sojourn time of state i, and i ∈
{1, ..., N}.

3.6 State estimation performance on real user
state traces

In order to further strengthen our study, the performance
of semi-Markovian estimation mechanism is evaluated on
real user state traces. We consider several real state evolving
traces, including previously collected user motion transition
data from [25], as well as Cosphere network connectivity
data introduced in [19]. Here we briefly explain the data
traces:

User motion: The user motion traces collection experi-
ment was discussed in [25]. During the experiment, a Nokia
N95 device was carried by the participant and was used for
automatic motion classification, through which the user was
categorized as either “Stable” or “Moving” at any point dur-
ing the experiment. Approximately 40 hours of running data
distributed in four different weekdays and one weekend day
were collected. In our study, we evaluate the performance
of semi-Markovian estimation against Markovian estimation
on these user motion data traces from one weekday and one
weekend day.

Network connectivity: We study traces collected in
Cosphere project, in which each user’s exposure to cell tower,
WiFi access point, and Bluetooth device was logged sepa-
rately during the empirical duration. The one-month ex-
periment was conducted by researchers at Telematica Insti-
tuut in The Netherlands within February/March 2007 time
frame. In this paper, we pick WiFi and Bluetooth data
traces and view the user state as either “Connected” or “Not
connected” to infrastructure access points or peer devices in
both cases, and compare the performance of semi-Markovian
estimation and Markovian estimation, in terms of the aver-
age state estimation error produced.

Recall that semi-Markovian state estimation mechanism
requires the state distribution parameters pij and wa(i),
which are not known a priori and need to be derived based

on the collected user state traces. In particular, the follow-
ing two steps need to be executed before conducting Algo-
rithm 1:
(1) State transition probability pij is estimated as the ra-

tio between number of transitions from state i to j and the
total number of transitions into state j:

pij = nij/nj , (41)

where nij is the frequency of state transition from i to j,
and nj =

∑
i nij . This is similar to equation (38) where

the Markovian transition probabilities are calculated, except
that state transitions only happen whenever a different state
is entered. Note that for two-state semi-Markov chain, p12 =
p21 = 1.
(2) State sojourn time distribution wa(i) is estimated as

the number of times that state i lasts exactly for a time
slots, divided by the number of times that state i is visited:

wa(i) = na(i)/ni,∀a ∈ {1, 2, ..., A}. (42)

Each user state trace is sampled periodically, and within
each observation interval, both the semi-Markovian estima-
tion mechanism with M23 and the Markovian estimation
mechanisms are conducted. We compare the average state
estimation error from both estimation mechanisms while
varying the observation window size from 1 to 500, and
demonstrate the results in figure 5 and figure 6.

Figure 5: State estimation error results obtained by
applying semi-Markovian estimation and Markovian
estimation on real human motion transition traces
collected in two different days. Figure shows the
overall error ratio R versus estimation window size
T .

The average as well as the maximum percentage gain for
all cases are shown in table 3. It can be seen that semi-
Markovian estimation leads to non-negative average gain
over Markovian estimation for all data traces, and is able to
reduce more than 40% estimation error than Markovian esti-
mation under certain estimation window sizes. The intuitive
reason that semi-Markovian estimation does not provide as
significant improvement on weekend-trace as compared to
weekday is because the user state transits more frequently
during that weekend than the weekday, making it more dif-
ficult to correctly estimate the user activity while observa-
tions are missing. The same reasoning can be applied for
other traces as well. The observed performance improve-
ment justifies our main statement for this paper: the state

3From this point of the paper, we only study semi-
Markovian estimation with M2 for real state traces because
it has been shown to provide the best average gain under
heavy-tailed state distribution type.

Figure 6: State estimation error results obtained
by applying semi-Markovian estimation and Marko-
vian estimation on Cosphere network connectivity
traces. Figure shows the overall error ratio R versus
estimation window size T .

sojourn time in real user state traces tend to exhibit heav-
ier tails than memoryless distributions, therefore, modeling
the data as Markovian process and using Markovian estima-
tion may lead to undesired state estimation performance;
whereas the semi-Markov process is a more general model
for real user state traces and the semi-Markovian estima-
tion (Algorithm 1) could provide better performance by es-
timating state information using the exact state distribution
function.

