
MCC: a High-Throughput Multi-Channel Data
Collection Protocol for Wireless Sensor Networks

Ying Chen and Bhaskar Krishnamachari
Department of Electrical Engineering, Viterbi School of Engineering

University of Southern California, Los Angeles, CA, 90089
Email: {chen2 and bkrishna}@usc.edu

Abstract—We present the design and implementation of MCC,
the first high-rate multi-channel time-scheduled protocol for fair,
real-time data collection in Wireless Sensor Networks. MCC
incorporates sophisticated mechanisms for balanced routing tree
formation, multiple frequency channel allocation and globally
synchronized TDMA scheduling. Through systematic experi-
ments with real WSN hardware(Tmote Sky), we first identify the
maximum possible throughput for many-to-one (convergecast)
data collection in sensor networks. We show through a compre-
hensive experimental evaluation on the Tutornet experimental
testbed that MCC can achieve close to the maximum possible
network throughput for collection in wireless sensor networks
with very low synchronization overhead. Compared to the Col-
lection Tree Protocol (CTP), the state of the art collection protocol
for WSN, we show that MCC offers 25-100% improvement in
throughput. Being a time-scheduled protocol, MCC can be easily
configured for energy-efficient operation yielding energy savings
of 85 to 95% compared to always-on operation.

I. INTRODUCTION

Networks of wireless sensors, each capable of a combination
of sensing, computation, radio communication, possibly even
actuation are envisioned to form a key component of the
emerging “Internet of Things”. Wireless Sensor Networks
(WSNs) have been developed and put into use for automated
data collection in many different scenarios, like environment
monitoring, surveillance system, traffic monitoring, building
automation, etc. [1].

In many real implementations [2] [22], it has been found
that even if each sensor generates low rate data individually,
due to the density of deployment and the many-to-one hop-
by-hop traffic pattern, the amount of traffic close to sink is
still too high, leading to high loss rate and poor throughput.
This is even true for WSNs with small size and light traffic
as shown in [3], [22]. For example, as mentioned in [22],
in their initial experiments on a 9-node WSN for a traffic
monitoring application, the yield of the network was only
around 73%, preventing a larger scale deployment. This is
also observed in [8], in which experiments are performed on
USC Tutornet testbed using Tmote Sky devices. It is shown
that with 40-byte packets, the per-source rate in a 40-node
WSN is only about 0.5pkts/sec; thus the network throughput
is only 6.4kbps, about 2.56% (!) of the nominal 250kbps data
rate of the IEEE 802.15.4 radio on Tmotes. These observations
illustrate that sensor networks are fundamentally throughput
limited. Even for small-medium scale networks with 100 or
fewer nodes, it is essential to design protocols that can improve

network and per-source throughput, and have a more efficient
link utilization.

In recognition of this limitation, significant effort has been
expended in recent years in the literature on developing and
experimentally evaluating high throughput routing and rate-
control protocols [5], [7]–[9], [23]. Nearly all of these ef-
forts have been single-channel, CSMA-based protocols. While
single-channel CSMA mechanisms are relatively easy to im-
plement, their data rate is significantly limited by co-channel
interference, particularly in dense deployments.

Interference could be reduced by allocating different chan-
nels to different links, improving the efficiency of bandwidth
usage. However, time synchronization is needed to efficiently
coordinate the communication of nodes operating on different
frequency channels. This motivates us to design and implement
a time-scheduled multiple channel high rate data collection
protocol, that we refer to as Multi-Channel Collection (MCC).
There has been relatively little prior work in this direction
in sensor networks; the most closely related work being
the recently developed PIP [24], which too provides time-
scheduled multiple channel collection, but in an end-to-end
connection-oriented fashion for bulk data transfer from one
or two sensors at a time. Our effort, in contrast, allows for
real-time and fair data collection potentially from all sensors
in the network.

Our work is inspired and informed by the theoretical
study in [18], which presents frequency-time scheduling and
routing algorithms for fast convergecast. In particular, that
work shows that when sufficient channels are available to
eliminate interference, the bottleneck for throughput becomes
the routing topology, and proposes a balanced routing tree
formation algorithm that we utilize here. However, that work
considers an idealized network that is evaluated purely through
simulations. This can be misleading, as under such an ideal
evaluation packet size has no impact on throughput, and the
maximum achievable throughput is assumed to be the link rate
allowed by the radio’s physical (PHY) layer.

In order to obtain a systematic understanding of through-
put performance, currently lacking in the literature, we first
undertake a series of experiments on a representative widely-
used WSN platform, the Tmote Sky with CC2420 radio.
We study how throughput performance is affected by the
packet size, node function (leaf / relay / sink), and the use of
acknowledgements for reliability. Our experiments show that

2

the maximum achievable throughput varies significantly with
these parameters, and is well below the radio link rate provided
by the PHY layer. Using the lessons learned from these
experiments, we present in this work the first-ever real protocol
implementation of fair throughput-maximizing multichannel
convergecast, and demonstrate that it is able to achieve almost
the highest-possible rate given the hardware limitations of a
real sensor node.

