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ABSTRACT
Many system-level inactive low power modes exploit idle pe-
riods to obtain energy savings. With the emergence of mul-
ticore servers, idle periods are becoming increasingly rare.
In order to save energy in multicore servers, low-utilization
periods, which remains with increasing core count, must be
exploited. Server-level heterogenous servers, such as Knight-
Shift, have been shown to significantly improve the energy
proportionality of datacenter servers through exploiting low-
utilization periods. However, previous switching policies,
which decides when to switch between a high-power high-
performance node and a low-power lower-performance node,
are simplistic and easily fooled by server utilization patterns,
leading to false switches and thrashing causing unbounded
latency impact.

In this paper, we propose Hueristic-based Switching Policies
(HSP), which uses utilization history to predict when fu-
ture high utilization periods will occur. We show that HSP
can significantly reduce thrashing and false switches, bound-
ing latency while still maintaining significant energy savings.
Furthermore, we show that active low-power modes that
exploit low utilization periods are able to sustain energy-
latency tradeoffs as core count increases and offer superior
energy savings compared to idleness scheduling algorithms.

Categories and Subject Descriptors
C.5.5 [Computer System Implementation]: Servers

General Terms
Design, Measurement, Performance

Keywords
power management, servers

1. INTRODUCTION
Many modern data centers suffer from a lack of energy pro-
portionality [4], that is, where the power consumption of
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Figure 1: Percentage of time a web server operating at an av-
erage of 30% utilization spends at various utilization levels.
While idle periods disappear with increasing core counts,
low-utilization levels remain, offering opportunities for ac-
tive low-power modes.

the server is proportional to that of the utilization. It is not
uncommon to see data center servers consume over 50% of
the peak power at idle [21]. To fully exploit idle periods,
prior work focused on fast transitions to exploit sub-second
idleness [20], and extending time spent in idle states by of-
floading simple I/O requests to coprocessors [2, 12].

The emergence of multicore servers present a new obstacle
for system-level low-power modes due to scalability and la-
tency constraints. As core count increases, naturally occur-
ring idle periods become non-existent [22, 21]. This requires
the need to artificially create idle periods by scheduling re-
quests to coalesce idle and busy periods through idleness
scheduling algorithms [22, 9]. Artificially creating idle peri-
ods by queueing requests naturally leads to an increase in
latency.

Figure 1 shows the percentage of time a web server, with
an average utilization of 30%, spends at various utilizations
levels for different core counts. Data from this figure was col-
lected from the BigHouse datacenter simulator [23]. More
details on the simulator will be discussed in section 5. The
x-axis shows the number of cores while the y-axis shows the
percentage of time the server spends at utilization levels up
to the indicated utilization. For example, the 20% utilization
curve shows the percentage of time a server spends at uti-
lization less than 20%. Although idle periods disappear, low
utilization periods remains. Thus, active low-power modes
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that exploit low-utilization periods could potentially provide
energy savings that scale with core count.

Prior work, such as KnightShift [27], a server-level hetero-
geneous active low-power mode that exploits low utiliza-
tion periods, has been shown to save significant amounts of
power. KnightShift saves power by offloading requests dur-
ing low-utilization periods to a low-power low-performance
compute node, called the Knight. KnightShift employs a
simplistic switching policy to determine when to switch op-
erating modes between the primary server and the Knight.
Utilization patterns can easily trick the switching policy
causing unbounded latency increase. Additionally, Knight-
Shift was evaluated against an 8 core machine and scalabil-
ity to increasing core counts was never explored. We believe
that active low-power modes that exploit low-utilization pe-
riods, like KnightShift, offers the solution to scalable system-
level low-power mode.

Our contributions in this paper are:

• Heuristic-based Switching Policies for KnightShift to
bound latency impact. By exploiting day to day server
utilization patterns, we are able to bound the tail la-
tency of KnightShift to the tail latency of the Knight
through reductions in thrashing and false switches.

• Demonstrate scalability of system-level active low-power
modes, such as KnightShift. We believe this is the first
work to identify that system-level active low-power
modes that exploits low utilization periods can pro-
vide sustained energy-latency tradeoffs independent of
core count.

• Sensitivity analysis of KnightShift parameters and its
effect on energy-latency tradeoffs. We show that even
if the speed of the Knight is decreased in half, equiv-
alent to reducing the capability of the Knight in half,
KnightShift still provides energy-latency tradeoffs com-
petitive with today’s state-of-the-art idleness schedul-
ing algorithms. Also, we present sensitivity to work-
load utilization and Knight capacity.

The paper is organized as follows: Section 2 provides a
background of energy saving techniques in data centers and
summarizes the KnightShift architecture. Section 3 ana-
lyzes real-world data center utilization traces and introduces
Heuristic-based Switching Policies. Section 4 evaluates the
performance and effect of HSPs on KnightShift. Section 5
demonstrates the scalability of KnightShift. We finally con-
clude in section 6.