Motion: Weekday Motion: Weekend
Avg. Gain Max Gain Avg. Gain Max Gain

8.36% 41.49% 0.67% 11.76%

Bluetooth Connectivity WiFi Connectivity
Avg. Gain Max Gain Avg. Gain Max Gain

9.30% 37.06% 11.34% 43.63%

Table 3: Average and maximum percentage gain
of semi-Markovian estimation obtained on real user
traces, while estimation window sizes varying from
1 to 500.

4. SENSOR SCHEDULING WITH ENERGY
CONSTRAINT

We investigate the following question: given a sensor en-
ergy consumption budget, how should sensor duty cycles be
scheduled intelligently such that the expected state estima-
tion error can be minimized while the energy consumption
is maintained below the budget? In [25], an optimization
framework for Markovian user state processes has been pro-
posed to find such a sensing policy. In this paper, we apply
a similar linear programming based constrained optimiza-
tion framework to semi-Markov processes in order to obtain
u∗
s , an approximate solution to semi-Markov optimal sensing

policy, and study its performance.

4.1 Design of the approximate semi-Markov
optimal policy u∗

s

We first present the linear programming formulation of
the optimization framework. Let ξ be the expected energy
consumption budget where 0 < ξ ≤ 1. Let ρ(y, a) denote the
“occupation measure” of state y and action b, i.e., the prob-
ability that such state-action pair ever exists in the decision
process. Let cs(y, b) denote the expected aggregated semi-
Markovian estimation error for estimation interval starting
at state y with size b. Finally, let P s

ybx be the semi-Markov

probability of transiting to state x from state y in b time
slots. The following linear program optimization framework
finds the best ρ(y, b) combinations that satisfy the energy
consumption constraint.

Minimize
∑
y∈X

∑
b∈B

ρ(y, b)cs(y, b) (43)

subject to:∑
y∈X

∑
b∈B

ρ(y, b)(δx(y)− P s
ybx) = 0, ∀x ∈ X, (44)

∑
y∈X

∑
b∈B

ρ(y, b) = 1, (45)

ρ(y, b) ≥ 0, ∀y, a, and (46)∑
y∈X

∑
b∈B

ρ(y, b)(1− b · ξ) ≤ 0, (47)

where X and B are the set of states and the set of action
inputs, respectively.
Note that the outcome of the above constrained optimiza-

tion framework is a stationary randomized policy, i.e., the
optimal choice of sampling interval is randomized over sev-
eral integers and the decision does not vary over time. The
constraint given in (44) describes that the outgoing and in-
coming rate of any state need to be the same. The con-
straints (45) and (46) define ρ(y, b) as a probability mea-
sure. The inequality constraint given in (47) guarantees that
the expected energy usage is less than the energy constraint
value ξ, i.e.:

E[Overall Energy Consumed]

E[Average Sensing Interval Length]
≤ ξ. (48)

Since the per slot energy consumption is 1 unit, the inequal-
ity (48) can be further written as:∑

y

∑
b ρ(y, b)∑

y

∑
b ρ(y, b) · b

≤ ξ, (49)

which leads to the energy constraint in (47).
The above constrained optimization framework is an ap-

proximation to the semi-Markov optimal sensing policy, since
state detection and estimation in semi-Markov process suf-
fers the “unknown past sojourn time” problem, i.e., at each
decision epoch, the decision maker has no knowledge about
how long the current state has already spent its sojourn
time. The semi-Markov interval transition probability is ap-
proximated such that the expected past sojourn time of the
observed state (defined in M2) is always assumed.
Unlike the Markovian case [25], in the optimization frame-

work of semi-Markov process, cs(y, b) and P
s
ybx could not be

directly computed. Instead, Algorithm 1 needs to be con-
ducted to construct the whole estimated sequence as well as
the state appearing probability for each time slot in order to
obtain the interval transition probability and the aggregate
estimation error. In particular, given the estimation inter-
val size b, starting state y, and ending state x, the interval
transition probability P s

ybx could be calculated at step 5 of
Algorithm 1, i.e.:

P s
ybx = ϕtn(x), (50)

under appropriate input conditions:

o1 = y, o2 = x, tn − tm = b, (51)

and

tm − t′m =
A∑

a=1

a∑
τ=1

wy(a) · τ
a

− 1, (52)

as it is assumed that a detected state y has already spent
Ep(y) time slots, the expected past sojourn time.