Our MCC protocol has many components, including net-
work connectivity determination, routing tree formation, chan-
nel allocation, time synchronization and time scheduling.
Although there is a plethora of existing work on each of these
individual components treated independently in the literature,
our effort in this work is to combine them intelligently to
develop a cohesive, high-performance protocol. We bring
together existing algorithms from the literature, with modifi-
cations where needed, to engineer our implementation of this
protocol on the Tmote Sky platform. We then evaluate experi-
mentally the various components of the protocol, to understand
parameter settings and their impact on performance.

Finally, we present the overall performance of the protocol
in terms of the network throughput under various settings (the
use of acknowledgements (ACK), network topology) using the
USC Tutornet testbed [26] and show that it achieves close to
the estimated maximum throughput. Moreover, we compare
MCC with the collection tree protocol (CTP) [4], a state of
the art collection protocol for WSN, and show that it typically
yields a 100% improvement in total throughput. We also show
that if nodes were turned off during un-scheduled times, the
average energy utilization could be reduced by about 85 to
95% compared to an always-on network. Thus MCC is not
only throughput optimal, it is also extremely energy efficient.

We summarize the key contributions of this work:
• The first systematic experimental analysis and modeling

of the impact of packet size and node function on the
maximum achievable throughput in real WSN hardware.

• Design, implementation, and testbed evaluation of MCC,
the first high-rate multi-channel TDMA collection proto-
col for real-time data gathering in sensor networks. In
engineering our protocol we build upon and integrate
diverse mechanisms that have been developed and studied
largely in isolation in prior work: network connectivity
determination, balanced routing tree formation, channel
allocation, time synchronization, and scheduling.

• The empirical demonstration that this protocol is able
to provide close to the estimated maximum achievable
network throughput.

The rest of the paper is organized as follows. First, we
discuss prior work in section II. In Section III, we model,
analyze and measure the maximum achievable throughput of
convergecast. Based on the lessons we learned, in section IV,
we present the design and implementation of MCC. In sec-
tion V, we evaluate components of MCC on Tutornet testbed.
Then we deploy MCC on a 30-node network and compare with
CTP in section VI. Finally, we summarize our contributions
in this work and present future work in section VII.

II. RELATED WORK

Given more than a decade of research on wireless sen-
sor networks, the number of papers written on convergecast
and multi-channel protocols is too vast to enumerate com-
prehensively. Instead, we focus our review on key works,
particularly those that have focused on real implementation
and experimental validation over testbeds. Although it has
not been designed for high-rate performance, the de-facto
state of the art routing protocol for WSN today, which of-
fers the best, reliable delivery performance, is the Collection
Tree Protocol (CTP) [4]. We therefore use it as a baseline
comparison for MCC. Alternate routing approaches that also
show performance improvements are Arbutus [6], which offers
improvements in load balancing and reliability, and the queue-
aware dynamic routing mechanism BCP [5], which shows
improvement in throughput as well as robustness to external
interference.

Others have focused on avoiding congestion collapse and
maintaining high rate delivery by using a rate control pro-
tocol on top of the routing mechanism. Examples include
IFRC [7], and WRCP [8]. A centralized approach to rate
control, RCRT [9], has been shown to yield even better rate
performance. Flush [23] offers a robust, high-rate connection-
oriented bulk transfer capability. All these protocols are single-
channel protocols, and have been developed over CSMA, due
to ease of implementation.

A comprehensive survey of multi-channel mechanisms for
wireless networks (mostly for 802.11-based ad-hoc networks)
can be found in [25]. MMSN [19] is the first multichannel
MAC protocol especially designed for WSNs with devices
having half-duplex single transceiver. There is a common
broadcast channel, and nodes contend to access the channel
on different unicast frequencies. The authors of [20] propose
a multi-channel protocol with dynamic channel allocation by
clustering a WSN. In each cluster, the header node needs
to collect information and schedule for its member nodes.
TMCP [16] is a tree-based channel allocation mechanism, in
which the tree is partitioned into separate trees, each of which
is allocated a separate channel (minimizing the need for syn-
chronization). Other approaches to multi-channel MAC design
include the cluster-based dynamic control-theoretic approach
in [13], and MC-LMAC [14], which offers a distributed joint
time and frequency scheduling mechanism. These schemes
have all been evaluated primarily through simulations alone,
or with limited testbed experiments (as in the case of TMCP).
They are also not guaranteed to offer maximum throughput
convergecast.

We now turn to practically implemented mechanisms for
multichannel collection in wireless sensor networks that have
been evaluated through extensive testbed experiments. Y-
MAC [15] presents a multi-channel protocol for wireless
sensor networks that is based on lightweight channel hopping.
Nodes on a link hop to a new channel when traffic bursts
occur, following a predetermined sequence. The focus of Y-
MAC is to improve energy efficiency by reducing contention,

3

rather than high rate performance, and it does not offer any
guarantees in this regard. WRAP [10] uses multiple frequency
channels with time synchronization. Data collection in WRAP
is implemented using a token-passing scheme. Designed for
highly dense deployments, it allows only one node in the
network to be actively transmitting at any time. For this
reason, while it does cut down drastically on interference
and congestion, WRAP does not guarantee maximum rate
performance in an arbitrary network.

