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ABSTRACT
We investigate the benefits of distributed storage using era-
sure codes for file sharing in vehicular networks through
both analysis and realistic trace-based simulations. We show
that the key parameter affecting the file download latency is
the ratio of file size to download bandwidth. When this ratio
is small so that a file can be communicated in a single en-
counter, we find that coding techniques offer very little ben-
efit over simple file replication. However, we analytically
show that for large ratios, for a simple memoryless contact
model, distributed erasure coding yields a latency benefit of
N/α over uncoded replication, whereN is the number of
vehicles andα the number of replicas of each stored file.
Effectively, in this regime, coding yields the same perfor-
mance as replicating all the files at all other vehicles, but
using much less storage. We also evaluate the benefits of
coded storage using two large sets of real vehicle traces from
Beijing and Chicago. These simulations, which include a re-
alistic radio link quality model for a IEEE 802.11p dedicated
short range communication (DSRC) radio, validate the ob-
servations from the analysis, demonstrating that coded stor-
age dramatically speeds up the download of large files in
vehicular networks.

1. INTRODUCTION
The recent development of the IEEE 802.11p WAVE

(Wireless Access in Vehicular Environment) protocol [1]
and the allocation of Dedicated Short Range Communi-
cations (DSRC) spectrum, have increased interest in ve-
hicular networking. In the United States, the FCC has
allocated 75MHz of spectrum in the 5.9GHz band exclu-
∗This research was sponsored in part by General Motors Re-
search and Development, and by the U.S. Army Research
Laboratory under the Network Science Collaborative Tech-
nology Alliance, Agreement Number W911NF-09-2-0053

sively for vehicular networks and in Europe, the ETSI
has allocated a 20MHz range in the same band. These
bands enable vehicle-to-vehicle communication as well
as vehicle-to-infrastructure (and vice-versa) communi-
cation, and capabilities like these open up a number
of possibilities. Most applications focus on safety, such
as avoiding rear-end collisions; extended braking [1, 2];
and detecting and disseminating information about pot-
holes, bumps and other anomalous road conditions [3].
Applications that concern entertainment and file shar-
ing are also receiving attention and involve different
challenges (e.g., AdTorrent [4], FleaNet [5], CarTor-
rent [6], C2P2 [7]).
Content access and vehicle file sharing would enable

users to access movies, music, real-time videos of dis-
tant road conditions, and other relevant content. In
this paper we investigate the possibility of exploiting
inter-vehicular communication to enable peer-to-peer
file sharing with no infrastructure. One alternate pos-
sibility is to use the cellular infrastructure, but recent
reports suggest that with the increasing use of smart
phones, cellular data bandwidth is likely to remain lim-
ited and expensive. Another option is to use infrastruc-
ture access points, but they may be hard to deploy in
high densities (for example on freeways, access points
may be separated by 5-10 miles [8]). In addition, due
to the latency of content access from the Internet, a
vehicle quickly passing through an infrastructure might
not have sufficient time to download its desired data.
In contrast, the WAVE mode of IEEE 802.11p allows
for rapid vehicle to vehicle file transfers over potentially
longer contact durations (e.g., if the vehicles are travel-
ing in the same direction). Nevertheless, we note that
the coded storage techniques we explore and analyze
in this paper could also be used in a heterogeneous
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network architecture which integrates vehicle to vehicle
communication with vehicle to infra-structure commu-
nication.
The goal of this paper is to investigate how to store in-

formation in vehicles to optimize the peer-to-peer collab-
oration opportunities. When the inter-vehicle commu-
nication data rates are high, or when the communicated
files are sufficiently small, we find that simply storing
multiple copies of each file has almost identical perfor-
mance to an optimized erasure coded representation.
However, we show that in other cases, when the file
sizes are large compared to the download bandwidth, a
distributed coded representation offers very substantial
benefits and decreases the average download time by
orders of magnitude.
Our analytical contribution is a novel probabilistic

analysis of the latency for replicated and encoded dis-
tributed storage vehicle networks. We analyze the ex-
pected delay for a vehicle trying to collect pieces to
reconstruct a desired file by meeting other vehicles ac-
cording to a simple memoryless process. We show how
both replicated and encoded storage correspond to dif-
ferent balls and bins processes. Using simple stochastic
dominance and coupling arguments, we bound the ex-
pected download time and obtain bounds for different
parameter values. We identify three regions of interest
depending on how the communication bandwidth per
vehicle interaction d, compares to the file size M and
the vehicle storage capacity per file C/m. Our most sur-
prising result is in the bandwidth limited regime: when
d < C/m. For this case we show that distributed erasure
coding yields a latency benefit of N/α over replication,
where N is the number of vehicles and α the number
of replicas of each stored file. This means that, in this
regime, coding yields the same performance as replicat-
ing all the files at all other vehicles, but using much less
storage.
Beyond our analytical model, we present a practical

performance analysis using real vehicle traces combined
with a realistic 802.11p DSRC Packet Delivery Ratio
(PDR) model. In particular, we use vehicle traces in-
volving 1,000 taxis in Beijing, and 1,608 buses in Chicago.
These simulations validate the key insights from the
analysis, demonstrating that coded storage substantially
improves the timeliness of file downloads particularly
in the bandwidth limited regime of large files. For in-
stance, we show that for downloading 1GB files, 98%
of the files can be downloaded via vehicle-to-vehicle in-
teractions in a day using coded storage, while only 19%
of the files are downloaded in the same time period if
uncoded replication is used.
The remainder of the paper is organized as follows:

in the following section, we discuss the background and
related work. In Section 3, we introduce the idea of
distributed storage codes for vehicular networks. In

Section 4, we detail the assumptions underlying our
analytical model. In Section 5 we summarize the key
analytical results showing when coding is beneficial in
reducing latency of content access and in Section 6, we
present the details of the analysis of latency with and
without coding. Section 7 gives the details and results
of our trace-based simulation experiments. In section
8, we briefly consider the challenging problem of opti-
mal storage in the case of non-uniform file popularity.
We conclude in Section 9. Appendix A is useful for the
interested reader to understand stochastic dominance,
which is used to get bounds on the expected delay in
coded storage and, finally, appendix B gives some re-
lated detailed probabilistic results.