Similarly, after step 8 of Algorithm 1, the aggregated es-
timation error within that estimation interval can be ex-
pressed as:

esum =

tn∑
t=tm

et. (53)

Define eybxsum as the aggregated estimation error under condi-
tion (51), therefore, the intermediate cost cs(y, b) could be
expressed by the following:

cs(y, b) =
∑
x

P s
ybx · eybxsum, (54)

which is the expected, aggregated semi-Markovian state es-
timation error while state y is detected and sensing interval
size b is chosen.

Once the linear programming is solved for optimal occu-
pation measures ρ∗(y, b), this yields a policy u∗

s such that the

probability of taking action b at state y is equal to ρ∗(y,b)
ρ∗y

,

where ρ∗y =
∑

b∈B ρ
∗(y, b), ∀y ∈ X.

4.2 Performance evaluation of u∗
s on simulated

processes
We first evaluate the performance of u∗

s on simulated state
processes under different probabilistic state distribution types
illustrated in table 1. In particular, for each simulated state
sequence, the Markov-optimal sensing policy (denoted as
u∗
m) as well as u∗

s are computed. Both policies are then ap-
plied to the state sequence and state estimations are carried
out using Markovian and semi-Markovian state estimation
respectively.

Figure 7: Performance of u∗
m vs. u∗

s, on geometrically
and binomially distributed state processes. Figure
shows the estimation error w.r.t. energy budget (in
log scale).

Figure 7 shows the result of policy performance compari-
son in case of geometric and binomial state distributions. It
can be seen that u∗

s and u∗
m provide very close performance

when state distributions are geometric. This is because no
matter what sensing intervals does the policy choose, the es-
timation error provided by semi-Markovian and Markovian
estimation are almost identical for Markov processes.

In case of processes where state distributions are binomial,
u∗
s provides significant state estimation error reduction as

compared to u∗
m, especially under low energy budget values.

Figure 8: Performance of u∗
m vs. u∗

s, on Zipf’s Law
distributed state processes with different tail sizes.
Figure shows the estimation error w.r.t. energy bud-
get (in log scale).

Figure 8 indicates that u∗
s produces lower estimation error

than u∗
m under small energy budgets, and demonstrates sim-

ilar performance as energy budget increases in case of Zipf’s
Law state distributions. This can be explained by the fact
that semi-Markovian estimation mechanism provides perfor-
mance improvement only on a subset of estimation window
sizes (as illustrated by figure 4), which leads to the corre-
sponding gain by u∗

s when energy budgets are small.
In fact, for a given state process, if the semi-Markovian es-

timation mechanism outperforms Markovian estimation by
producing lower estimation error at certain estimation win-
dow sizes, u∗

s should provide better performance than u∗
m on

the same data set under corresponding energy budgets, since
the approximate optimization framework effectively searches
for a combination of sensing intervals that lead to the mini-
mum expected estimation error while not exceeding the en-
ergy budget.

4.3 Performance of u∗
s on real user state traces

The performance of u∗
s is evaluated on the same set of

real user state traces introduced in 3.6. As u∗
m is optimal

for Markov processes, we aim to explore whether u∗
s could

outperform u∗
m by achieving a better trade-off between en-

ergy consumption and state estimation error, on user state
traces that are not strictly Markovian (shown in [25]). In
particular, the following steps are executed for each user
state trace:

• Determine state sojourn time distribution functions
using (41) and (42).

• Compute u∗
s using LP (43) - (47).

• Compute u∗
m using LP1 proposed in [25].

• Apply both policies on real state process and conduct
semi-Markovian estimation and Markovian estimation
on missing observations, respectively.

• Obtain the overall estimation error as well as the en-
ergy usage, which is the ratio of the total number of
samples over the length of state process.

