
1

Trojan detection via delay measurements: An approach to select paths and vectors

to maximize effectiveness and minimize cost

Byeongju Cha and Sandeep K. Gupta

Ming Hsieh Department of Electrical Engineering

University of Southern California

{byeongjc, sandeep}@usc.edu

Abstract

One of the growing issues in IC design is how to

authenticate chips fabricated by untrusted vendors. Such

authentication, often called Trojan detection, is

challenging since the specifics of hardware Trojans

inserted by intelligent adversaries are difficult to predict

and most Trojans do not affect the logic behavior of the

circuit unless they are activated. Also, Trojan detection via

parametric measurements becomes increasingly difficult

with increasing levels of process variations.

In this paper we introduce the new notion of a set of

surrogate Trojan targets, where the surrogates capture

the necessary conditions that every Trojan must satisfy.

We also propose a method that maximizes the resolution

of each path delay measurement, in terms of its ability

to detect the targeted surrogate. In particular, for each

surrogate, our approach accentuates the surrogate’s impact

by generating a vector that sensitizes the shortest path

passing via the surrogate’s site. We estimate the minimum

number of chips to which each vector must be applied to

detect the surrogate with sufficient confidence for a given

level of process variations. Finally, we demonstrate the

significant improvements in effectiveness and cost

provided by our approach under high process variations.

Experimental results on several benchmark circuits show

that we can achieve 3.48X reduction in test cost using our

approach compared to classical path delay testing with

Student’s t-test.

1. Introduction

In semiconductor industry, to reduce costs, many steps of

digital IC design are now conducted by outside vendors. In

addition, it is impossible for the relatively low volume

applications to develop state-of-the-art fabrication

facilities by themselves and hence they are increasingly

forced to use the services of outside fabricators. Due to

these reasons, it is increasingly common for a new IC’s

original designers to lose direct control of many design

and fabrication steps. This increases the opportunities for

intelligent and resourceful adversaries to tamper with the

circuit by introducing hardware Trojans, especially during

fabrication steps. Detecting hardware Trojans by

destructive physical inspection or reverse engineering is

costly and might fail as the scaling down of the IC device

dimensions makes a well-designed Trojan circuitry very

difficult to detect. Hence, it is important to develop a new

framework and tools to detect possible hardware Trojans

within ICs.

Recently, several Trojan detection techniques have been

developed. These approaches include logic test methods

which apply vectors and examine logic values at the

circuit’s outputs [1][2][3], and parametric test methods

which apply vectors and measure values of parameters,

such as power/ground currents [4][5][6] or path delays

[7][8][9]. In addition, a taxonomy and necessary elements

of a Trojan are introduced to classify types of Trojans and

to be used for evaluation of different Trojan detection

strategies [10][11][12]. However, logic test methods require

Trojan activation, which has been shown to be extremely

difficult [10][13]. Since the specifics of the Trojan are

unknown and we can never be sure of activating the

Trojan, these approaches are ineffective in most scenarios.

Many Trojans change the power/ground current by a very

small percentage, since power/ground measurements are

performed over large regions of a chip, namely, each

power/ground pin or even the entire chip [1]. In contrast to

these and other similar parametric test methods, delay

measurements benefit from the fact that the delay of each

path can be measured separately. Thus, the resolution of

delay measurement for one path is independent of the

other paths in the block and other blocks on the chip.

Hence, we pursue Trojan detection via delay

measurements. In this paper, we provide an approach to

model Trojans, select paths, and generate vectors to detect

Trojans with minimum cost and high accuracy.

In particular, our approach tackles several major

challenges for Trojan detection that have been mentioned

in many reports [10][13][14] and provides efficient

solutions.