2. BACKGROUND AND RELATED WORK
In this paper we investigate how to store m files, each

of size M, in N vehicles. A sink vehicle that is inter-
ested in downloading one of the files is going to meet
each of the storage vehicles according to a random pro-
cess dictated by mobility. Every time the sink vehicle
meets some other vehicle, it asks for chunks of the de-
sired file and all nodes are assumed altruistic and help-
ful. One storage strategy is simple replication: each of
the m files is stored in α nodes. Erasure coding con-
sists of separating each file into k chunks and from these
generating n > k chunks of the same M/k size. If a
Maximum Distance Separable (MDS) erasure code [9]
is used, any k out of the n encoded chunks suffice to re-
construct the original file. One specific family of codes
that are almost-MDS and are suitable for our applica-
tion are digital fountain codes. Initially proposed by
Byers et al. [10] and later developed by Luby [11] and
Shokrollahi [12], digital fountain codes are binary near-
MDS (almost all sets of k(1+ ǫ) chunks suffice to recon-
struct the file with high probability) and have very fast
and simple encoding and decoding algorithms. Using
ideas related to this paper, fountain code designs were
introduced for sensor network problems by Dimakis et
al. [13] and Kamra et al. [14]. Related comparisons of
erasure coding versus replication are given for DHTs
and DTNs, [15, 16, 17]. The use of coding in the form
of mixing of packets in intermediate nodes for content
distribution systems was first proposed in the context
of a content delivery system called Avalanche [18, 19].
CarTorrent [6, 8, 20] is a peer-to-peer sharing archi-

tecture specifically tailored for VANETs which enables
cooperative downloading of content. Also related is the
C2P2 file sharing system [7] in which files are replicated,
without coding, for low-latency access.
The use of network coding to disseminate content

more efficiently in vehicular network is considered in
CodeTorrent [21], VANETCODE [22], and VCD [23].
These works focus primarily on file distribution with
in-network coding and do show the benefits of network
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coding. However, in contrast to these works on network
coding in VANET, our work in this paper advocates a
simpler pre-coded storage for on-demand file retrieval
(which is not network coding per se because it does
not involve any in-network recombination of packets).
Moreover, in contrast to these prior works, we consider
the problem mathematically and present analytical re-
sults on the benefits that can be obtained with coding,
in addition to evaluation over real vehicular traces. Our
work, for the first time, shows clearly the conditions un-
der which coded storage provides latency benefits in a
vehicular environment (namely large file sizes and low
download bandwidth) and when it does not (small files
and unconstrained bandwidth).
Finally, we note that our theoretical analysis relies

on balls and bins processes (see e.g. [24, 25, 26]) and
simple stochastic dominance arguments [27] that are
used to obtain bounds on the expected delay for coded
storage.

3. DISTRIBUTED STORAGE CODES
We first present the potential benefit of coded stor-

age in vehicular networks with an illustrative example.
Consider a system of four nodes each with same amount
of storage capacity and four files A, B, C and D all hav-
ing identical file sizes, such that the capacity of a node
equals twice the file size. So it is possible to store each
file twice throughout the nodes. There is a sink node
that follows a simple memoryless contact process so that
it meets one of the four nodes uniformly at random at
each time step. Suppose the sink can only download
half the file size every time it sees a node, and it is
interested in downloading file A.

A B C D A B C D

(a) Uncoded Storage
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(b) Coded Storage

Figure 1: A simple example illustrating the ben-

efits of coding.

Fig 1(a) shows one possible uncoded replication strat-
egy for this example. The expected delay in download-
ing the file A is 2 + 2 = 4, since the expected delay to
see either the first or the third nodes is 2 each.
Now suppose a (n, k) coding is used before storing

the files, with n = 4 and k = 2 in this case, so that each
file is split into two chunks and then coded into four
chunks. One example of such a coding would be to split
A into A1 and A2 and then get A3 = A1+A2 and A4 =
A1 +2A2, where each of the chunks can be represented

as one element of a finite field GF (3). If more than one
finite field elements are required to represent one chunk,
the same erasure code can be used multiple times. It
can be easily seen that any two chunks out of the four
can be used to reconstruct the file, since any two chunks
correspond to two full-rank linear equations that can be
solved for A1, A2. Such an allocation is shown in Fig
1(b). In this example, each chunk is half the file size
and we assume that whenever a node is met by the sink,
a chunk can be fully downloaded. When coding is used,
the first time any node is seen, a useful chunk can be
downloaded, and the second time a node is seen, it is
good (i.e. it has a useful chunk) with probability 3/4,
and thus, the expected delay in this case is 1 + 4/3 =
2.33. Clearly, in this example, the expected delay in
the coded storage case is lower than the delay in the
uncoded storage case.

4. MODEL AND PROBLEM SETUP
In this section, we present a simplified model of a

basic file sharing system and present a set of assump-
tions governing the model, making it amenable to anal-
ysis, but more importantly, giving us crucial insights
into the system. Some of the simplifying assumptions
(e.g., regarding mobility) will be relaxed later when we
consider numerical simulations over realistic vehicular
traces. We assume there are N identical participating
vehicles (or nodes) in a closed system of a vehicular net-
work, each with a storage capacity of C bits allocated
for the file sharing application. The total number of
different files stored in the system is denoted by m; for
simplicity, we assume that all the files have the same
size of M bits. We require that C ≥ M, so that a
vehicle can store at least one file. Our theoretical anal-
ysis further requires that all files are equally popular (in
section 8 we discuss how to deal with non-uniform file
popularity).
It is desired to distribute these m files among the

nodes. It is assumed that the total available storage
exceeds the total size of files: i.e., that NC ≥ mM.
Denote α = NC

mM ; note that we can store each file α ≥ 1
times throughout the system and saturate the available
capacity in the system. We refer to α as the system

redundancy, since it is the number of times each bit
is stored in the system. In this paper, we consider and
analyze the expected delay in downloading files when
two methods of storing files are used as described above
- namely the uncoded storage scheme and the coded
storage scheme. For the uncoded storage scheme, we
simply store each file α times in the nodes ensuring
deterministic maximal spreading. On the other hand,
for the coded storage scheme, an (n, k) MDS code is
used and each file is split into k chunks and encoded
into n chunks of the same size. We set n/k = α, equal
to the total system redundancy. This is because, as
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the effective size of each file after coding is nM/k, in
order to saturate the system capacity, we need NC =
mnM/k, yielding α = n/k. Also note that if all the
files are equally popular, the storage scheme as well as
the expected delay for each file is going to be the same.
We focus on the latency experienced by a given sink

vehicle node that is trying to download one of the m
files. For the analysis, we assume a simple i.i.d. en-
counter model whereby the sink is an external node that
encounters any of the N nodes uniformly at random at
each encounter. We impose a key communication con-
straint: whenever the sink meets any other vehicle, it
can download at most d bits of data. We refer to d as
the bandwidth constraint. In our numerical simu-
lations, we relax these simplifying assumptions, as we
use encounters based on real vehicular traces and the
download bandwidth is not a constant but rather a ran-
dom variable that depends on the contact duration and
a realistic link quality model.
Given all other parameters, such as the file size, band-

width constraint etc., we would like to determine the
optimal values of n and k. In order to do so, we note
that each chunk has size M/k and so we want to choose
k such that this size is downloadable within the band-
width constraint. Thus we want M/k ≤ d or k ≥ M/d.
But since higher k equates to higher coding complexity,
we use k = ⌈M/d⌉. But if d > M, since k cannot be
smaller than 1, choose k = 1. Thus k = max(1,M/d).
The chunk size is therefore either M or d whichever is
lower. Note that k = 1 in fact corresponds to not using
any coding at all. One can choose a higher value of k,
but we shall see later that it does not help to reduce
the latency. Now, once k is fixed, choose n = αk. Since
there are N nodes, each node will contain β = n/N
chunks of a file. A β > 1 implies there is at least one
node which contains two different chunks for the same
file.
We define the delay or latency D as the number of

encounters needed before being able to fully reconstruct
a file and it is our objective in the analysis to quantify
and minimize the expected latency E[D].