2. BACKGROUND
In the last few years, power and energy related issues in
large scale datacenters have become a growing concern for
both government and commercial industries [16]. Barroso [4]
showed that energy-proportionality is a major concern since
most enterprise servers operate at low average utilizations.
These concerns have become the source of much active re-
search in the energy proportional computing space resulting
in numerous studies that have examined energy efficiency
approaches to servers in datacenter settings.
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Figure 2: KnightShift enhanced energy proportionality
curve. KnightShift enables server to run at greater efficiency
at low utilization regions [27].

Techniques such as consolidation and dynamic cluster resiz-
ing [6, 7] increases average server utilization by concentrat-
ing workload to a group of servers and powering off the idle
servers. This effectively improves the efficiency and lowers
the total power usage of the cluster. Furthermore, power
capping techniques [25, 19, 11] caps cluster power by throt-
tling or disabling servers to prevent power usage over a set
power provision limit. These techniques are not suitable for
many of today’s emerging workloads [18], such as search,
which cannot tolerate server shutoff. Furthermore, due to
the temporal granularity of these techniques, they cannot re-
spond rapidly to unanticipated load as it could take minutes
to migrate tasks with very large working sets.

Many component-level energy saving techniques exists for
CPU [14, 17], Memory [8], and Disks [5, 13]. Active low-
power modes improves the energy efficiency of components,
such as DVFS and MemScale [8], which scales the frequency
and power of CPUs and Memory, respectively. Heteroge-
neous cores, such as Tegra 3 and ARM big.LITTLE, can
switch to low-power efficient cores during low-utilization pe-
riods. Inactive low-power techniques, such as DRAM self-
refresh, core parking and disk spin down, can improve the
idle power consumption of these components. Going for-
ward, no one component dominates overall power usage [26],
limiting the potential of component-level low-power modes.

System-level low-power modes places the entire system in a
low power state. These techniques commonly reduce the idle
power usage and extends the time a system stays in the low
power state. PowerNap [20] exploits millisecond idle peri-
ods by rapidly transitioning to an inactive low-power state.
Barely-alive servers [2] extends idle periods by keeping mem-
ory active to process remote I/O requests. Similarly, Somnil-
oquy [1] extends idle periods by enabling support for certain
application protocols, such as email and instant messaging.

As the number of processors in servers increase, idle peri-
ods are becoming increasingly rare [22, 21]. Several work
proposes idleness scheduling algorithms through batching.
Elnozahy et al [9] propose batching requests with timeouts.
DreamWeaver [22] extends PowerNap to queue requests, and
preempt active tasks to artificially create and extend idle pe-
riods.
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Figure 3: The KnightShift server architecture.

Currently, system-level low-power techniques only exploit
idle periods. In order to scale in the mutlicore era, system-
level low-power techniques must target low-utilization peri-
ods. KnightShift [27] proposes to front a high-power server
with a low-power server to dynamically switch between two
efficiency modes of operations. Unfortunately, there are
some shortcomings with the KnightShift architecture as we
will further explore in the next section.

2.1 KnightShift Overview
Figure 3 shows the architecture of a tightly integrated Knight-
Shift system that integrates the primary server and Knight
onto the same motherboard. KnightShift [27] fronts a high-
power primary server with a low-power compute node, called
the Knight. During low utilization periods, KnightShift will
direct all requests to the Knight, allowing the primary server
to enter an idle power state, such as shutdown, sleep, or hi-
bernate.

A KnightShift system has the following requirements:

Independent power states. The primary server should
be able to completely shut down independently of the Knight.
Here, the motherboard is separated into two power domains
designated by the dotted box. The Knight and disks are
always on.

Independent memory and processor. The Knight repli-
cates almost every single component of the primary server
using low-power and typically low performance parts. The
Knight can be based on desktop, mobile or embedded com-
ponents, such as ARM, Intel Atom, or Core i3 platforms.

Disk Data sharing. Disk data sharing enables fast switch-
ing between the Knight and primary server without the over-
heads experienced in server consolidation. Each compute
node has its own OS disk so that they can run applications
independently. Sharing primarily refers to the data parti-
tion where data is shared. Data sharing is enabled through
a SATA switch. Before switching, KnightShift flush memory
to disk and unmount the disk.
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Figure 4: This representative figure depicts a typical la-
tency distribution of KnightShift. The bimodal distribution
is due to the differing performance of the primary server and
Knight.

Request routing and coordination. KnightShift re-
quires a mechanism to route requests to the primary server
during high-utilization, and to the Knight during low-utilization.
Routing is through a software proxy running on the Knight.

Communication between primary server and Knight.
To direct requests, the primary server and Knight communi-
cates through LAN on Motherboard. Through sideband eth-
ernet, no additional ethernet ports are exposed externally.
Each node gets its own IP address over the same physical
port, with only the Knight’s IP address publicly visible to
external servers. From the outside world, the KnightShift
system appears as a single server with a single IP address.