First, all existing approaches try to classify Trojans and

make many assumptions regarding specific characteristics

of Trojans. However, the type, size, and physical

distribution of Trojan may vary with the intent and

ingenuity of the Trojan designer. Since an intelligent

adversary will continually develop new types of Trojans to

retain his/her advantage, any attempt to enumerate every

possible specific type of Trojans will fail. We assume that

the adversary will insert the most difficult to detect Trojan

that is likely to pass typical manufacturing tests and

validation. At the same time we assume that the adversary

is likely to insert the same Trojan into every fabricated

chip, since inserting Trojans into a subset of chips requires

additional masks and is very expensive [13]. Hence, our

methodology does not require activation of the Trojan and

does not assume any specific type of Trojan. Instead, we

capture characteristics of the most difficult type of Trojans

for our approach to detect, i.e., Trojans that minimally

2

alter the original circuit’s delay. And we identify a set of

surrogates that includes the minimal change in the delay

of the original circuit caused by the most difficult type of

Trojans to detect, in order to derive the most conservative

and yet a general Trojan model.

Second, increasing levels of process variations make it

more difficult to detect Trojans, since the amount of extra

delay induced by a minimally-invasive Trojan becomes

smaller in magnitude compared to the impact of process

variations [14]. To overcome this challenge, our approach

exploits a fundamental difference between the effects of

process variations on delay and the additional delay

induced by a Trojan: process variation has random (bi-

directional) effect on delay, while a Trojan always

changes the total delay in a fixed direction (uni-directional

shift). This fundamental difference causes a change in the

delay distribution as depicted in Figure 3(a). Hence, the

change in the distribution can always be detected if we

measure delays for a sufficient number of chips. In Section

3, we present a more detailed analysis of this observation.

Based on this observation, the next question is: Which

paths and vectors should we choose to detect this change

effectively while maximizing the test resolution and

minimizing the number of chips to be tested?

Hence, we develop a path selection scheme for a target

Trojan. As Trojans are expected to cause minimal delay

deviations, our goal is to select paths which maximize the

additional delay induced by the Trojan with respect to the

nominal path delays and effects of process variations. In

contrast to existing methods that target critical paths [13],

our path selection scheme targets paths having the smallest

path delay values to maximize the impact of a Trojan on

each path’s delay. We also derive new logic and timing

conditions that sequences of vectors must satisfy to detect

any particular Trojan at a desired level of confidence and

at a minimum cost.

We have also developed a new hypothesis testing method

based on likelihood-ratio test that improves the resolution

of Trojan detection while minimizing test cost. The new

hypothesis testing method decides whether a target Trojan

in the circuit exists or not based on measured delay values

from fabricated chips. The effectiveness of our approach is

demonstrated using an industrial 65nm technology for

high levels of process variations provided by a foundry

and benchmark circuits.

The rest of the paper is organized as follows. Section 2

introduces our approach for characterization of Trojans as

a set of surrogates that capture necessary conditions that

every Trojan satisfies. In Section 3, we propose our

approach to improve the resolution of the test by targeting

shorter paths. Section 4 presents test generation procedure

for paths having the smallest delays. In Section 5, we

formulate this problem as hypothesis testing that

minimizes test cost with a desired level of confidence

under a given level of process variations. We present an

integrated Trojan detection algorithm in Section 6 and

present experimental results in Section 7. Finally,

conclusions are drawn in Section 8.

2. Characterization of Trojans

Any existing strategy that enumerates specific types of

Trojans is likely to be incomplete since Trojans are

continuously developed by intelligent adversaries. To

improve completeness of our models of Trojans, we

propose a new approach for capturing the necessary

characteristics of Trojans.

Our method focuses on detecting Trojans by measuring

path delays due to the several advantages of delay

measurements discussed in Section 1. To ensure that we

evaluate our Trojan detection method under the most

challenging conditions, we assume that our adversary has

designed Trojans that will cause minimal changes in

circuit delays. Hence, in this paper we characterize all

possible Trojans by deriving a set of necessary conditions

that any Trojan must satisfy in terms of minimal impact on

delays.