5. THE BENEFITS OF CODING
In this section we informally summarize our analyti-

cal results and explain why coding is beneficial in reduc-
ing latency in vehicular networks. Precise mathematical
statements and proofs are given in the subsequent anal-
ysis section. Out first result is a simple derivation of the
expected delay under uncoded replication (see equation
2 proved in section 6.1):

E[Duncoded] =
N

α
max(1,M/d).

We also obtain an upper bound on the expected delay
when coding is used (from equation 6, which will be

derived in section 6.2):

E[Dcoded] ≤ max(N,n) log

(

α

α− 1

)

≈ N

α
max

(

1,
M
d

α

N

)

where the approximation holds for large values of α.
It is immediately clear by comparing the above ex-

pressions, that the expected delay with coding is at least
as good or better than without coding. By looking at
the above expressions, we see that the interesting cases
of d are when M/d = 1 and M

d
α
N = 1; the former giv-

ing d = M and the latter giving d = Mα
N = C/m. Thus

we have the following three regimes:
• (High Bandwidth regime) d ≥ M: In this case, a full
file can be downloaded in one interaction and thus
there is effectively no bandwidth limitation. Also,
since k = 1, coding becomes equivalent to uncoded
file replication. The expressions for the latencies in
both the coded storage and uncoded storage schemes
become almost equal in this case with E[Duncoded] =
N/α ≈ E[Dcoded], and so the improvement factor is
approximately 1. Even if we make k > 1 to use cod-
ing, the probability with which the sink meets a useful
node increases (because more nodes have the chunks),
but the amount of data it can download decreases,
hence higher values of k do not offer any benefit. A
potential problem with coding with higher k in this
case is that, if the sink itself contains a few files (dif-
ferent from the model used for analysis), then the
delay to access the files the sink already contains is
zero and thus uncoded storage scheme may offer a
lower average delay; we will see this effect later in the
numerical simulations.

• (Intermediate Bandwidth regime) C/m ≤ d ≤ M:
The bandwidth constraint is smaller than the file size
and thus when using an uncoded storage scheme, it is
not possible for a sink to download the entire file when
it meets a node. Thus it needs multiple encounters
of nodes that contain the file the sink is interested in,
before being able to download the entire file. In the
coded storage scheme, the chunk size d is such that
any node cannot store chunks of all the files since
dm ≥ C. Thus the sink has to wait until it meets a
useful node, which is the only factor contributing to
the delay (as opposed to the bandwidth constraint).
From the expressions, we have E[Duncoded] =

N
α

M
d

and E[Dcoded] ≤ N
α . Thus the improvement factor is

M
d , whose value ranges from 1 to N/α as d decreases
from M to C/m.

• (Bandwidth limited regime) When d ≤ C/m, the sink
is still severely bandwidth constrained under the un-
coded storage scheme. For the coded storage scheme,
each node can store a chunk of each file since dm ≤ C.
And since each encounter gets the sink d amount
of data, the sink should need about M/d encoun-
ters to successfully recover the file. Using the above
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fact that d ≤ C/m and α = NC/mM, we obtain
E[Dcoded] ≤ M

d . Since, E[Duncoded] =
N
α

M
d , the im-

provement factor here is at least N/α. Thus under
such a severe bandwidth constraint, coding performs
as if full files were available in all the nodes, only to
be limited by the bandwidth.

6. THEORETICAL ANALYSIS
We make extensive use of balls and bins processes [28]

in our analysis. The basic idea is to represent nodes
as bins, and the throwing of a ball randomly into any
of bins with equal probability models the sink meeting
each node uniformly at random. The configuration of
balls in bins that corresponds to a complete file being
downloaded is defined differently in each case, as dis-
cussed below, but the common goal is to determine the
expected time to reach this configuration, which corre-
sponds to the expected delay.

6.1 Uncoded File Storage
We first analyze the latency of accessing a file in a ve-

hicular network utilizing uncoded storage. Specifically,
we show that the latency is inversely proportional to
the redundancy in the system and the bandwidth con-
straint.

b b b

1 2 Nα

b

Figure 2: A vehicular network with N nodes

and redundancy α represented in the balls and

bins framework. Each node is represented as

a square, with the shaded squares containing

copies of the file the sink is interested in. Note

that since a file is not stored twice in the same

node, there are α nodes containing the copies of

the files

In an uncoded storage scheme, the files are stored ‘as
such’ in various nodes. We assume the system redun-
dancy α to be an integer (recall that α is the number of
times each file is stored in the system). Since the capac-
ity C > filesize M, each file can be stored completely in
a node. When the sink meets a node, it can download a
maximum of d bits or M bits (entire file) whichever is
lower. So depending on the values of d and M, we can
have two cases. If d ≥ M then there is no bandwidth
constraint at all. So, P[a node is good ] = α/N . Thus
the number of nodes to be seen before encountering a
good node is a geometric random variable with mean

E[D] =
N

α
. (1)

Alternatively, in the balls and bins framework of Fig

2, this corresponds to throwing balls into N bins where
each ball can land into any one bin with equal probabil-
ity. We are interested in counting the average number
of balls to be thrown before a ball lands into one of the
shaded bins.
But if d < M, only a fraction d/M of the file will

be downloaded every time the sink meets a node. So
E[D] = N

α

(

M
d

)

. Again, in the balls in bins framework,
the equivalent formulation is to determine the number
of balls in expectation that must be thrown till the first
α bins contain M/d balls total.
In this case, once a ball lands in any of the shaded

bins, we repeat the experiment again. Note that a ball
can fall into the same bin multiple times, which is equiv-
alent to meeting the same node multiple times; but at
each time the sink can download a different portion of
the file. So E[D] = N

α

(

M
d

)

which is the same as that
obtained above. Thus we have,

E[D] =

{

N/α if d ≥ M or M/d ≤ 1,
N
α

(

M
d

)

else if d < M or M/d > 1.

Combining,

E[D] =
N

α
max(1,M/d). (2)

Hence, the expected delay is increased by a factor of
M/d when there is a bandwidth constraint.

6.2 Coded File Storage
In this section, we analyze the expected delay in re-

constructing a file under a coded storage scheme. As
explained before, when using a (n, k) coding, each file
is split into k chunks and then coded into n chunks
and distributed to the nodes. In order to reconstruct
the file, the sink has to download any k out of the n
chunks. We will address how to distribute the chunks
to the nodes and the choice of k shortly. For a fixed
value of the redundancy factor α, in the uncoded case,
each file is replicated α times whereas in coded storage,
each file is expanded, again, α = n/k times. Thus, an-
alyzing the delays of both cases for the same α forms a
fair comparison.