Since the optimization framework is stochastic and is con-
strained on the expected energy usage, the true energy con-
sumption when executing the policy on a particular trace
may not exactly reflect the given energy budget. We show
the results of estimation error vs. the actual energy usage in
figure 9 and 10 instead of the energy budget input parame-
ter. It can be seen that in general, u∗

s yields a better trade-off

between energy consumption and state estimation error as
compared to u∗

m, as it provides lower estimation error espe-
cially in the region of small energy budgets. This matches
the results shown in figure 8 for simulated processes with
heavy-tailed state distributions. Moreover, considering the
results shown in table 3, it can also be seen that the amount
of improvement by u∗

s is positively correlated to the average
gain provided by semi-Markovian estimation mechanism.

Figure 9: Performance of u∗
m vs. u∗

s on user mo-
tion traces distributed in two different days. Figure
shows the estimation error w.r.t. energy budget (in
log scale).

Figure 10: Performance of u∗
m vs. u∗

s on CoSphere
network connectivity traces. Figure shows the esti-
mation error w.r.t. energy budget (in log scale).

Clearly, the Markov-optimal policy proposed in [25] does
not yield the best performance on non-Markovian processes,
as our evaluation results in this section show that the ex-
pected estimation error could be further reduced if user state
traces are modeled using semi-Markov processes, and the
corresponding policy optimization as well as state estima-
tion are applied according to the techniques proposed in this
paper.

5. DESIGN, IMPLEMENTATION, AND EM-
PIRICAL VALIDATION OF A u∗

s BASED
ENERGY EFFICIENT ACTIVITY RECOG-
NITION SYSTEM

We have implemented a user activity recognition system
on Nokia N95 device using Symbian C++. This mobile sens-
ing system is able to differentiate two basic human activities
(“Stable” and “Moving”) based on accelerometer sensing. In
particular, the acceleration values on x, y, and z axis of the
accelerometer is continuously read for a certain duration,
and the standard deviation of the magnitudes of all three
axes readings is calculated. The user activity is classified

into“Stable”or“Moving”based on whether the standard de-
viation is below or above some given threshold. Recall that
in this paper we assume perfect sensor detections, and hence
our goal is not to develop sophisticated activity classification
algorithms, but to explore whether u∗

s , the approximation of
semi-Markov optimal policy could provide satisfying perfor-
mance in real system implementations. In fact, one previous
work [26] showed that a single accelerometer is able to dif-
ferentiate “Moving” and “Stable” with negligible error. The
time line is virtually divided into discrete time slots with
10 seconds length each. At each time slot, the accelerome-
ter could be either sampled (for 10 seconds in our study),
in which case the user activity is detected and logged, or
turned off in order to save the energy consumption. The
system will determine whether to activate the accelerometer
at each time slot according to u∗

s , which specifies the num-
ber of time slots the sensor needs to stay idle until making
next observation under different state detections.
In our current system design methodology, the calculation

of u∗
s as well as state estimations are conducted on back-end

servers with the support of mathematical tools such as Mat-
lab. As figure 11 illustrates, first, user state distribution
parameters are calculated from data trace collected by mo-
bile devices under full sensor activation. Once enough data
is collected and the dynamics of user state transitions are
obtained, the distribution parameters will be sent to back-
end server in order to compute u∗

s . The optimal sensor duty
cycles are transferred back to mobile client to begin energy
efficient sensing. Finally, when missing state information
needs to be estimated (due to application requirement), the
intermittently sampled state trace will be sent to the server
again for state estimations, and the estimation result will be
transferred back to the client. This way, by sacrificing cer-
tain amount of networking cost, intensive computations are
shifted to servers which may provide faster and potentially
more energy efficient computing. An alternative system de-
sign approach is to perform all sensing and computations
locally on the mobile device with no server support. We will
leave the investigation of the trade-off between these two
design methodologies to future study.

Figure 11: A flow chart of system functions.

We have conducted four independent experiments each
associated with a unique energy budget input. During each
experiment, the empirical devices are carried by participant
just like their own cell phones but with no usage other than
activity sensing. The setups of the experiments are as fol-
lows:
Exp-1 (ξ = 1): the accelerometer is continuously sam-

pled and user activity is recognized and recorded at each
time slot. This experiment sets the benchmark of the device
battery lifetime while sensor is fully activated. During the
experiment, a fully observed state sequence is recorded such
that the state distribution parameters could be determined
using equation (41) and (42).
Exp-2 (ξ = 0.05): the accelerometer on one smart phone

is operated according to the sensing intervals specified by
u∗
s , which is obtained a priori in Matlab with energy budget

equals to 0.05. In order to collect ground truth, a second
smart phone is used throughout the same experiment which
samples its accelerometer continuously so that the ground
truth user state is recorded in every time slot. This sec-
ond device is frequently charged to ensure long operating
duration.