Every sequential circuit consists of combinational logic

blocks and flip-flops. Since making too many changes to a

logic block in a given design (referred to as the original

design) will change delays of many paths, we focus on the

alternative where the adversary designs its logic as a

separate Trojan block, as shown in Figure 1. (We assume

that a Trojan block can be spatially distributed, placed in

the unused areas within and between logic blocks and

under interconnects, but we depict it in a simplified form

as a single block in Figure 1.) It is necessary for such a

Trojan block to have at least one connection with the

original logic blocks, e.g., line x in block C1 in Figure 1.

In absence of at least one connection with the original

logic, a Trojan will be totally harmless as it will (a) not

affect the operation of the original block in any manner,

and (b) not able to copy any values from the original logic.

We call a line in the original block that has a connection

with the Trojan block e.g., line x in block C1 in Figure 1, a

Trojan site.

In this context, two cases are possible. Case-1: the

adversary inserting the Trojan redesigns the original logic

block to hide the impact of the additional delay of this

connection, e.g., redesigns C1 in Figure 1 to hide the

impact of the connection at line x. Case-2: the adversary

leaves the original block unchanged but makes the

connection to the Trojan block at a Trojan site in the

original block, e.g., line x in Figure 1, in a manner that

minimally changes the delay at that line.

In this paper we focus on Case-2, since Case-1 will change

delay values of many paths and will be relatively easier to

detect. (A demonstration of the ease of detection of

Trojans in Case-1 is a subject of our ongoing research.)

Figure 1: Trojan block connected to the original design

3

The above reasoning provides us with a set of Trojans with

the following characteristics.

1) A Trojan must involve a connection between at least

one line, say x, called a Trojan site, in at least one original

circuit block and the newly added Trojan block(s).

2) This connection may use the value at the Trojan site,

say line x, in the original circuit block to drive an input

line of the Trojan block. In the least intrusive case, this

will take the form of an additional fanout of minimum load

at line x, which is the most difficult type of Trojan for our

approach to detect. This will cause a small additional delay

at line x. Alternatively, this connection may be used to

alter the logic function implemented by the original logic

block by injecting a value from an output of a Trojan

block at the Trojan site. This will require either insertion

of another gate at the Trojan site or modification of an

existing gate. Again, this will cause a small additional

delay at line x.

We capture the above two conditions using a set of

surrogate Trojan targets which contains one surrogate at

each line x in the original circuit, where the surrogate at

line x represents a minimal additional delay at that line.

Under this model, for an original logic block with m lines,

the set of surrogates will have m surrogate targets.

In the next section we introduce our approach for selecting

paths that pass via surrogate Trojans and generating

vectors for Trojans that satisfy the above necessary

conditions.

3. Impact of Trojans on Delay

Based on the basic properties of surrogates, we propose a

path selection scheme that maximizes the impact of

Trojans on delay. We also describe the models used by our

scheme, including process variations and delay

measurements.

3.1 Process Variations

First, for any given vector, we characterize delays of paths

in benchmark circuits using realistic delay values and

under realistic levels of process variations supplied by the

vendors for the fabrication process in the form of

technology files. We consider inter-die as well as intra-die

process variations. In particular, we use an industrial 65nm

technology and use the delay model, including inter- and

intra-die variations, provided by the foundry which

fabricates chips using this technology. We perform Monte

Carlo simulations to obtain realistic distributions of path

delay values, using the Cadence Spectre simulator in a

manner where it uses the foundry-supplied model of

process variations in terms of variations in about 50 device

parameters etc.) [15].

3.2 Delay Measurements

To detect a target surrogate, we apply a test vector that we

generate to excite a selected path via the target surrogate.

In some ways this is similar to classical delay testing.

However, in contrast to classical delay testing here we are

trying to capture the increase in the path delay caused by

the Trojan. As discussed in Section 2, we assume that the

Trojan induces a minimum additional load at a line in the

circuit and hence it minimally alters the delays of paths

that pass via the surrogate site. Thus, it is important to

precisely measure path delays to capture suitably small

differences in delay, around 8ps in our 65nm technology.

Also, to increase the relative importance of the Trojan’s

impact on the delay, we test paths with short delays. While

postponing the discussion of why and how we select paths

for testing to the next subsection, here we focus on how

we apply vectors and measure responses to serve our

purpose.