6.2.1 Balls and Bins model

Assume for a moment that β has to be an integer
greater than or equal to 1 (recall that β is the number
of chunks per file that a node gets to store: β = n/N).
As before, each node can be represented as a bin and
thus we have N bins. Balls thrown into the bins are
equivalent to the sink meeting a node at each time step.
Whenever a sink meets a node, it can only download a
single chunk since the chunk size is equal to the band-
width constraint, and so the sink can meet the same
node β times before running out of new data. Thus we
can set the capacity of each bin to be β, meaning each
bin can only fit β balls. See Fig 3. In order to relax
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the condition on the integrality of β we note that we
can set the capacity of a few bins to ⌈β⌉ and the rest
to ⌊β⌋. We will note below what happens when β < 1.
Now, in order to get a file, we need to download any

k different chunks out of the n chunks. In the balls and
bins process, we are interested in finding out the number
of balls to be thrown in expectation, so that there are k
total balls in all of the bins. We make a note that since
the bins have limited capacity, they could overflow and
hence the required expectation is not always k. Let us
analyze the delay by considering three different cases
based on whether β ≤, 1 < β < k or β ≥ k.

b b b

1 2 3 NN − 1

1

2

β

Figure 3: The balls and bins model for the coded

case for integer β ≥ 1

Case I:β ≥ k

Since the capacity is sufficiently large, no bin can get
full in k throws and so E[D] = k.

Case II:β ≤ 1

In order to understand the capacity β being less than
1, we note that this in fact corresponds to n ≤ N , since
β = n/N . Thus only n nodes out of the N store the
chunks. Without loss of generality, consider the first
n nodes to contain the chunks. In the balls and bins
process, assume that there N bins and we are interested
in counting the number of balls in expectation to be
thrown till there are k balls in any of the first n bins
(see Fig 4). The expected number of balls to be thrown
before the first ball lands into any of the n bins is N/n;
the second ball takes N/(n − 1) in expectation and so
on. Thus,

E[D] =
N

n
+

N

n− 1
+

N

n− 2
+ . . .+

N

n− k + 1

= N(Hn −Hn−k)

≈ N log

(

n

n− k

)

,

since Hn ≈ logn. Using α = n/k, we get,

E[D] ≈ N log

(

α

α− 1

)

. (3)

Even though this equation does not depend on pa-
rameters likeM, C etc., there is an implicit dependence,
since for example, α depends on N , C, M, m and we
need to have the chunk size M/k to be equal to the
bandwidth constraint d.

b b b

1 2 Nn

b

Figure 4: The Bins set up when β < 1

Case III: 1 < β < k

To recall, β is the capacity per bin, or the number of
times the same node can be seen before the sink runs
out of useful chunks. Let us assume that β is an integer,
otherwise some bins will have capacity ⌈β⌉ and remain-
ing will have capacity ⌊β⌋, making bins non-identical
and thus harder to analyze. We are interested in find-
ing out the expected number of throws to get k balls
into the system. Deriving an exact expression for E[D]
seems hard and so we upper bound the expected delay.
Also note that E[D] ≥ k.
Let us define the state of the system S at any time as

the arrangement of the balls in the bins and |S| to be the
number of balls in the system. For example when |S| =
2, valid states include S = {2, 0, 0, . . . , 0}, {1, 1, 0, . . . , 0}
etc., where the jth element in the set corresponds to the
number of balls in the jth bin. For a general i, there are
an exponential number of states S such that |S| = i.
Let Ti→i+1 be the number of balls required to add one

more ball to the system, given that there are already i
balls in the system. The expected delay is then

E[D] =

k−1
∑

i=0

E[Ti→i+1]. (4)

We first note that the distribution of Ti→i+1 can be
determined if the current state is given, otherwise it
is extremely difficult. For example, given that S =
{0, 0, . . . , 0} (i.e. i = 0 and there are no balls in the
system), then T0→1 is 1 with probability 1 (or geomet-
ric with failure probability 0); and given that the state is
S = {β, 0, 0, . . . , 0} (i.e. the first bin is full with β balls),
then Tβ→β+1 is geometric with failure probability 1/N .
Thus once we know the state, we can state the distri-
bution of Ti→i+1. But what can we say about Ti→i+1

without conditioning on the state? As an example, sup-
pose there are i = β balls in the system, then there is a
finite probability q with which one of the bins may be
full, in which case, the distribution is geometric with
failure probability 1/N and with the remaining proba-
bility (1 − q), the distribution is geometric with failure
probability 0. Thus we can express P[Tβ→(β+1) = z] =
qP[Geom(1/N) = z] + (1 − q)P[Geom(0) = z], where
Geom(q) is a geometric random variable with failure
probability q. We make a note that Tβ→(β+1) is a prob-
abilitistic mixture of two geometric random variables
(refer to Appendix A for the definition of probabilis-
tic mixtures). For a general i, Ti→i+1 is a probabilistic
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mixture of at mostN geometric random variables. Even
though it is difficult to determine the mixing probabili-
ties for every i, we can effectively eliminate it, for which
we need to introduce some of the techniques below (also
see [27, 29] for more details):

Defn: Stochastic Dominance Consider two random
variables X and Y , possibly defined on different proba-
bility spaces. When X is stochastically smaller than Y ,
then for every z ∈ R, the following probability inequal-
ity must hold

P(X ≤ z) ≥ P(Y ≤ z)

or in terms of the cumulative distribution function,

FX(z) ≥ FY (z).

This is denoted as X � Y ,i.e. X is stochastically dom-
inated by Y .

Remark If X � Y , then E[X ] ≤ E[Y ]. This is noted
by seeing that E[X ] =

∑

z(1−FX(z)) ≤ ∑

z(1−FY (z)) =
E[Y ].

Lemma 6.1. Let X ∼ Geom(p) and Y ∼ Geom(q),
where p and q are the failure probabilities. If p ≤ q,
then X � Y .

Lemma 6.2. Let us have l random variables
X1, X2, . . . , Xl with Xj � X1 for all j = 2, 3, . . . , l.
If X is a probability mixture of X1, X2, . . . , Xl, such
that pX(z) =

∑l
j=1 αjpXj

(z) with constants αj ≥ 0

(j = 1, 2, . . . , l) and
∑l

j=1 αj = 1, then X � X1.

Back to the case when i = β + 1, since the worst
case failure probability is 1/N , the corresponding geo-
metric random variable stochastically dominates other
geometric random variables (Lemma 6.1), and so from
Lemma 6.2, we can see that Tβ→β+1 � Geom(1/N),
conveniently removing the dependence on q. Thus we
note that when Ti→i+1 is a probabilistic mixture of ge-
ometric random variables with worst case failure prob-
ability p, then Ti→i+1 � Geom(p). We are now all set
to get the upper bound on the latency.