Coordination and Utilization Monitor: In Knight-
Shift the sleep/wakeup process is determined by system uti-
lization. Coordination between Knight and primary server is
carried out by a daemon, KnightShiftd. KnightShiftd mon-
itors the utilization of the node it’s running on and makes
mode switching decisions on whether to switch to the com-
plementary node.

2.1.1 Effect on Energy Proportionality and Latency
We define Knight capability as the fraction of throughput
that the Knight can provide compared to the primary server.
The primary server is shut down at low utilizations, allow-
ing the Knight to handle all low utilization requests, signif-
icantly decreasing power consumption. Figure 2 shows the
effect of KnightShift on the utilization-power curve with a
50% capable Knight. The x-axis shows the utilization of the
server while the y-axis shows the percentage of peak power
usage. The dotted line shows the utilization-power curve of
an ideal energy proportional server. By allowing servers to
operate at lower power during low utilization, KnightShift is
able to greatly improve the energy proportionality of servers.
For certain utilization regions, a KnightShift system can op-
erate at efficiency even greater than that of an ideal energy
proportional system.
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Figure 5: CDF of length of high utilization periods for nunki.
Bursts are short lived and often spikes to very high utiliza-
tion.

The tail latency of a KnightShift system is determined by
the tail latency of the Knight. Intuitively, the Knight has
a lower single-thread performance compared to the primary
server, thus the tail latency (ex. 95th percentile latency), is
solely determined by that of the Knight. Thus, a trade-off
between latency and power can be made by the choice of
the Knight. Latency follows a bimodal distribution rather
than a normal distribution as shown in Figure 4. Thus,
any latency results greater than the latency of the Knight
is considered a penalty caused by KnightShift, with the rest
attributed to the Knight.

2.1.2 Mode Switching Policy.
The baseline mode switching policy used in [27] uses a simple
aggressive policy. The aggressive policy switches at the first
opportunity. For example, a switch to the Knight occurs the
instant whenever the primary server’s utilization falls below
a certain threshold. Due to its aggressive switching behav-
ior, this can lead to thrashing when utilization is jumping
around the Knight’s capability level. This trashing leads
to energy penalties due to power spikes during transition
periods when the primary server is waking up.

Furthermore, the aggressive policy can lead to high latency
impact due to false switches, that is, when a server is oper-
ating in a high utilization period, but a few dips into the low
utilization period tricks the switching policy into believing a
low utilization period started. In this case, the Knight will
receive requests that it is not capable of handling, while the
primary server is transitioning to a low power mode. Dur-
ing this period, the latency of each request increases due to
the Knight not being able to keep up with the requests, re-
sulting in high queueing time. The aggressive switching pol-
icy is easily tricked by utilization pattern and remains one
of the main barriers to a practical KnightShift system. In
the next section, we will propose Heuristic-based Switching
Policies for KnightShift to reduce the occurrence of thrash-
ing and false switches, effectively bounding the tail latency
of KnightShift to the tail latency of the Knight.

Utilization ∆ Utililization
Server Type x̄ σ x̄ σ
aludra stu. timeshare 3.87 3.12 0.59 0.84
email email store 3.26 1.74 0.78 1.20
girtab stu. timeshare 0.83 2.42 0.73 1.94
msg-mmp email services 32.62 13.60 2.64 2.76
msg-mx email services 19.23 7.41 1.69 2.30
msg-store email store 11.05 5.88 2.39 2.72
nunki stu. timeshare 4.86 10.85 1.98 4.50
scf file server 5.47 4.19 1.15 1.65

Table 1: Datacenter trace workload types
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Figure 6: Msg-mx server utilization over 9 day period. Uti-
lization is very noisy and jumps between low and high uti-
lization periods quickly, causing thrashing. Also, day to day
utilization patterns are similar.

3. HEURISTICS-BASED SWITCHING POLI-
CIES

Although many false switches occur, it is possible to elimi-
nate a majority of false switches through predicating when
high utilization periods occur. Day to day server utilization
patterns matches closely, thus it is possible to use simple
heuristics to predict high utilization periods. High utiliza-
tion is defined as a utilization greater than the Knight’s
capacity. Low utilization is defined as a utilization less than
the Knight’s capacity. Unless otherwise noted, we use a
15% capable Knight. In this section, we will analyze real
world data center traces and introduce a simple heuristic-
based switching policy to reduce false switches and achieve
a KnightShift latency bounded by the Knight’s latency. The
performance of the switching policy will be explored in sec-
tion 4. We will show that we can bound the latency by the
Knight and still experience significant power savings.

3.1 Server Workload Analysis
Minute-granularity utilization traces were collected from institution-
wide production datacenter over 9 days. The datacenter
serves multiple tasks, such as e-mail, learning management
system (e.g. Blackboard), distance education facilities (video
and live streaming support of course lectures), compute in-
tensive application hosting such as CAD tools, and student
timeshare servers. Each task is assigned to a dedicated clus-
ter, with the data spread across multiple servers. Selected
servers within a cluster exhibit a behavior representative of
each of the server within that cluster.