The experimental work that is most relevant to our work
is PIP [24]. This is a joint TDMA-FDMA based bulk-transfer
protocol. In its basic form, it allows the sink to establish a
connection with a particular sensor node and download data
from that node at the highest rate possible. By keeping the
sink occupied half the time (it must remain idle whenever the
node one hop from it is in receive mode) it can achieve at least
50% of the maximum throughput. The authors of this work
point out that to fully occupy the sink, with sufficient channels,
it is possible to schedule two concurrent flows, keeping the
sink fully occupied and thus achieving the maximum possible
throughput, which is also our goal in this work. A key
distinction, however, is that the MCC protocol we describe
in this work is able to collect data fairly from all nodes in
the network, rather than establishing connections only to one
or two at a time. Thus, it is more suitable for real-time,
fair data gathering applications. Also, MCC incorporates a
balanced routing mechanism to ensure that the maximum rate
is achievable. Moreover, we carefully evaluate the maximum
possible network throughput with respect to packet size, net-
work topology, use of ACK, etc., and demonstrate conclusively
that this rate can be achieved in practice by our protocol.

III. THROUGHPUT ESTIMATION

Although the maximum throughput may naively be consid-
ered to be simply the link rate of the underlying radio protocol,
in practice the throughput may be even lower due to hardware
limitations. In this section, we systematically study one widely
used WSN hardware platform, the Tmote Sky, and understand
its achievable rate performance with respect to different key
parameters.

Fig. 1. A high level view of sensor node architecture

A. Basic Model

We show in Fig. 1 a high level view of a node’s architecture
(as our focus is on understanding throughput performance
for the communication stack, we omit the sensor itself in
this figure). The node has a micro-controller, a radio with
2 separate buffers (one for TX, another for RX), and a bus
to copy data between them. The total time for transmission
or reception of a single packet, TPacket, can be written as a

TABLE I
PARAMETERS FOR THE CURVE-FIT OF THROUGHPUT ESTIMATION MODEL

α (ms) β (ms/byte)
Sink, no ACK 1.79 0.062
Relay, no ACK 3.50 0.079
Leaf, no ACK 3.35 0.079

Sink, ACK 3.95 0.078
Relay, ACK 5.81 0.085
Leaf, ACK 5.52 0.079

linear combination of a constant term and a term proportional
to the packet size.

TPacket = α+ β · Packet Size (1)

The α pertains to per-packet software and radio latencies
that are independent of the packet size. The rate term β
depends on the CPU rate, the bus transfer rate, and the radio
rate, and the degree of pipelining achieved between successive
packets. While α is very software-specific, based on hardware
specs for the Tmote Sky device, we can estimate that β
lies between 0.04 and 0.09 ms / byte. The corresponding
throughput can then be calculated as:

Throughput =
Packet Size

TPacket
(2)

B. Estimating the Maximum Convergecast Throughput

In practice, the measurement of Tpacket and the correspond-
ing throughput will be different depending on a nodes role
and where it is being measured. Since we are concerned with
a convergecast application, the three key node roles are sink,
relay, and leaf. We therefore conduct experiments to estimate
three kinds of throughput values: the receive rate of a sink
node, the transmit rate of a leaf node, and the (transmit +
receive) rate of a relay node. In these experiments we allocate
time slots to nodes and use synchronized transmissions. To
measure sink receive rate, we use a star-topology with the sink
receiving packets from multiple nodes one hop away from it.
To measure the leaf transmit rate, we use a simple two-node
link with the transmitter continuously sending packets to the
receiver. To measure the relay rate, we consider a linear topol-
ogy with each node receiving on a different channel to avoid
interference. We measure the relay rate of intermediate nodes
as they alternate between sending and receiving packets. We
vary the packet size from 10 bytes to 110 bytes and conduct
the experiments with and without link-layer acknowledgement
packets. For each setting we vary the slot length of packet
transmissions to determine the maximum achievable rate and
plot only those maximum rate points. The results we obtain
are shown in Fig. 2 and Fig. 3. A striking observation is
that the maximum achievable throughput observed in practice
is at most about 100 kbps, well-below the ideal 250 kbps
link rate provided by the CC2420 radio. We find that the
measurements show an excellent fit with the simple throughput
model described in equations (1) and (2). The corresponding
parameters of the best-fit parameters for α and β are shown
in table I. We see that the model fits the data very well, and
that the β parameters are within the expected range.

4

Fig. 2. Measured versus estimated throughput of Tmote Sky device for
ACK-disabled case

Fig. 3. Measured versus estimated throughput of Tmote Sky device for
ACK-enabled case

C. Lessons

The modeling and throughput experiments summarized in
Fig. 2 and Fig. 3 yield three key observations that inform our
design of a high-throughput collection protocol:
• The throughput performance is very much a concave

function of the packet size. To our knowledge, ours is
the first work to systematically quantify using real WSN
hardware how the throughput varies with the packet size.