Theorem 6.3. The expected delay due to coded stor-
age in the case when 1 < β < k is upper bounded by
n(HN −H⌈N(1−1/α)⌉), where HN is the N th harmonic
number.

Proof. Consider a random variableD′
i =

∑k−1
i=0 T ′

i→i+1

where T ′
i→i+1 is a geometric random variable with fail-

ure probability p′i. By suitably choosing p′i, we will
first prove that Ti→i+1 is stochastically dominated by
T ′

i→i+1 for each i.
When the first β balls are thrown, none of the bins

could have overflown and so Ti→i+1 is geometric with
failure probability 0 for i = 0, 1, . . . , β − 2, β − 1. We

choose p′i = 0 in these cases. Once there are β balls in
the system, as explained above, Ti→i+1 is a probabilistic
mixture of geometric random variables with the worst
case failure probability 1/N . From the insight above,
we set p′β = 1/N , so that Ti→i+1 � Geom(1/N). Also,
when β ≤ i ≤ 2β − 1, its not possible to have two
bins full, and so in all these cases, the worst case failure
probability is 1/N ; thus we set p′i = 1/N for β ≤ i ≤
2β − 1. Further, its not difficult to see that we should
set p′2β = 2/N .
Using similar arguments, we set p′i = j/N for jβ ≤

i < (j+1)β, for j = 0, 1, . . . , (k/β−1) (assuming k/β =
x to be an integer, otherwise use x = ⌊k/β⌋ above).
For the last case when i = k − 1, since x or more bins
cannot be full, set p′k−1 = (x − 1)/N . We note that

x = k
β = k

nN = N
α .

For each i, since we have chosen p′i to be at least as
big as the worst case failure probability in the proba-
bilistic mixture of geometric random variables that con-
stitute Ti→i+1, we can note that Ti→i+1 � Geom(p′i)
using Lemmas 6.1 and 6.2. This implies E[Ti→i+1] ≤
E[Geom(p′i)] and thus E[D] ≤ E[D′].

E[D′] =

k−1
∑

i=0

E[T ′
i→i+1] =

x−1
∑

j=0

(j+1)β−1
∑

i=jβ

E[T ′
i→i+1]

=
x−1
∑

j=0

(j+1)β−1
∑

i=jβ

E[Geom(j/N)].

Noting that E[Geom(p)] = 1
1−p ,

E[D′] =
x−1
∑

j=0

(j+1)β−1
∑

i=jβ

1

1− j/N
=

x−1
∑

j=0

β

1− j/N

= Nβ(HN −HN−x)

= n(HN −H⌈N(1−1/α)⌉).

Since k ≤ E[D] ≤ E[D′], we get

k ≤ E[D] ≤ n(HN −H⌈N(1−1/α)⌉). (5)

The right hand side can also be approximated as
kα log( α

α−1 ). When using this expression, it does not
matter whether x or β is an integer or not. As α →
∞, we can further approximate the above equation as
k ≤ E[D] ≤ k[1 + 1/2α + o(1/α2)]. Thus E{D} = k
for large α. Another way to see this is to note that
n = Nβ denotes the total capacity of all the bins and α
measures how big the capacity is compared to k. There-
fore as α → ∞, k is much smaller than the capacity and
thus none of the bins would overflow and so the aver-
age number of balls required is approximately k. Also
note that the probability that the delay is greater than
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k decreases exponentially with α2. The details are in
Appendix B. This is useful because we gain a lot even
if the redundancy increases a little bit.
To summarize,

E[D]







≈ N log
(

α
α−1

)

if β ≤ 1

≤ βN log
(

α
α−1

)

else if β > 1

Combining, we obtain our final bound,

E[D] ≤ max(1, β)N log

(

α

α− 1

)

. (6)

The β ≥ k is not interesting because it implies β =
n/N ≥ k or α = n/k ≥ N . In practice, this will never
be reached and if it does, then because N will generally
be high, from equation 5, we get E[D] ≈ k.
Comparisons of the expected delay with uncoded and

coded storage based on this analytical framework are
shown in Fig 5. Not only is the benefit of coding is
apparent from this figure, we can also see that the sim-
ulation matches quite well with the analysis.
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Figure 5: A plot comparing the expected delay

when using coded storage vs uncoded storage

under the analytical framework. Here, number

of nodes N=400, storage per node C = 50MB,

number of files m = 25 and file size M = 40MB.

A note on the choice of k: All the expressions ob-
tained above for the expected delay correspond to the
case when k chosen such that the chunk size M/k is
equal to the bandwidth constraint d. But what would
happen if the k is chosen any higher? First, consider
the case when n is a multiple of N . By choosing k say
twice its actual value, each node will have only half the
chunk size as before, but twice the number of chunks,
so the amount of data per node is the same, thus the
average delay will be the same. Now if n < N , by in-
creasing, k, we also increase n, i.e. more nodes contain
desired data but less of it. Overall, we did not observe
any improvement in the average delay by increasing k.

7. TRACE BASED EXPERIMENTS

We now turn to an empirical evaluation of the ben-
efits of coded storage, using real vehicular traces. For
the real traces of vehicles, we use two datasets: one con-
sisting of GPS traces of taxis in Beijing, and another
consisting of traces of buses in Chicago. The Beijing
dataset consists of coordinates of 1,000 taxis in Beijing
from 00:00hrs till 23:59hrs on Jan 5, 2009 local time,
recorded approximately every minute. For the Chicago
dataset, we collected the GPS traces of 1,608 buses in
Chicago, using the API released by the Chicago Transit
Authority(CTA)1. We started collecting this data from
11:06hrs (Chicago local time) on Nov 1, 2010, record-
ing the coordinates of buses about every 30 seconds, and
used data of the first 24 hours. We primarily present
results from the Beijing dataset, but we do include some
results using the Chicago dataset, which shows similar
trends, while omitting others due to lack of space. We
assume that the nodes continue to run their applica-
tion throughout the day. For inter-vehicular communi-
cation, we used a realistic model of IEEE 802.11p from
[30], the details are given in section 7.2 below.
In order to characterize the performance of the sys-

tem on these real traces, we cannot simply use the av-
erage delay in downloading a file as a figure of merit,
like we did before for the analysis. This is because, since
the traces are time limited, there could be files that may
not get fully reconstructed by the end of the duration
of the trace, and so it is hard to quantify the delay of
such incomplete files. Thus, for our experiments we rely
primarily on two metrics. One is the full-recovery prob-
ability, which measures the probability that a file can
be fully recovered by a sink by a given time. Certain
files may be unusable if they are not fully reconstructed,
and in such cases, this metric will be useful. There could
be other cases, where it is enough to just measure the
file reconstruction percentage by a given time. In such
cases, we use average file download percentage, which as
the name indicates, measures, on average, how much of
a file is downloaded by a given time. The exact details
on how these metrics are measured are given in sec-
tion 7.3 below. Before proceeding further, we need to
emphasize the difference between the two metrics and
why the average file download percentage is insufficient
in itself. Consider as an example, a situation where the
average file download percentage is 60. This could mean
that all the sinks have downloaded only 60% of the file
each is interested in or 60% of sinks have been able
to download full files but the remaining sinks nothing.
Thus, it is also essential to measure how many sinks
have been able to download complete files.