Exp-3 (ξ = 0.005): the third experiment is the same
as the second one except that the energy budget is set to
0.005, i.e., even fewer amount of sensor energy consumption
is allowed such that we expect longer battery lifetime but
an increase on state estimation error.

Exp-4 (ξ = 0): the last experiment provides a bottom-
line comparison and measures how long the same empirical
device would last without any accelerometer sensing.

We measure the duration from a fully charged battery
until it is completely drained as the device battery lifetime.
The sparsely sampled user state sequences under policy u∗

s

are reconstructed using the semi-Markovian state estimation
mechanism off-line using Matlab, and are compared to the
ground truth recorded by the second N95 device in order to
obtain the estimation error. The empirical results are shown
in table 4.

Energy Budget Battery Lifetime Error
exp-1 1 52 hours 0
exp-2 0.05 160 hours 1.66%
exp-3 0.005 170 hours 2.13%
exp-4 0 236 hours ∞

Table 4: Nokia N95 battery lifetime comparison and
the corresponding state estimation error in all four
experiments.

It can be seen that by implementing u∗
s , the smart phone

lifetime could be extended significantly, while providing low
estimation errors that do not exceed 3%. Note that the
reason that the estimation error is significantly smaller as
compared to the results from user motion traces in figure 9
is that in these experiments, the user state is being observed
continuously until the battery runs out. Therefore, the user
state trace during night time is also considered, which is
normally formed by a long sequence of consecutive “Stable”
states, thus reducing the overall estimation error.

6. CONCLUSION AND FUTURE WORK DI-
RECTIONS

Modeling real user state traces using Markovian model
is often unrealistic and could leads to undesired state esti-
mation performance, as real user state distributions tend to
exhibit heavier tails than geometric distribution. In this pa-
per, we use semi-Markov process to model user state traces,
and propose a semi-Markovian state estimation mechanism
that can be executed in real-time in order to estimate the
most likely user state while sensor observations are miss-
ing. A linear programming based constrained optimization
is designed in order to find a tractable approximation to the
best sensing policy for semi-Markov processes, which mini-
mizes the expected state estimation error while maintaining
an energy consumption budget. Both the state estimation
and the approximate optimal policy have been evaluated on
simulated as well as real user state traces and their perfor-

mances have been shown to be better than Markovian esti-
mation and Markov-optimal policy. The approximate opti-
mal sensing policy has been implemented in two-state user
activity recognition system on Nokia N95 smart phones and
we demonstrate significant device battery lifetime improve-
ment while producing less than 3% state estimation error.
For future work, we plan to investigate energy efficient

operations on mobile devices where multiple types of energy
consumption such as computation and data communication
are taken into consideration. Protocols will be optimized
in a more comprehensive manner such that sensing, compu-
tation, and communication will cooperate more effectively.
We also plan to study how to effectively schedule multiple
sensors that could potentially detect the same set of user
states with different detection accuracies and energy costs,
and policy optimizations where different weights are asso-
ciated with different user state detection error, i.e., some
states may be more important than others.

7. REFERENCES
[1] P. Aghera, D. Fang, T. Simunic Rosing, and

K. Patrick, Energy management in wireless healthcare
systems, Proceedings of IPSN, 2009.

[2] M. S. Barlett, The frequency goodness of fit test for
probability chains, Mathematical Proceedings of the
Cambridge Philosophical Society, 1951.

[3] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass,
and J. Scott, Pocket switched networks: Real-world
mobility and its consequences for opportunistic
forwarding, Technical Report 617, University of
Cambridge, 2005.

[4] T. L. Cheung, K. Okamoto, F. Maker, X. Liu, and
V. Akella, Markov decision process (mdp) framework
for optimizing software on mobile phones, Proceedings
of EMSOFT, 2009.

[5] I. Constandache, S. Gaonkar, M. Sayler, R. R.
Choudhury, and Landon Cox, Energy-efficient
localization via personal mobility profiling, Proceedings
of MobiCase, 2009.