• The throughput is higher without ACK than with ACK
packets. This is intuitive, as there is additional over-
head incurred in generating and waiting for acknowl-
edgements. However, using ACK feedback will improve
reliability.

• The throughput performance is clearly affected signifi-
cantly by the role of a node. We find that the maximum
sink receive rate is slightly higher than the maximum
leaf transmission rate. This is due to the possibility of
greater pipelining at the sink which is receiving data
from multiple transmitters1. We also find that the relay
rate, which is already halved as it must both receive
and transmit, is further reduced due to the switching
overhead between frequency channels. Thus, in a linear

1At the transmitter, the application must wait to send the next packet
from the microprocessor to the TX buffer on the radio until it is notified of
the previous packet’s transmission. From a receiver’s perspective, the packet
from one transmitter may overlap the time that the previous packet from a
different transmitter is being copied from the RX buffer to the microprocessor,
providing greater pipelining efficiency than in the transmitter.

topology, the throughput bottleneck would be the relay
node’s maximum throughput. Note though that if we have
even three different branches, assuming all transmissions
are scheduled to avoid collisions, the sum rate of these
branches exceeds the maximum sink receive rate. Thus
the maximum collection rate of convergecast is bounded
by the maximum sink receive rate. We will therefore
compare the throughput achieved by our protocol with
the maximum estimated sink throughput.

IV. MCC DESIGN AND IMPLEMENTATION

Based on the observations of the previous section, we find
that for convergecast the sink is generally the bottleneck.
Conceptually, there are three possible sources of bottleneck:
(1) interference, (2) relay node TX/RX rate and (3) sink RX
rate. As argued in [18], we can mitigate (1) using multiple
channels. We can address (2) by using suitably balanced
routing topology. Therefore (3) becomes the fundamental limit
on fair throughput. Our goal in this work is to develop a multi-
channel collection (MCC) protocol for convergecast that can
achieve this rate.

Our design of MCC includes network connectivity de-
termination, routing tree formation, channel allocation, time
synchronization, time scheduling and collection. We do not
claim to have innovated each of these components indvidually,
as these are difficult problems that have been well studied
in the literature. Our contribution is instead in identifying,
building upon, and integrating state of the art algorithms for
each, modifying them as needed, to engineer a single cohesive
high performance protocol. In the following, we present our
implementation of MCC on the Tmote Sky platform with the
TinyOS 2.x operating system.

A. Network Connectivity Determination
Initially, all nodes in the network start in the same channel.

For a certain power level, each node broadcasts 100 messages.
Whenever a node receives a message, it logs the sender’s ID.
Node i is j’s neighbor only if j receives more than 90 messages
from i, which implies a Packet Reception Ratio (PRR) ≥ 90%.
Other links with 90% > PRR > 0% are considered as
interfering links. Every node maintains a neighbor list by this
blacklisting approach. After this step, we get a connectivity
graph G(V,E) and an interference graph I(V,E′) of the
network for use in routing and scheduling.

B. Balanced Routing Tree Formation using CMS
Motivated by [18], we assume that interference can be

eliminated by allocating multiple channels in a TDMA net-
work. The available schedule length is lower-bounded by
max(2nk−1, N), where nk is the maximum number of nodes
on any subtree and N is the number of nodes in the network.
If it is possible to have 2nk − 1 < N in the tree construction,
we can achieve N as the lower bound for time scheduling. But
for an arbitrary graph G, can we construct a tree T on G such
that nk < (N − 1)/2? This is defined as the “Capacitated
Minimal Spanning Tree Problem” and is proven to be NP-
complete [21]. For MCC, we use the Capacitated Minimal

5

Spanning (CMS) Tree heuristic presented in [18] to build a
balanced routing tree, using the connectivity graph G(V,E)
obtained in the previous step.

C. Lightweight Time Synchronization (LTSP)

Synchronization is crucial for a multi-channel scheduling
protocol. We implement a lightweight time synchronization
protocol (LTSP) that is similar to FTSP [11] in that one-
way synchronization is performed between every child and
its parent on the tree, using MAC-layer time-stamps and
linear regression over multiple packets. The reason we do not
use FTSP code from TinyOS directly is that we piggy-back
other configuration and control information for scheduling and
channel allocation sent from the sink to the network nodes on
the time-sync packets. All nodes are in the same channel at
first. The root (sink) initiates the lightweight synchronization
by broadcasting a group of LightTimeSync packets, which
contains time information, to its children. After a child gets
synced with its parent, it needs to propagate time synchroniza-
tion and time scheduling information to its children if it is not
a leaf node. Then the node gets ready for data collection.