7.1 Simulation Setup
Similar to our analysis, both in the uncoded and the

coded storage schemes, the chunks and files are stored

1http://www.transitchicago.com/developers/bustracker.aspx
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by ensuring maximal spreading, so that, in the case of
uncoded storage, a file is not stored in the same node
twice and in the case of coded storage, multiple chunks
of the same file are not stored in the same node, un-
less all other nodes have been used. In fact, instead of
performing maximal spreading, if the files or chunks are
stored by selecting nodes randomly, we found that cod-
ing still performed virtually the same whereas the per-
formance of uncoded storage scheme decreased slightly.
Thus, we decided to use maximal spreading so as not
to worry about the performance degradation introduced
by randomization.
The next step after data storage is to simulate the

movement of nodes as dictated by the GPS traces of the
datasets. Since the traces are one day long, we divide
the day into discrete time steps that are one minute
long for the Beijing dataset and 30 seconds long for the
Chicago dataset. Then, at each time step, all we need
to do is to determine the distance between the given
sink and every other node, and apply the radio model
(described below), to find out the number of packets
transferred, if any.
Since the end goal is to deploy a file sharing system in

a vehicular network, we try to make reasonable choices
of various parameters involved. A capacity of 100GB
per node is assumed as a default, unless specified oth-
erwise in a figure. By default, files are assumed to be
of size 1GB, typical of movie clips. The number of files
that can be distributed depends on the number of nodes
and thus the total available capacity, thus we consider a
default of 2,500 files in the system, so that each file can
be replicated α = 40 times when there are 1,000 nodes.

7.2 Realistic Radio Link Model
The IEEE 802.11p standard specifies the data rate

to be from 1.5Mbps till 27Mbps with the default be-
ing 3Mbps. Hence, in our simulations, we use 3Mbps
as the data rate. For inter-vehicular communication, we
use an empirical model of packet delivery characteristics
obtained from [30]. The authors in [30] characterize the
packet delivery ratio (PDR) against various parameters
such as the separation between two nodes, their rela-
tive velocity etc., in a number of different environments
and the overall experiments lasted for about 30 hours.
Of the various environments in which their experiments
were conducted, the closest match to our datasets is
the Suburban Road (SR) enviroment. Thus we use the
PDR vs separation distance data (Fig 3(a) in [30]) to
carry out our simulations. It may also be emphasized
that the authors found that the relative velocity be-
tween two nodes do not significantly affect the PDR,
the way inter-vehicular distance does. We choose packet
sizes of 380 bytes with payload 300 bytes. Additionally
a protocol set up time of about 1ms is considered.

7.3 Experimental Methodology

As explained before, the two primary metrics of per-
formance are the full-recovery probability and the av-
erage file download percentage, both characterized as
functions of time. Once the files or the chunks (de-
pending on the scheme to evaluate) are stored in all the
nodes, in order to simulate the file sharing application,
a random node is selected to be the sink and it tries to
collect a particular random file. For each sink-file pair,
we keep track of the percentage of the file completed
and whether the file is completed or not at each time
step. When presenting the simulation results, we av-
erage over 50 random sinks, each of which collects 100
files at random, to obtain the average file completion
ratio and the full-recovery probability.
It may be noted that these are the average file com-

pletion curves, and that any curve ending at lesser than
100% file completion does not mean that the files were
never fully reconstructed, it just means that there were
a few files which were not reconstructed fully.

7.4 Choice of the coding parameter k

From the analysis, we deduced that the choice of pa-
rameter k must be such that when a file of sizeM is split
into k chunks of each size M/k, this chunk size should
be lesser than or equal to the bandwidth constraint d,
to effectively overcome the bandwidth limitation. But,
in practice, there is no fixed bandwidth constraint as
such, since the amount of data that can be downloaded
depends on the contact duration (among other factors),
and hence it is not possible to use the above equation
to calculate the optimal value of k. From the Beijing
dataset, we noticed that the average contact duration
between two nodes is about 55.6s (the duration when
two nodes are within a distance of 500m), and hence
at 3Mbps datarate, the upper bound on the average
amount of data that can be transferred is 21MB (cor-
responding to the PDR being 1 throughout the contact
duration, which will hardly be the case and hence this
quantity will be lower). Thus a reasonable choice of
the chunk size would be around 1MB or lower. In fact,
we noticed that the improvement (in say the average
file completion ratio) was trivial when choosing 0.1MB
as the chunk size instead of 1MB and hence in all our
simulations, k is chosen so that each file gets split into
1MB chunks. For example, for a 1GB file, we would
need k=1000 (considering 1GB=1000MB).

7.5 Discussion of the Results
Our most important results are shown in Fig 6, in

which we consider a typical file sharing scenario with
2,500 files each of size 1GB; and each node having about
100GB storage. Such a system is implemented atop
both the Beijing and the Chicago datasets, and both
the full-recovery probability and the average file down-
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Figure 6: Evaluating the performance of distributed storage codes in the default setting consisting

of 2,500 files each of size 1GB stored in nodes each having 100GB storage. The number of nodes is

1,000 in the Beijing dataset and 1,608 in the Chicago dataset

load percentage are measured for each time step. The
plots are shown in Fig 6. We note that coding offers sig-
nificant benefits compared to no coding. For example,
at the end of 24 hours, by using coding, as much as 98%
of the time, files are reconstructed completely, whereas
without coding, only 19% of the files are reconstructed
fully (see Fig 6(a)). On the other hand, if we were to
only consider the percentage of file completion, then
sinks are able to download 99% of the files on average
when coding is used, whereas without coding, only 61%
of the files are downloaded. If we were to consider the
instant when 80% of nodes are able to complete their
downloads, this corresponds to about 600 minutes in
the Beijing trace when coding is used, but only 4.4% of
nodes are successful in full downloads by 600 minutes if
no coding is used.
For the Chicago dataset (Fig 6(c) and Fig 6(d)), the

full-recovery probability at the end of 24 hours is 1 when
coding is used, whereas when no coding is used, the
probability is 0.7. The average file download percent-
age for the coded and uncoded cases at the end of 24
hours turned out to be 100% and 91% respectively. Af-
ter about 287 minutes, 80% of sinks succeed in getting
full files when coding is used, whereas if no coding is
used, only 6% of the nodes were able to complete their
downloads by that time. We see that the general trends
in the simulations from both traces are similar, though
the Chicago trace yields lower latencies. The improve-
ments in latency observed in the Chicago dataset could
be partially attributable to the higher redundancy fac-
tor because it involves a larger number of cars (1,608 in-
stead of 1,000), but also to other factors such as the fact
that the Beijing trace begins in the middle of the night
with relatively little traffic, while the Chicago trace be-
gins late in the morning. One can see from Fig 6(a) that
the rate at which files are completed starts to slow down
around 60 minutes (1 a.m.) and then picks up again at
400 minute (7 a.m.). In contrast, the rate at which
files are completed is initially steady for the Chicago