[6] Mark E. Crovella and Azer Bestavros, Self-similarity
in world wide web traffic evidence and possible causes,
IEEE/ACM Transactions on Networking 5 (1996),
835–846.

[7] E. Cuervoy, A. Balasubramanianz, D. Cho,
A. Wolmanx, S. Saroiux, R. Chandrax, and P. Bahl,
Maui: Making smartphones last longer with code
offload, Proceedings of MobiSys, 2010.

[8] F. R. Dogar, P. Steenkiste, and K. Papagiannaki,
Catnap: Exploiting high bandwidth wireless interfaces
to save energy for mobile devices, Proceedings of
MobiSys, 2010.

[9] J. D. Ferguson, Variable duration models for speech,
Symposium on the Application of Hidden Markov
Models to Text and Speech, 1980.

[10] J. Gao, E. G. Hauptmann, A. Bharucha, and H. D.
Wactlar, Dining activity analysis using a hidden
markov model, Proceedings of ICPR’04, 2004.

[11] M. Grossglauser and D. Tse, Mobility increases the
capacity of ad-hoc wireless networks, IEEE/ACM
Transactions on Networking 10 (2002), 477–486.

[12] J. Jaffe, L. Cassotta, and S. Feldstein, Markovian
model of time patterns of speech, Science, Volume 144,

Issue 3620, 1964.

[13] R. Jurdak, P. Corke, D. Dharman, and G. Salagnac,
Adaptive gps duty cycling and radio ranging for
energy-efficient localization, Proceedings of SenSys,
2010.

[14] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park,
T. Park, and J. Song, Seemon: scalable and
energy-efficient context monitoring framework for
sensor-rich mobile environments, Proceedings of
MobiSys, 2008.

[15] D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava,
Sensloc: Sensing everyday places and paths using less
energy, Proceedings of SenSys, 2010.

[16] A. Krause, M. Ihmig, E. Rankin, S. Gupta, D. Leong,
D. P. Siewiorek, A. Smailagic, M. Deisher, and
U. Sengupta, Trading off prediction accuracy and
power consumption for context-aware wearable
computing, IEEE International Symposium on
Wearable Computers, 2005.

[17] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao,
Energy-accuracy aware localization for mobile devices,
Proceedings of MobiSys, 2010.

[18] J. Paek, J. Kim, and R. Govindan, Energy-efficient
rate-adaptive gps-based positioning for smartphones,
Proceedings of MobiSys, 2010.

[19] A. Peddemors, H. Eertink, and I. Niemegeers, Density
estimation for out-of-range events on personal mobile
devices, Proceedings of MobilityModel, 2008.

[20] L. R. Rabiner, A tutorial on hidden markov models
and selected applications in speech recognition,
Proceedings of the IEEE, 1989.

[21] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu,
Napman: Network-assisted power management for wifi
devices, Proceedings of MobiSys, 2010.

[22] D. Sanchez, M. Tentori, and J. Favela, Hidden markov
models for activity recognition in ambient intelligence
environments, Proceedings of ENC, 2007.

[23] G. Sharma and R. R. Mazumdar, Scaling laws for
capacity and delay in wireless ad hoc networks with
random mobility, Proceedings of ICC, 2004.

[24] W. Wang, V. Srinivasan, and M. Motani, Adaptive
contact probing mechanisms for delay tolerant
applications, Proceedings of MobiCom, 2007.

[25] Y. Wang, B. Krishnamachari, Q. Zhao, and
M. Annavaram, Markov-optimal sensing policy for
user state estimation in mobile devices, Proceedings of
IPSN, 2010.

[26] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson,
J. Hong, B. Krishnamachari, and N. Sadeh, A
framework of energy efficient mobile sensing for
automatic user state recognition, Proceedings of
MobiSys, 2009.

[27] S. Yu and H. Kobayashi, A hidden semi-markov model
with missing data and multiple observation sequences
for mobility tracking, Signal Processing, Volumn 83,
Issue 2, 2003.

[28] Z. Zhuang, K. Kim, and J. P. Singh, Improving energy
efficiency of location sensing on smartphones,
Proceedings of MobiSys, 2010.