D. Channel Allocation

In IEEE 802.15.4 radios such as the CC2420 radio on the
Tmote Sky platform, the 2.4Ghz frequency is divided into
16 channels. From the routing tree topology, we know the
intended transmissions. In a wireless network, interference
would happen if an intended receiver is within the transmission
range of a sender intended for other receiver. We define node
i interferes with node j if i is in the transmission range of
any j’s child. Therefore, from the network connectivity and
interference information we have obtained, a conflict graph C
can be generated. An edge (i, j) in conflict graph C represents
node i and j interfere with each other. We adopt receiver-
based channel allocation, ensuring that different channels are
allocated to nodes that have a link in C. Since graph coloring
is NP-hard, we use the Welsh-Powell algorithm [27], a greedy
heuristic that we find does well in practice.

Fig. 4. TX and ID mode have one slot, RX mode has two slots
E. Time Scheduling

Once enough channels have been allocated so that interfer-
ence can be completely eliminated, the time scheduling prob-
lem can be simplified to only consider the tree topology. We
modify the algorithm indicated in [12] for our time scheduling.
The key difference between our modified scheduling and that
described in [12] is that while the original algorithm assumes
same slot length for TX and RX, for MCC we double the
length of RX slots in order to introduce a guard-time for
continuous transmissions. The building block in our algorithm
is a slot. A non-sink node has 3 modes: TX, RX and ID (idle).
The TX and ID mode have duration of one slot-length and
the RX mode has duration of 2*slot-length. The sink node is

scheduled to remain in RX mode at all times. This is illustrated
in Fig. 4. Nodes follow the same schedule pattern in each
frame (corresponding to one round of data collection from all
nodes).

Fig. 5. Software Architecture for distributed part of MCC

F. Collection
At this point, a node has all its configuration information,

e.g., next-hop, number of children, channel assignment and
time schedule. It starts to collect data from its application layer
or the network.

There are 5 major components in the distributed part of
MCC as shown in Fig. 5:
• Routing Engine: Routing Engine obtains routing infor-

mation, which is generated centrally, from sink through
LTSP packets.

• Forwarding Engine: This is responsible for maintaining
a queue of packets to transmit. The packets could be
generated by the node’s own application or received from
its children. When ACK is enabled, it also provides
retransmission mechanism.

• Channel Controller: This determines which channel a
node uses for transmission and reception. This is also
currently obtained from the sink via LTSP packets.

• Lightweight Time Synchronizer: This component im-
plements LTSP.

• Time Scheduler: it maintains the time schedule, and
performs the time calculations needed to inform the node
when to transmit and when to be in receive mode.

MCC is compatible with TEP119 Collection [17], which de-
fines interfaces, components, and semantics used by collection
protocol in TinyOS 2.x.

V. PARAMETER EVALUATION

In this section, we evaluate each building block in MCC:
time synchronization, routing, channel allocation, and schedul-
ing. All our experiments are conducted on the Tutornet testbed,
on either all or some of a set of 30 nodes. Fig. 6 shows the
testbed and the visualized network connectivity in terms of
PRR for all pairwise links between the nodes that we use
(numbered 1-30), at power levels 15 (medium) and 31 (high).

A. Overhead of Time Synchronization

LTSP is responsible for the time synchronization. It uses
MAC layer timestamping and linear regression to provide
precision of jiffy-level (1 jiffy ∼ 30.5µs).

6

Fig. 6. Tutornet Testbed and Network Connectivity

To evaluate the performance of LTSP, we first test it on
a star-topology. Fig. 7 shows the difference between real
time on the parent and the approximate time calculated by
the children. As shown in Fig. 7, when the sample set size
(over which regression is performed to determine the skew)
is 20, the error of time synchronization is less than 0.00854
jiffy/second. The frequency of synchronization needed can be
estimated based on this number and the slot length. Because
we provide an additional slot-length worth of guard-time in
MCC, in principle, the protocol can handle synchronization
error up to half that time. For example, if we consider using 40
bytes without ACK, the slot length would be 160 jiffies. If the
sync error is less than 0.00854 jiffy/second, then it should take
about 156 minutes before the error exceeds 80 jiffies, at which
point the lack of synchronization would start to deteriorate
protocol performance.

Fig. 7. LTSP: Time Synchronization Error

To verify this, we conduct a testbed experiment with a
simple 5-node line topology, where we let the protocol run
with a single synchronization event before the start of the
data collection at time 0. The result is shown in Fig. 8. We
see that, setting aside times when there is heavy external
interference (which happens twice, around 90 minutes and
260 minutes into the experiments, identifiable through the
reduction in the delivery ratio at those times), there is a
consistent deterioration in the performance at 146 minutes.
This is in remarkably close agreement with our prediction of
156 minutes. Even with a more conservative setting, we see
that synchronization, need only be invoked once every two

hours. As the synchronization process takes about 3 minutes,
the overhead due to synchronization will be less than 3%.