dataset, since it begins around 11 a.m., but is almost
flat during the night and then resumes again next day
morning. Another factor affecting the rate towards the
end is the scarcity of new chunks (similar to the coupon
collector problem).
Further, we performed a number of experiments to

thoroughly understand the effect of various parameters
on the performance of the system, by systematically
varying the parameters. There are many parameters
that can be varied, namely, the number of nodes N ; the
storage per node C; the number of files m; the size of
each file M; the system redundancy α; and the coding
parameters (n, k). It may however be noted that these
parameters are all interconnected by the relationship
α = NC/mM = n/k. k is fixed once M is known (as
explained above), and once we know α, n can also be
fixed. The number of nodes N is determined by the
dataset; it is 1,000 for the Beijing dataset and 1,608 for
the Chicago dataset. Thus we are left with three free
parameters M, C and m and to study their effect, in
our evaluations, we keep two parameters constant and
vary the third parameter.

7.5.1 Effect of file size

As file sizes increase, since system storage remains
constant, we are effectively decreasing the system re-
dundancy, which should adversely impact latency. This
is observed for both coded and uncoded storage, but
there are clear differences in relative performance. From
the analysis, we inferred that if the bandwidth con-
straint d is about the same or higher than the file size
M, then coding offers little to no benefit. We notice
this effect in our simulations when the file size is about
100MB or lower. This is shown in Fig 7(a) and Fig
8(a). But we can see that, as the file size is increased to
1GB, coding offers tremendous improvements by being
able to fully download the files most of the time (98%
of the time), whereas only about a fifth of the time that
sinks are able to download full files by the end of the
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Figure 7: Plots showing how various parameters affect the full-recovery probability. In each of the

cases, one parameter is varied while keeping the others constant. Typical values used are a storage

capacity of 100GB, 2,500 files and file size 1GB. Beijing dataset is used for all the simulations.
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Figure 8: Plots showing the impact of different parameters on the average file download percentage.

The parameters are same as in Fig 7 and the simulations are carried out on the Beijing dataset.

simulation. When the file size is increased further to
5GB, the performance of coding suffers, but not drasti-
cally, whereas in the absence of coding, the probability
of full recovery drops almost to zero (from Fig 8(a), we
note that many sinks have been able to download about
a tenth of the file on the average, but not a complete
file).

7.5.2 Effect of the number of files and the capacity

Figs 7(b) and 8(b) show the impact of the number of
files on the system performance. As the number of files
increases, the system redundancy decreases and hence
the full-recovery probabilities and the file download per-
centages both start to decrease. And, as the capacity
increases from 10GB to 100GB to 500GB, files can be
replicated many more times and hence the the the full-
recovery probabilities and the file download percentages
both start to get better (Fig 7(c) and Fig 8(c)). An
interesting observation to make is that the curve cor-
responding to the case when there are 25,000 files with
100GB storage per car in Fig 7(b) and the curve corre-

sponding to 2,500 files with 10GB storage per car in Fig
7(c) (or Fig 8(b) and Fig 8(c)) are both identical (if we
choose the same set of sink file pairs). This is because
having 25,000 files on nodes with 100GB has the same
system redundancy as having 2,500 in 10GB nodes.
Also note that some of the probabilities or percentages
for the uncoded replication start non-zero, since some of
the sinks already contain the files they are interested in,
whereas when coding is used, no node can contain a full
file by itself and so all the probabilities and percentages
are 0 to begin with.

7.6 Absolute File Download Latency
A cautionary note is in order in interpreting our re-

sults in this section in terms of the absolute numbers,
which suggest that downloading a large 1GB-sized file
in a vehicular network is likely to take six to ten hours
even with coding. We note that our traces, though they
involve more than 1000 nodes each, are still relatively
quite sparse in terms of encounters as they involve two
very large cities (Beijing, Chicago). Further, it is impor-
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tant to note that the Beijing simulations start around
midnight, which also skews the latencies observed in
that data set as there is not much encounter activity
till many hours later (as noted before, the latencies
are lower in the Chicago trace which starts from late-
morning). Thus the latency values presented in our
study in terms of absolute numbers may not be repre-
sentative of what might be possible with much denser
vehicular network deployments (say 100,000+ vehicles
in a large city) during high-traffic hours. But the dra-
matic gaps observed between the performance of coded
and uncoded storage in these simulations as well as in
our analytical model indicate strongly that the use of
coding is essential for speeding up large file downloads
in encounter-based vehicular networks, regardless of ve-
hicular density.

8. NON-UNIFORM FILE POPULARITY
In both the analysis and the preceding trace-based

simulations, we have assumed that all files are equally
popular. We now relax this assumption and consider
non-uniform file popularity. In the uncoded storage
case, if each file has a popularity pi such that

∑m
i=1 pi =

1, and if all encounters are equally likely, then we know
that the latency of accessing each file is inversely pro-
portional to the number of replicas (and the bounds we
derived for coded storage case also show a similar in-
verse dependency). In such a setting, it is known that
file i must be replicated ideally as per the square-root
allocation strategy [7, 31] in order to minimize the av-
erage latency over all files. In other words, the number
of copies of file i should be αi, where:

αi = mα

√
pi

∑m
j=1

√
pj

. (7)

In the real traces, where encounters are non-uniform
because of the arbitrary mobility pattern, the assump-
tion that the latency is strictly inversely proportional
to the redundancy factor may not hold, either for un-
coded or for coded storage. Determining the optimal
storage policy is thus challenging and we defer it to fu-
ture work. Here, however, we consider the square-root
replication policy as a reasonable sub-optimal heuristic
and evaluate briefly the benefits it offers to both un-
coded and coded storage settings in the case that the
file popularity is non-uniform.
Fig 9 demonstrates the improvements that can be

achieved by making use of square-root allocation strat-
egy when compared to uniform allocation. In this case,
it is assumed that the file popularities follow a Zipf law
with parameter 0.77 (content requests on the web are
known to follow such a Zipf-like distribution [32]). In
both cases we see improvements, though they are more
marked in the case of uncoded storage. But even in this
case, we see that coded storage does perform better on
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Figure 9: Comparing square root replication vs

uniform replication for both the coded and un-

coded storage schemes. The average file down-

load percentage is plotted here for the Beijing

dataset.

the whole.