Table 1 shows the details of each server workload along
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with its corresponding utilization and burstiness character-
istics. The datacenter serves multiple tasks, such as e-mail
store(email, msg-store1), e-mail services (msg-mmp, msg-
mx), file server (scf), and student timeshare servers (alu-
dra, nunki, girtab). Some of the servers (aludra, nunki,
scf, girtab, email) run at less than 20% CPU utilization for
nearly 90% of their total operational time. In general, these
traces confirm that CPU utilization reaches neither 100%
nor 0% for extended periods of time, reaffirming prior stud-
ies [4, 10, 24]. The burstiness of the workload is character-
ized by σutilization, the standard deviation of the workload’s
utilization, and ∆utilization, the change in utilization from
sample to sample. σutilization tells us how varied the uti-
lization of the server is, while the ∆utilization tells us how
drastic the utilization changes from sample to sample. For
example, nunki has a wide operating utilization range with
large variation in utilization from sample to sample. Figure 5
shows the CDF of the length of high utilization periods and
the utilization levels of the burst. We see that most high uti-
lization bursts last less than a minute and spikes over 80%.
Bursty workloads, like nunki, are a significant challenge to
KnightShift as the Knight does not have sufficient capacity
to handle bursts, especially very high utilization bursts.

Figure 6 shows the utilization trace of msg-mx over a 9 day
period. The x-axis represents the time in minute and the
y-axis represents the CPU and Disk utilization. Msg-mx
jumps between high and low utilization periods quickly caus-
ing thrashing. The switching policy gets easily tricked and
switches to the Knight when it encounters a low utilization.
But the low utilization period is short lived and instantly
switches back to the primary server. In the face of these
bursts, KnightShift will incur latency penalties while wait-
ing for the transition to the primary server.

In order to tolerate these bursts, rather than aggressively
and reactively transitioning to the primary server, Knight-
Shift should proactively transition to anticipate these bursts.
In order to anticipate bursts, we must be able to predict fu-
ture server utilization. Specifically, we only need to know
whether the server’s utilization with be high or low.

Note that the day to day utilization pattern of the server
in figure 6 are similar, as characterized by high utilization
spikes near the beginning of each day. This shows us that
the previous day’s utilization pattern could provide a good
heuristics for the present day’s utilization pattern.

3.2 Day to Day HSP
In this section we introduce the Day to Day (D2D) Heuristic-
based Switching Policy for KnightShift. This switching pol-
icy is based on the strong correlation of server utilization
from day to day as shown in Figure 6. We will show that by
simply using the previous day’s utilization history to predict
current day’s low/high utilization periods, we can effectively
reduce the occurrence of thrashing and false switches with
very low overhead.

To help facilitate the description of the Day to Day switching
policy, figure 7 illustrates the Day to Day HSP applied at
a second granularity over a 30-minute section of time. We
provide a ”zoomed in” view to clearly show the details of
the algorithm and variations in CPU utilization. The CPU
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(a) Utilization history is recorded and bursts (the grey re-
gions) are identified.
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(b) Bursts are expanded. Close bursts are merged in single
larger burst.
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(c) Burst predictions are applied to current utilization. Here,
a majority of current days bursts are anticipated.

Figure 7: Day to Day HSP
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utilization over time is plotted, with the horizontal dashed
line indicating the Knight’s capability at 15% utilization.

The steps required for the Day to Day HSP are as follows:

1. Record utilization pattern: In order to use uti-
lization as a heuristic, we require a 1 day history of the
utilization pattern. Utilization can be trivially logged
through software. Depending on the need, utilization
can be recorded at second, or minute granularity. Even
with second granularity, this history log only takes up
8̃5kB. The previous day’s utilization is shown in fig-
ure 7(a) and (b).

2. Identify Bursts: A burst is defined as a high uti-
lization period. Identifying bursts simply requires iter-
ating through the utilization history and flagging each
interval that is a burst. Each flag requires only 1 bit,
and a total of 11kB are used to hold the burst flags.
In figure 7(a) the identified bursts are designated by
the gray regions and only occurs when the overlaid
utilization has a high utilization.

3. Expand Bursts: In order for KnightShift to be in
the primary server mode when the burst is predicted
to occur, we expand the boundaries of the predicted
bursts by the transition time. The level of expansion,
called the expansion factor, is configurable. Larger ex-
pansions are more conservative, forcing KnightShift to
spend less time in the Knight and more time in the
primary server. This improves latency, but lowers en-
ergy savings as it misses opportunities for energy sav-
ings. Figure 7(b) shows the expanded bursts. Note
that bursts that occur close to one another are merged,
effectively filters thrashing.

Identifying and expanding bursts can be executed on-
line on the server and simply involves reading the logs
and determining the high utilization periods. In our
experiments, it takes less than a second to identify
burst regions for the entire day.