Fig. 8. 5-node line topology with 40-byte packets

B. Generation of a Balanced Routing Tree

Fig. 9 shows the maximum subtree size obtained using the
CMS tree algorithm on the 30 node testbed for different power
settings. We see that result satisfies the desired requirement
of nk < (N − 1)/2 in all cases, so that the sink will be
the bottle-neck. An ancillary benefit of this algorithm is that
it yields a relatively shallow tree, with small maximum hop
count, which is beneficial for reducing the synchronization
time, delay, packet loss (in the case of no ACK). This is
also illustrated in Fig. 9, which shows that the hop-count is
always less than 5, and often just 2 hops at the medium to
high transmit power settings.

Fig. 9. Maximum subtree size and max hop count obtained by CMS
Algorithm in a 30-node network

C. Channel Allocation

After the routing tree being constructed, we use a greedy
algorithm to allocate channels. Fig. 10 shows the chromatic
number, i.e., the number of frequency channels needed in
order to completely remove the interference. We show it with
different settings of power level for the full 30-node topology,
after the CMS routing tree algorithm has been applied. We see
that the chromatic number initially increases with the power
level because of increasing interference. But when power level
is high, and most nodes use one or two hops to reach the sink,
the chromatic number decreases. We see that in all cases the

7

number of channels required is less than the maximum of 16
that are available with the IEEE 802.15.4 radio that we use.
In other tests that we do not present here, we find that even a
network size of 55 nodes can be supported with less than 16
channels. We believe that the number of frequency channels
used can be even further reduced by jointly optimizing the
frequency allocation with the time-scheduling (this is part of
our ongoing/future work).

Fig. 10. Number of channels required to eliminate interference

D. Time Scheduling

The main parameter for time scheduling is the length of
slots, which should be a function of the packet size. We
identify the optimal schedule length for each packet size by
conducting experiments where we vary the slot-length and
observe its impact on the throughput. We conduct two sets
of experiments; one to measure the impact of slot length for
a star-topology, to understand the best slot-length for maxi-
mizing the rate of sink reception, and another to measure the
impact of slot length for a linear topology (with each receiver
on a different frequency channel to eliminate interference),
to understand the best slot-length for maximizing the relay
transmission rate (subject to the MCC design constraint that
the reception slots are twice as long as the transmission slots).

Fig. 11. The impact of time slot length on relay transmission and sink
reception (packet size = 40 bytes)

A typical set of results, for the 40-byte, no-ACK case is
shown in Fig. 11. We see that in both cases, a smaller slot-
length causes packet losses, indicated by the delivery rate
falling significantly below 100%, a larger slot-length results
in poor utilization. Interestingly, we find that the maximum
sink reception rate in the star-topology is achieved at a slot-
length of 140 jiffies, while the maximum relay transmission
rate in the linear topology achieves a maximum at a slot-length

Fig. 12. Optimal slot lengths for sink and relay nodes in MCC

of 160 jiffies. This can be attributed to the additional channel-
switching overhead incurred in the linear topology.

Fig. 12 shows the value of the best slot-length as the packet
size is varied, for both the sink and relay nodes. Again, we see
that the best slot-length for the relay node is generally higher
until a packet size of about 80B. After this point, it appears that
the overhead due to channel switching is negligible and the
two cases require the same slot-length. In the MCC protocol
implementation, we use the higher of the two curves, i.e. the
curve for the relay nodes, to set the slot-length for all nodes
in the network according to the corresponding packet size2.
One implication of this plot is that for small packet sizes,
the sink will not be fully utilized, resulting in some reduction
of the throughput compared to the maximum possible sink
reception rate. Note that these plots are both for the case
without ACK. Similar curves are obtained in the case ACK is
used, however, as expected, the best slot lengths in that case
are higher to accommodate the transmission and reception of
the acknowledgement packet.

VI. MCC PERFORMANCE EVALUATION

We have already evaluated all building blocks in MCC. Now
we focus on measuring the collection throughput of MCC.
From section III, we already have an estimation of the maxi-
mum possible throughput in the network. But the performance
of MCC collection can be affected by packet size, power level,
packet queue management, retransmission mechanism (ACK
or no ACK) and channel allocation. In the following, we will
evaluate MCC collection under different settings to see how
these factors impact the performance, and compare it with the
estimated maximum achievable throughput.

A. Backlogged MCC

MCC collection maintains a queue of packets, from both its
own applications and the network. When a node is scheduled
to transmit, if this queue if not empty, it will send the first
packet in the queue. If the queue is empty, then the current
TX slot is wasted. We first test MCC collection throughput
when the queue is always backlogged so that all TX slots are
busy and utilization of the time schedule is 100%.

2We assume in our evaluations, as in most WSN applications, that packets
are all of the same length; in the rare case of an application where multiple
packet sizes are utilized, the slot-length should be chosen to correspond to
the maximum packet size, though this may result in lower utilization.

8

Fig. 13. A balanced routing tree with 10 nodes

We perform the test on a 10-node balanced tree on the
testbed, with the topology as shown in Fig. 13. Full power
is used to have the best link quality. In order to eliminate
interference, each receiver has a different RX channel. We
also label the scheduled TX slots of each node. Note that all
these slot numbers are relative to its parent’s first TX slot.
The total frame length is 9. In this setting, we test MCC
collection throughput with packet sizes of 40 bytes and 100
bytes. For each packet size, we measure the throughput with
ACK enabled and disabled.