We focus on how to make measurements so we can (1)

measure small differences in delays while considering the

capabilities of available measurement approaches, and (2)

eliminate any concerns about excessive heat dissipation

that might otherwise occur when testing focuses on short

delay paths [13].

In modern ICs, scan registers are connected to the inputs

and outputs of each combinational logic block to apply test

vectors and capture response values. Hence we try to

measure delays by modifying the architecture and the

structure of a scan register. For example, a path delay

measurement architecture using a shadow register to

measure register-to-register delay is introduced in [8][16].

In this approach, a scan-register connected to each output

pin includes an additional shadow register operated by a

separate shadow clock to measure the path delay at the

primary outputs. This approach provides path delay value

by comparing logic values captured at both registers while

controlling the skew size. Recent approaches, e.g., the one

proposed in [17], use digitally variable resistors to control

the skew size to a resolution of 1ps. While this resolution

is sufficient for our purposes, we can further improve the

resolution by introducing two different clocks spaced with

controllable skew steps. In Figure 2, the first clock

controls the scan-register at an input pin of a

combinational path and the second clock which is skewed

by is applied to the output scan register. Now we use a

combination of multiple slow clocks followed by one fast

clock (a slight modification of the classical approach used

for path delay testing [18]) and capture logic values for

different skew sizes. Note that our approach does not

require high frequency clocks and hence avoids all

problems associated with excessive heat dissipation during

testing of short delay paths.

Figure 2: Path delay measurement architecture.

4

3.3 Path Selection: Targeting Shortest Paths

The total delay of a path p can be expressed as the sum of

three parameters as shown below:

 ,

where three parameters are (1) nominal delay of path p,

 , (2) the effect of process variations on the delay of p,

 , which is the overall effect of inter- and intra-

chip variations on the path delay, and (3) extra delay

induced by a surrogate at a site, say line x, along path p,

 Among these three parameters, the effect of

process variation follows random distribution, which is

typically bi-directional around a mean, e.g., normal or

truncated normal distribution [19]. In contrast, extra delay

induced by surrogate is uni-directional and always

increases the total delay of path p. For every copy of the

design, i.e., for every fabricated chip, for the design with

the surrogate, the delay of the gate/line at the surrogate site

increases.

This observation is one foundation of our approach for

Trojan detection. In fact, by itself this observation enables

us to prove that a minimal-delay surrogate can always be

detected, provided that we make measurements on a

sufficient number of chips for specifically generated

vectors.

The next question is: How can we minimize the cost of

testing for Trojan detection? We address this problem by

making a second observation: The greater the uni-

directional increase due to a surrogate compared to the

standard deviation for the delay of path due to process

variations, the smaller the number of chips that need to be

tested. So to maximize the impact of a surrogate, we select

the path with the smallest delay that passes via the

surrogate site, since the standard deviation of variations is

approximately proportional to the nominal delay of the

path. The example shown below supports our idea. (Every

example we have studied exhibits the same trend.)

To show the effectiveness of selecting the shortest path,

we choose two different paths with significantly different

path delays that pass via the same surrogate site in the

s420 benchmark circuit. We perform Monte Carlo

simulations to obtain delay values shown in Figure 3.

The distribution of delay for the original version of the

s420 benchmark circuit for a specific vector is shown by

the darker curve in Figure 3(a). We then obtained a

version of this circuit with a surrogate by inserting an

additional fanout at line 371 of the circuit, where the

additional fanout was configured to drive the input of an

inverter with minimum-sized transistors. We then repeated

the simulations to obtain the delay distribution shown by

the lighter curve in Figure 3(a). Note that the surrogate

causes a relatively small change in delays, namely 8ps,

compared to the nominal delay for the original benchmark

circuit, and the variations in the delay of the original

circuit caused by process variations.