4. Apply predicted bursts: During the current day’s
utilization, if the server encounters a predicted burst,
KnightShift will force a transition to the primary server.
As long as KnightShift is operating in a predicted burst
region, the primary server will be active. Figure 7(c)
shows the utilization of the current day overlaid on the
predicted bursts represented as the gray region. In this
scenario, the Day to Day HSP was able to anticipate
a majority of the bursts.

While this switching policy can be applied at the minute
granularity, in this paper we conservatively assume second
granularity is used. Minute granularity predictions would
have a greater probability of observing a predicted high uti-
lization bursts compared to second granularity predictions
due to a wider prediction window (the grey regions in fig-
ure 7). Thus, we evaluate using worst-case assumptions to
present conservative evaluations by using second-granularity
predictions. While it is highly unlikely that server utilization
match exactly from the day before, we require only ballpark
values to estimate whether a high or low utilization period
exists at a certain time. It is because of this loose prediction

value requirement that allows us to use simple utilization
history as a heuristic. In the next section, we will evaluate
and present the accuracy and performance of the Day to
Day HSP.

4. SWITCHING POLICY EVALUATION
4.1 Methodology
To simulate KnightShift and evaluate our Heuristic-based
Switching Policies, we use KnightSim [27], a trace-driven
simulator modeled and validated against a KnightShift pro-
totype. The prototype consists of a primary server and
Knight loosely-coupled as a private cluster. The primary
server is a Supermicro server with dual 4-core Intel Xeon
L5630 processor, 36GB of ram, and 500GB hard drive. At
idle, the server uses 156W and 205W at full load. The
Knight is a Shuttle XS35 nettop, with an Intel Atom D525,
1GB of ram, and 500GB hard drive. The Knight uses 15W
at idle and 16.7W at full load. Through empirical measure-
ments, it was determined that the Knight is 15% capable.
Transition time between the Knight and Primary server is
20 seconds.

During simulation runs, KnightSim replays utilization traces
on a modeled KnightShift system. KnightShift is modeled
as a G/G/k queue, where the arrival rate is time-varying
based on the utilization trace, the service rate is exponential
with a mean of 1 second, and varying k servers modeling the
capacity of the Knight and primary server.

Modeling Knight capability: Knight capability is mod-
eled by varying the system capacity, k. For example, a 15%
Knight would have k = 15 in the G/G/k queueing model
when operating in Knight mode. When the primary server
becomes active then k = 100.

Modeling Power: The power model is based on the proto-
type system validated in [27]. When the primary server is ac-
tive, both the primary server and Knight is on, as the Knight
is always kept on. Hence, when the primary server is active,
the power used by KnightShift is equal to the power of the
primary server and the Knight. When the Knight is active,
the only power consumed is from the Knight. Since the data
partition is shared in KnightShift, the primary server can be
shutdown without causing data to become unavailable. To
capture transition penalties in the model, a constant power
was conservatively added to the system power during the
entire transition period.

To faithfully scale the power of the Knight as its capabil-
ity changes, the model assume that the power consump-
tion of the CPU scales quadratically with performance. The
quadratic assumption is based on historical data [3] which
showed that power consumption increased in proportions to
performance1.7.

Arrival Rate and Latency Estimation: Utilization
traces only contain CPU and I/O utilization per second
without individual request information. By assuming a mean
service time of 1 second for each request, a time-varying ar-
rival rate can be estimated through the utilization trace.
For example, 50% utilization would correspond to an arrival
rate of 50 request per second. KnightSim is able to gen-
erate relative average latency and 95th percentile latency
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Response Time Energy
Average 95th Consumption(KWH)

Prototype
Baseline 144ms 249ms 23.27
KnightShift 150ms 296ms 15.35
Impact -4% -19% 34%

KnightSim
Baseline 1.00 1.66 23.27
KnightShift 1.12 2.00 15.11
Impact -12% -21% 35%

Error 8% 2% 1%

Table 2: Energy consumption and response time of a
Wikipedia-based web server benchmark comparing results
between the KnightShift prototype and KnightSim. [27]

of a KnightShift system compared to the baseline primary
server.

Modeling Single-threaded Performance: Single-threaded
performance cannot be inferred directly from processor fre-
quency because single-threaded performance is based on fre-
quency and the underlying architecture. Instead, the service
time is scaled by the ratio of the 95th percentile latency
of the Knight and primary server. For example, the pri-
mary server has tail latency of 249ms while the Atom-based
server has tail latency of 323ms while running a wikipedia
clone [27]. In the model, the service time while in Knight
mode is increased by a factor of 1.30 compared to baseline.

Simulator Validation: Power and latency results for Knight-
Sim were validated against the KnightShift prototype. Ta-
ble 2 shows the results of the validation run between Knight-
Sim and the KnightShift prototype while running a wikipedia-
based web server benchmark. The 95th percentile latency
and energy consumption improvement results from Knight-
Sim are all within 2% of the prototype system.