Fig. 14. Throughput of backlogged MCC compared with the expected
throughput with or without ACK

The result is shown in Fig. 14. We compare MCC col-
lection throughput with the expected throughput (obtained in
section III) with and without ACK. We see that for the 100-
byte packet without ACK, the throughput of MCC collection
is ∼ 99kbps, almost achieving the sink RX capability we
measured in Sec. III. However, for the 40-byte packet, we see
that the throughput is a bit lower than the estimated maximum
sink RX rate. As mentioned in section V-D, this is due to the
channel-switching overhead which causes the relay nodes to
require a longer slot-length than the sink-rate-maximizing slot-
length. A similar trend is observed for backlogged MCC with
ACK. This figure shows that MCC is able to achieve close to
the maximum achievable throughput so long as nodes always
have data to send at each slot.

B. MCC Performance

In Sec. VI-A, we bypassed the queue management. Now we
assume the application generates a constant data rate equal to
the maximum that can be transported by the MCC protocol.

In the same 10-node balanced tree setting described in
the previous sub-section, we compare MCC collection with
backlogged MCC and CTP, the state of the art single-channel
collection protocol for wireless sensor networks. For CTP, we
empirically determine and present the maximum achievable
fair rate. Again, full power is used, and we test 40-byte and

Fig. 15. Network throughput comparison of backlogged MCC, MCC and
CTP in a 10-node network

100-byte packets, with and without ACK. When we enable
ACK, if a packet is not acknowledged, MCC is configured to
retransmit it up to a maximum of 3 times.

Fig. 15 shows the result. The performance of backlogged
MCC provides an upper bound of the throughput performance.
We find that MCC with ACK enabled can achieve almost
the same throughput as backlogged one. It has a substantial
improvement over CTP. But for MCC collection without ACK,
throughput is much lower than backlogged MCC without
ACK. This can be attributed to the fact that without ACK,
there is a greater loss of packets sourced from the rear of the
network. When these packets do not make it to an intermediate
node, the corresponding transmission opportunities have to
be wasted, resulting in a reduced throughput. In future work,
we plan to examine whether a redundant transmission policy
can be used for ACK-disable case to compensate for the link
losses, albeit at the expense of greater energy expenditure.

Finally, we deploy MCC collection on the full 30-node
testbed. We consider two power levels, one medium, and one
high. In these experiments, for a fair comparison with CTP,
we enable ACK and test for packet size of 40 bytes and 100
bytes. This throughput comparison is shown in Fig. 16.

Fig. 16. Network throughput comparison of MCC and CTP in a 30-node
network

In this medium-sized network, we see that MCC collection
can achieve between 25 to as much as 100% (2X) improve-
ment over CTP in terms of throughput, with the gains being
close to 100% for large-size packets (where, as we have
shown, MCC is able to achieve the maximum possible sink
throughput).

Due to the TDMA feature, each node is aware of its TX/RX
time schedule. Although we have not implemented this in
code yet, MCC can be easily configured to turn off the radio

9

Fig. 17. Average on-time of a 30-node network

when a node is idle. Using energy consumption numbers for
reception and transmission of the CC2420 radio, we perform
an analysis of the energy savings that can be obtained in MCC
by turning off the radio during idle times. In Fig. 17, we show
how the average on-time ratio (ratio of number of on-times
compared to total time in each frame) and the average energy
consumption ratio vary with the power level (the ratio of the
energy consumed with MCC to the energy consumed when
all nodes are always one). Note that because we take ratios in
this plot, the curves are independent of packet size. Overall,
we find that MCC can yield an energy reduction ranging from
85 to 95%. We see that the total energy is minimized at a
relatively high power level of 27, this is because initially the
higher power level results in more nodes talking directly to the
sink and thus not needing to be on to receive or relay packets,
but eventually the additional cost of increased transmit power
catches up.

VII. CONCLUSION AND FUTURE WORK

We have proposed and implemented MCC, a new high-rate,
multi-channel time-scheduled protocol for convergecast data
collection in wireless sensor networks. We first evaluated the
maximum sink receive rate, which is the best possible in a
single-sink network, and showed empirically through testbed
experiments that MCC can achieve a rate close to this. We
also observe that the overhead for time-synchronization is
quite small (the time required for synchronization is less than
3% of the stable running time of the protocol). We showed
that compared to CTP, the state of the art single channel
collection protocol, MCC is able to provide between 25-
100% improvement in throughput. Finally, we also showed
that because it is a time-scheduled protocol, nodes can be
turned off during unscheduled idle times to save energy. Our
calculations show that it is able to save between 85-95%
energy consumption compared to the always-on case.