9. CONCLUSION
We have studied the effect of coded storage on the la-

tency of content access in an encounter-based vehicular
network. We developed a mathematical model to study
the relative benefits, and proved that optimized coded
storage is never worse than uncoded storage, and can
significantly improve the latency performance in case of
larger files and bandwidth limitations. We have further
validated our findings using realistic simulations based
on large-scale vehicular traces involving taxis in Beijing,
and buses in Chicago. Our numerical results confirm
that file download latency (particularly for larger files)
is improved dramatically when the content is stored us-
ing MDS erasure codes.
There are still many unanswered questions. While we

have briefly addressed the issue of unequal file popular-
ity, a more rigorous solution remains to be developed.
Other open questions include how to re-distribute con-
tent when there are nodes leaving and entering the sys-
tem, and the possibility of learning patterns in vehicular
encounters to further optimize the content storage. We
also note that our traces, albeit involving 1000+ cars,
are still relatively sparse given that they involve city-
scale mobility; it is important to understand content
access latency in denser deployments, to determine if
vehicular P2P file sharing can become reality.

APPENDIX

A. COUPLING AND STOCHASTIC DOMI-
NANCE

Defn: Probability Mixtures A probability mixture
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is a convex combination of a given set of probability
distributions. Suppose there are a set of l discrete ran-
dom variables X1, X2, . . . , Xl whose probability mass
functions are given by pXj

(·) for j = 1, 2, . . . , l and
given mixing constants αj ≥ 0 (j = 1, 2, . . . , l) with
∑l

j=1 αj = 1, then a random variable Y formed out of
a probability mixture of X1, X2, . . . , Xl has the proba-
bility mass function:

pY (z) =

l
∑

j=1

αjpXj
(z).

In case of continuous random variables, the probability
mass function will have to be replaced by the prob-
ability density function. It is not hard to see that
the above equality also holds for cumulative distribu-
tions. FY (z) =

∑

y≤z pY (y) =
∑l

j=1 αj

∑

y≤z pj(y) =
∑l

j=1 αjFXj
(z).

Defn: Coupling For a given set of random variables
X1, X2, . . . , Xn, a coupling is defined as a new set of
random variables (X̂1, X̂2, . . . , X̂n) over the same prob-
ability space such that the marginal distribution of X̂i

is same as that of Xi for i = 1, 2, . . . , n. Thus for all
measurable subsets E ∈ R,

P(X̂ ∈ E) = P(X ∈ E)

Theorem A.1. A random variable X is stochasti-
cally dominated by another random variable Y if and
only if there exists a coupling (X̂, Ŷ ) of X and Y such
that

P(X̂ ≤ Ŷ ) = 1

Proof. If P(X̂ ≤ Ŷ ) = 1, then it means that X̂ ≤ Ŷ
is always true and so P(X̂ ≤ Ŷ |Ŷ ≤ z) = 1. Thus we

have P

[

(X̂ ≤ Ŷ ) ∩ (Ŷ ≤ z)
]

/P(Ŷ ≤ z) = P(X̂ ≤ Ŷ ≤
z)/P(Ŷ ≤ z) = 1. Now,

P(Y ≤ z) = P(Ŷ ≤ z)

= P(X̂ ≤ Ŷ ≤ z)

≤ P(X̂ ≤ z)

= P(X ≤ z)

So X � Y . In order to prove the other direction we
make a note that X = F−1

X (U) where U is a uniform
random variable in [0, 1] and F−1

X (·) is the inverse of the
cumulative distribution function defined as below:

F−1
X (u) = inf{x ∈ R : FX(x) ≥ u}

By the property of stochastic dominance, we have FX(z) ≥
FY (z) which implies that for any 0 ≤ u ≤ 1, F−1

X (u) ≤
F−1
Y (u). And since X and X̂ and Y and Ŷ have the

same distributions, P(X̂ ≤ Ŷ ) = P(F−1
X (U) ≤ F−1

Y (U)) =
1

Lemma A.2. Let X ∼ Geom(p) and Y ∼ Geom(q)
where p and q are the failure probabilities. If p ≤ q,
then X � Y .

Proof. At each step (starting from 0), a real number
is selected at random from [0, 1] and X̂ and Ŷ are de-
fined to denote the step at which the number chosen be-
longs outside [0, p] or [0, q] respectively. We note that if
X̂ succeeds at step x, so that the number chosen at that
step is for the first time higher than p, then Ŷ could not
have succeeded before or at x i.e. P(Ŷ ≥ x | X̂ = x) = 1
P(X̂ ≤ Ŷ ) =

∑∞
0 P(Ŷ ≥ x | X̂ = x)P(X̂ = x) =

∑∞
0 (1)P(X̂ = x) = 1. Thus (P )(X̂ ≤ Ŷ ) = 1 giving

X � Y . Thus a geometric random variable is always
dominated by another geometric random variable with
higher failure probability.

Lemma A.3. Let us have l random variables
X1, X2, . . . , Xl with Xj � X1 for all j = 2, 3, . . . , l.
If X is a probability mixture of X1, X2, . . . , Xl, such
that pX(z) =

∑l
j=1 αjpXj

(z) with constants αj ≥ 0

(j = 1, 2, . . . , l) and
∑l

j=1 αj = 1, then X � X1.

Proof.

FX(z) =

l
∑

j=1

αjFXj
(z)

≥
l

∑

j=1

αjFX1
(z)

= FX1
(z)

Thus we have FX(z) ≥ FX1
(z) for all z, which implies

X � X1.

B. PROBABILITY ANALYSIS
Let us find out the conditions under which, with high

probability, no bin gets full in k throws so that the
number of throws is k with high probability. Without
any capacity constraints on the bins, we know that the
number of balls that land on a particular bin after k
throws is binomially distributed with parameters k and
1/N . Define, Ei to be the event that the bin i doesn’t
get full after k throws. So Pr[Ei] = Pr[X ≤ β] where
X is a binomial random variable with parameters k and
1/N . Probability that no bin gets full in k throws:
p = P[E1 ∩ E2 ∩ . . . EN ] = 1− P[Ē1 ∪ Ē2 ∪ . . . ĒN ]. By
using union bound and noting that all bins are identical,

P[Ē1 ∪ Ē2 ∪ . . . ĒN ] ≤
N
∑

i=1

P[Ēi] = NPr[Ē1] (8)

So p ≥ 1−NP[Ēi] (9)

The task now is to find an upper bound on the bad
event, P[Ēi] which is the probability that a bin gets full
for which we make use of Chernoff bound for binomial
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random variables which states that if X is a binomial
random variable with parameters n and p, then

P[X ≥ (1 + ǫ)np] ≤ e−ǫ2np/3

So in our case, P[Ēi] = P[X ≥ β] = P[X ≥ n
N ] = P[X ≥

α k
N ] ≤ e−

1

3
(α−1)2 k

N . Substituting in equation (9), p ≥
1 − Ne−

1

3
(α−1)2 k

N . Further, if we want p ≥ 1 − 1/N ,
then we need to make sure that the bad event proba-
bility is upper bounded by 1/N2. Thus,

e−
1

3
(α−1)2 k

N ≤ 1

N2

α ≥ 1 +

√

2N logN

k

Thus when the above condition holds, the probability
that the delay is equal to k is greater than 1− 1/N .
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