4.2 Heuristic Results
In this section we evaluate our Day to Day HSP’s effective-
ness in reducing false switches and thrashing, as wells as the
accuracy of the heuristic-based predictions. In addition, we
explore the impact to latency and energy savings. We ex-
plored three Day to Day (D2D) switching policies, each with
different expansion factors (1,2,3). Recall that an expansion
factor is the extent to which the boundaries of the predicted
bursts were expanded. Here, the expansion factor is a mul-
tiple of the transition time. For example, D2D-2 represents
a Day to Day HSP where the boundaries of the predicted
bursts are expanded by 2x the transition time.

Effect on thrashing: Figure 8 shows the effect of the Day
to Day switching policy on the number of switches for var-
ious server workloads. The left-most bars (Aggressive) rep-
resents the original switching policy in [27]. Low utilization
workloads tend to experience fewer benefits from D2D, but
still experience improvements to latency as we will see later
in this section. Only email experienced increased switches,
because bursts in email tend to not be periodic, thus D2D
would cause unnecessary switches.

For the majority of the workloads, the number of switches
decreased dramatically, with an average of at least a 1̃0x re-
duction. The workloads that experience the most improve-
ments are workloads that have moderate utilization which
jumps between low and high utilization periods quickly. In
some cases, such as msg-mmp, the number of switches de-
creased to 0 for D2D-2 and D2D-3 due to the close proximity
of bursts being merging together during the burst expansion
phase. In this case, msg-mmp never switches to the Knight,
as the switching policy recognized that this workload does
not benefit from a KnightShift system.

As the expansion factor increases, the occurrence of pre-
dicted bursts merging increases, resulting in a smaller num-
ber of predicted bursts with larger prediction windows. This
is evident in the decreasing occurrence of switches as the ex-
pansion factor increases.

Effect on false switches: Figure 9 shows the effect of
D2D on the number of false switches. Day to Day switch-
ing policy was successful in decreasing the number of false
switches significantly compared to the baseline aggressive
switching policy. False switches normally occur during re-
gions of operation where the utilization hovers around the
Knight’s capability level. By predicting high utilization peri-
ods and preventing KnightShift from switching to the Knight
during these periods, Day to Day switching policy reduces
the number of false switches by an average of over 5x reduc-
tion. In certain workloads, such as email and girtab, the oc-
currence of false switches disappeared completely. For most
workloads, the number of false switches were confined to less
than one per day.

Prediction Accuracy: Figure 10 shows the accuracy of
predicted bursts for various workloads. Because Day to Day
policy uses utilization history from the past day, the policy
is most effective at handling periodic bursts. This is clearly
evident in workloads, such as aludra and girtab, where a
majority of bursts are random and not periodic. This is due
to the purpose of these servers. Both aludra and girtab are
student timeshare servers, running heterogeneous tasks for a
large population of students. For the rest of the workloads,
many achieve accuracy above 80%. As the expansion factor
increases, we increase the chance that a predicted burst may
”catch” a bursts, thus increasing accuracy.

Effect on Latency: Figure 11 shows the 95th percentile
latency of D2D switching policies normalized to the 95th
percentile latency of the primary server. The 95th percentile
latency of the Knight is also provided for reference. Any la-
tency greater than that of the Knight is considered to be
attributed to KnightShift. For all workloads, D2D provided
better latency than the baseline aggressive policy. In ad-
dition, D2D provided latency less than that of the Knight,
with the exception of nunki. Nunki still suffers a latency
impact due to the presence of switches and false switches.
Although the number of switches and false switches are sig-
nificantly lower, bursts in nunki can spike as high as over
80%, thus every false switch can incur major latency penalty.
Nevertheless, in the general case, Day to Day HSP can ef-
fectively bound the 95th percentile latency to that of the
Knight.
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Figure 8: D2D policies effectively reduce the number of switches by at least 10x on average, decreasing the occurrence of
thrashing between the Knight and primary server.
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Figure 9: D2D policies significantly decreased the occurrence of false switches by at least 5x on average. In many cases, less
than 1 false switch occurs per day.
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Figure 10: D2D can predict bursts with a relatively high rate of accuracy. Several workloads lack periodic spikes, therefore
resulting in low accuracy.
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Utilization CPU Memory Disk Other
Max 40% 35% 10% 15%
Idle 15% 25% 9% 10%

Table 3: BigHouse server power model assumptions based
on data from HP [26] and Google [15]. Power is presented
as percentage of peak power.

Effect on Energy: Figure 12 shows the energy consump-
tion of D2D switching policies normalized to the energy
consumption of the baseline primary server. While D2D
decreases energy savings, the effect is relatively small, still
allowing up to 49.9% energy savings on average compared
to 55.1% for the baseline. As the expansion factor increases,
KnightShift conservatively spend more time in the primary
server, loosing energy savings opportunity, as reflected in
the figure.

As shown, D2D HSP effectively decreases thrashing and false
switches, while maintaining a high level of accuracy despite
using a very simple heuristic. The latency of D2D essentially
bounds the latency to that of the Knight, with minimal neg-
ative energy impact.