There are a number of directions for future work. Straight-
forward extensions include considering multiple sinks and
sinks equipped with multiple transceivers, which would both
further increase the network throughput of MCC. We are
interested in developing a joint time-frequency scheduling
mechanism to further reduce the number of channels required
in MCC. We are also interested in exploring distributed
implementations of the balanced routing as well as channel-
time scheduling components of MCC. It would also be of

interest to consider extensions of MCC that can handle bursty,
dynamic traffic patterns.

REFERENCES

[1] B. Krishnamachari, Networking Wireless Sensors, Cambridge University
Press, 2005.

[2] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M.
Ruiz, and J. Lees, “Deploying a Wireless Sensor Network on an Active
Volcano”, IEEE Internet Computing, Mar/Apr 2006.

[3] G. S. Ahn, E. Miluzzo, A. T. Campbell, S. G. Hong, and F. Cuomo,
“Funneling-MAC: A Localized, Sink-Oriented MAC For Boosting Fi-
delity in Sensor Networks”, ACM SenSys 2006.

[4] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
Tree Protocol”, ACM SenSys 2009.

[5] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali, “Routing
Without Routes: The Backpressure Collection Protocol”, ACM/IEEE
IPSN 2010.

[6] D. Puccinelli and M. Haenggi, “Reliable Data Delivery in Large-Scale
Low-Power Sensor Networks”, ACM Transactions on Sensor Networks,
July 2010.

[7] S. Rangwala, R. Gummadi, R. Govindan and K. Psounis, “Interference-
Aware Fair Rate Control in Wireless Sensor Networks”, ACM SIGCOMM
2006.

[8] A. Sridharan and B. Krishnamachari, “Explicit and Precise Rate Control
for Wireless Sensor Networks”, ACM SenSys 2009.

[9] J. Paek, R. Govindan, “RCRT: Rate-Controlled Reliable Transport for
Wireless Sensor Networks”, ACM SenSys 2007.

[10] C. J. Liang, J. Liu, and L.Q. Luo, A. Terzis, and F. Zhao, “RACNet: A
High-Fidelity Data Center Sensing Network”, ACM SenSys 2009.

[11] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time
synchronization protocol”, ACM SenSys 2004.

[12] C. Florens, M. Franceschetti, and R.J. McEliece, “Lower bounds on data
collection time in sensory networks”, IEEE Journal on Selected Areas in
Communications, 22 (6) 2004.

[13] H. Le, D. Henriksson, and T. Abdelzaher, “A Practical Multi-Channel
Medium Access Control Protocol for Wireless Sensor Networks”,
ACM/IEEE IPSN 2008.

[14] O. D. Incel, L. van Hoesel, P. Jansen and P. Havinga, “MC-LMAC: A
Multi-Channel MAC Protocol for Wireless Sensor Networks”, Elsevier
Ad Hoc Networks Journal, 2010.

[15] Y. Kim, H. Shin, and H. Cha, “Y-MAC: An Energy-Efficient Multi-
channel MAC Protocol for Dense Wireless Sensor Networks”, ACM/IEEE
IPSN 2008.

[16] Y. Wu, J. A. Stankovic, T. He, J. Lu, and S. Lin, “Realistic and Efficient
Multi-Channel Communications in Wireless Sensor Networks”, IEEE
INFOCOM 2008.

[17] http://www.tinyos.net/tinyos-2.x/doc/html/tep119.html
[18] O. D. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi, “Fast

Data Collection in Tree-Based Wireless Sensor Networks”, IEEE Trans-
actions on Mobile Computing, 2011.

[19] G. Zhou, C. Huang, T. Yan, T. He, and J. A. Stankovic, “MMSN:
Multi-Frequency Media Access Control for Wireless Sensor Networks”,
IEEE INFOCOM 2006.

[20] X. Chen, P. Han, Q. He, S. Tu, and Z. Chen, “A Multi-Channel
MAC Protocol for Wireless Sensor Networks”, IEEE CIT 2006.

[21] C. H. Papadimitriou, “The complexity of the capacitated tree problem”,
Networks, vol. 8, no. 3, 1978.

[22] M. Bathula, M. Ramezanali, I. Pradhan, N. Patel, J. Gotschall, and N.
Sridhar, “A sensor network system for measuring traffic in short-term
construction work zones”, IEEE DCOSS 2009.

[23] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis, S. Shenker,
and I. Stoica, “Flush: A Reliable Bulk Transport Protocol for Multihop
Wireless Networks”, ACM SenSys 2007.

[24] B. Raman, K. Chebrolu, S. Bijwe, V. Gabale, “PIP: A Connection-
Oriented, Multi-Hop, Multi-Channel TDMA-based MAC for High
Throughput Bulk Transfer”, ACM Sensys 2010.

[25] O. D. Incel, Multi-Channel Wireless Sensor Networks: Protocols, Design
and Evaluation, Ph.D. Thesis, University of Twente, Netherlands, 2009.

[26] Embedded Networks Laboratory. http://testbed.usc.edu.
[27] D.J.A. Welsh, M.B. Powell, “An upper bound for the chromatic number

of a graph and its application to timetabling problems”, The Computer
Journal,10(1967).