5. SCALABILITY
Having just shown that the latency impact of KnightShift
can be bounded to the latency of the Knight, we now evalu-
ate the effectiveness of KnightShift at scale. In Section 4, all
results are for an 8-core system. In this section, we will ex-
plore the results for a 32-core system and compare it to state-
of-the-art idleness scheduling algorithms (DreamWeaver [22]
and Batch [9]). We will show that KnightShift can of-
fer similar energy savings at high core count as other idle-
ness scheduling algorithms but with significantly less latency
slack required. Furthermore, we show that KnightShift of-
fers superior energy savings at any given latency slack. The
scalability of KnightShift lies in the fact that it exploits low
utilization periods, instead of idle periods.

5.1 Methodology
To evaluate the scalability of KnightShift, we use the Big-
House simulator [23], a simulation infrastructure for data
center systems. BigHouse is based on stochastic queueing
simulation [23], a validated methodology for simulating
the power-performance behavior of data center workloads.
Synthetic arrival/service traces are generated through em-
pirical interarrival and service distributions collected from
real systems. These synthetic arrival/service traces are fed
into a discrete-event simulation of a G/G/k queueing sys-
tem that models active and idle low-power modes through
state-dependent service rates. Output measurements (99th
percentile latency, and energy savings) are obtained by sam-
pling the output of the simulation until each reaches a nor-
malized half-width 95% confidence interval of 5%. The server
power model, shown in table 3, is based on component power
breakdowns from HP [26] and Google [15]

We implemented the KnightShift server, based on the Knight-
Shift prototype and models presented in section 4, in Big-
House with an aggressive switching policy. Recall, that in
BigHouse, arrival traces are synthetically generated from
empirical interarrival distributions. Thus, in BigHouse, peri-

odic bursts does not exist, and Day to Day switching policies
would not provide any benefits. In this section, we present
results with the Aggressive switching policy. KnightShift
was designed for time-varying arrival rates and would not
fare well under synthetic arrival traces generated from em-
pirical interarrival distributions as the low-utilization inter-
vals are too small for KnightShift to be effective. To com-
pensate for this, in this section, we assume that the pri-
mary server is PowerNap-enhanced, allowing for fast tran-
sition time between the Knight and primary server. Fur-
thermore, a PowerNap-enhanced KnightShift would not in-
cur false switches as transitions are sufficiently fast to ex-
ploit low/high utilization periods of ant lengths. Similarly,
thrashing would not be an issue for a PowerNap-enhanced
KnightShift server.

5.2 Energy-Latency Tradeoffs
All low-power modes will incur latency impact to some ex-
tent. For workloads with the tightest latency constraints,
the best design may be to not use any power management.
What we explore here are for workloads that allow some
level of latency slack. In this section, rather than minimiz-
ing latency with maximum energy savings, we explore the
best energy saving technique for any given latency slack.

To this extent, we extended KnightShift to adjust the power-
latency tradeoffs. In all previously mentioned switching poli-
cies, a switch occurs at the first instance of a triggering event
(a low or high utilization). To tradeoff power and latency,
we adjust the threshold on when to switch. For example,
to allow increased latency for higher energy savings, we in-
crease the threshold to switch out of the Knight by switching
only after a period of n consecutive high utilization read-
ings. This attempts to keep the Knight active as long as
possible. Similarly, to decrease latency at the cost of energy
savings, we increase the threshold to switch into the Knight.
In section 4, we also evaluated the effect of these tradeoffs
on bounding latency, but D2D offers superior energy-latency
tradeoffs, and thus, we omit these results for brevity.

We evaluate four workload distributions, DNS, Mail, Apache,
and Shell, collected from departmental servers provided with
the BigHouse simulator. The workload’s load is scaled so
that the server operates at 30% average utilization.

5.3 32-core Server
We evaluate a 30% capable KnightShift against Batching [9]
and DreamWeaver [22], as well as PowerNap [20]. Fig-
ure 13 shows the latency vs energy savings curve of the
four workloads. For convenience, the energy-latency trade-
off point of KnightShift at the Knight’s tail latency (1.3x)
is marked. Batching provides a nearly linear tradeoff be-
tween latency and energy, but is consistently outperformed
by DreamWeaver, confirming previous results in [23]. At
the Knight’s latency, KnightShift is able to achieve energy
savings similar to DreamWeaver, but the significantly less
latency slack required. For Mail workload, KnightShift pro-
vides similar energy savings with less than half the latency
slack required. For DNS, KnightShift provides similar en-
ergy savings with 25% less slack required. For Apache and
Shell, DreamWeaver could not match the energy savings of
KnightShift at 1.3x latency, even with a latency slack of over
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Figure 11: By reducing thrashing and false switches, the latency of D2D for all workloads, except for nunki, are less than that
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Figure 12: Although energy consumption increases for D2D compared to Aggressive policy, a significant amount of energy
(49.9%) can still be saved.
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(c) Mail
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Figure 13: KnightShift provides similar energy savings to idleness scheduling algorithms but with less latency slack required.
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Figure 14: KnightShift scales well with increasing core counts. The energy savings and latency-energy tradeoffs remain
practically the same at increasing core counts.

3x allowed. In all cases, KnightShift outperforms all other
techniques at every latency slack.

For workloads that can tolerate latency slack of 3x or more,
it may be possible to also consider the use of wimpy clus-
ter, which can allow power savings greater than that shown
here. In regions of latency slack that is not tolerable of
wimpy nodes, then KnightShift offers almost all of the power
savings up front, with a tighter latency slack. The maxi-
mum savings of KnightShift saturates at 1̃.5x latency slack in
most cases.This contrasts to idleness scheduling algorithms,
which ramps up energy savings as latency slack increases.
For workloads which requires latency slack even tighter than
what KnightShift can provide, system-level low-power modes
may not be the best solution and energy saving techniques
may even be disregarded all together.

5.4 Sensitivity to Core Count
Figure 14(a) shows the effect of increasing core count on
KnightShift. As core count increases, the energy savings of
KnightShift is not affected. Figure 14(b) shows the power-
latency tradeoff curves of various workloads running on 4
and 32 core machines. Clearly, the power-latency tradeoff
curves remains consistent even as core count increases.

This is in contrast to idleness scheduling algorithms which
becomes less effective as core count increases. The reason
that idleness scheduling algorithms becomes decreasingly ef-
fective is that the algorithms are still dependent on the pres-
ence of idle periods. This shows that KnightShift is not de-
pendent on core count, but rather on the presence of low
utilization periods, which was previously shown to remain
present at high core counts. Therefore, theoretically as long
as a Knight exist with sufficient capability, KnightShift can
scale to any number of cores.

5.5 Sensitivity to Utilization and Knight Ca-
pacity

Figure 15 shows KnightShift’s sensitivity to workload uti-
lization for a 30% capable Knight. Any utilization less than
30% would results in improved energy savings due to more
time being spent in regions where the Knight is capable of
handling requests. As utilization increases, the opportunity
for the Knight decreases, until the Knight can no longer han-
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Figure 15: KnightShift sensitivity to server utilization for a
30% capable Knight.

dle any requests. In this case, KnightShift would not result
in any savings and it is advisable to use a higher capacity
Knight.

These results can also be translated to Knight capability
sensitivity. While holding workload utilization constant, as
the Knight’s capability increases, so does energy savings as
the system spends more time in the Knight. As Knight
capability decreases, then energy savings will also decreases
as the system spends less time in the Knight due to less
opportunities for the Knight.

5.6 Sensitivity to Knight Speed
Figure 16 shows the effect of slowing down the Knight by 2x.
The baseline Knight in this case is already 1.3x slower than
the primary server. As the Knight’s speed slows down, the
latency of requests in the Knight increases due to increase in
processing time and queueing time. Note that this effectively
also decreases the capability of the Knight in half. If the
Knight is slowed down by 2x, the amount of requests it can
handle is also decreased by 2x, effectively making this Knight
15% capable. Even with a 2x slower Knight, the power-
latency tradeoff is still competitive with DreamWeaver and
Batching.

6. CONCLUSION
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Figure 16: Energy-latency tradeoff curve for a Knight with
2x slowdown on a 32-core system. Note that slowing down
the Knight also effectively lowers the capability of the
Knight.

With the emergence of multicore servers, system-level low-
power mode techniques are facing two challenges: lack of
natural idle periods, and latency constraints. Current state
of the art idleness scheduling algorithms artificially create
idle periods through queueing of incoming requests, which
naturally increases latency. While idle periods disappear at
high core counts, low utilization periods remain. System-
level active low-power modes that exploit low utilization
periods, such as KnightShift, can offer a solution to these
issues, but can potentially faces unbounded latency impacts
due to thrashing and false switches.

We first present a heuristic-based switching policy and showed
that by simply using the previous day’s server utilization,
we can accurately predict future high/low utilization peri-
ods. By proactively anticipating high utilization periods,
we reduce the occurrence of thrashing and false switches,
bounding the latency impact of KnightShift to the tail la-
tency of the Knight.

Furthermore, we showed that KnightShift scales well at high
core counts and can offer similar energy savings to state of
the art idleness scheduling algorithms with significantly less
latency slack required. Since KnightShift depends on the
presence of low utilization periods, KnightShift offers supe-
rior scalability compared to idleness scheduling algorithms,
who’s performance is tied to the presence of idle periods.
Theoretically, as long as a Knight exist with sufficient ca-
pability, KnightShift can scale to any number of cores. We
believe this is the first work to identify that system-level ac-
tive low-power modes that exploits low utilization periods
can provide sustained energy-latency tradeoffs independent
of core count.

This paper demonstrates the potential of system-level active
low-power modes in emerging multicore environments. Most
system-level low-power modes are inactive power modes,
which exploits idle periods. In order to continue experi-
encing energy savings in the multicore era, research efforts
should switch to the development of system-level active low-
power modes. We hope this work can be used to motivate
future work in system-level active low-power modes.
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