For the same circuit and the same surrogate, we repeated

the simulations for a different vector that was selected to

excite a much shorter path that passed via the surrogate’s

site, namely line 371. It is easy to see in Figure 3(b), that

while the expected value of the additional delay due to the

surrogate remains at around 8ps, i.e., the same level as in

Figure 3(a), the impact of the surrogate increases

significantly as a percentage of the average delay of the

path. Surrogate’s impact also increases with respect to the

values of the variance due to process variations.

(a)

 (b)

Figure 3: The distribution of delay at an output of
benchmark circuit s420 for a particular vector,
considering realistic process variations for the original
circuit version, and a version with an additional fanout
driving a minimum load at a surrogate site along the
path (line 371). For a vector that excites (a) a long path,
and (b) a shorter path.

The idea of targeting the shortest paths is also useful due

to the fact that a surrogate always increases the total path

delay. The conventional delay testing method targets the

longest paths and captures logic values at primary outputs.

Thus any logic values which arrive at primary outputs later

than the desired clock period will produce errors. Even

though the size of additional delay due to the surrogate is

very small, it might be detected if it increases delay of any

longest path and the path delay goes beyond the clock

period. Since the adversary is aware of every kind of

conventional testing method, they will try to insert a

Trojan to paths other than the longest paths to avoid

detection.

Another benefit of targeting short paths is that shorter

paths tend to have fewer off-path inputs than longer paths.

Due to this reason, the probability that a test vector exists

is greater for a shorter path.

Hence, in order to detect a surrogate at a specific site, say

line x, using path delay measurement, we select the

0

0.002

0.004

0.006

0.008

0.01

0.012

P
ro

b
ab

il
it

y
 D

en
si

ty

Path delay (ps)

Original circuit
Circuit with an additional fanout

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

P
ro

b
ab

il
it

y
 D

en
si

ty

Path delay (ps)

Original circuit
Circuit with an additional fanout

5

shortest path passing via line x. We consider the following

set of paths as surrogate paths

 { },

where is the shortest delay path passing via line i, and m

is the number of lines in the circuit. As we select a

surrogate path for each surrogate target, the total number

of surrogate paths is only proportional to the number of

lines in the circuit. Testing of all possible surrogates using

surrogate paths in the circuit only needs O(m) time.

For each of these paths, we must generate an appropriate

vector that excites the path. This requires a very different

set of test generation conditions from the classical delay

testing which typically focuses on the longest paths [18].

Later in this paper, we derive our conditions and compare

our approach with the classical approach of using vectors

that excite the longest delay paths and show dramatic

benefits.

4. Conditions for Generating a Test for a Trojan

Our next task is to generate a vector that invokes the delay

of a given surrogate. This task is similar to the problem of

test vector generation for path delay testing during high-

volume manufacturing (HVM) testing with two important

differences. First, here we have selected the shortest paths,

in contrast to the longest paths in delay testing. Second,

our objective is to excite the delay of the selected path,

whereas in delay testing the goal is to invoke a delay that

is either greater than or equal to that of the selected path.

For any path selected as a surrogate path, we have derived

conditions that must be satisfied by a vector to ensure that

our objective is satisfied. Figure 4 shows the conditions

that must be satisfied by a vector generated for path delay

testing. In contrast, Figure 5 shows the conditions derived

for generating a vector for a surrogate path, for an on-path

NAND gate. For the first case, where the on-path input of

the NAND gate has a falling transition, delay testing as

well as surrogate detection both require the off-path input

to have a steady-1. This is because in both cases we must

ensure that a transition at any off-path input does not

decrease the delay of the target path.

Figure 4: Conditions for robust path delay testing for
an on-path NAND gate. The thick and thin lines denote
on-path and off-path lines, respectively.

Figure 5: Conditions for a NAND gate along a surrogate
path, to detect above category of surrogates.

In the second case, where the on-path input of the NAND

gate has a rising transition, robust testing only focuses on

invoking delay that that is equal to or greater than the

delay of the path [18]. Since in surrogate detection our

goal is to invoke the delay of the target path, we must

modify these conditions to preclude cases where a late

transition at an off-path input invokes delay greater than

that of the target path.

If the transition at a gate’s input on the path being tested is

from a controlling value (c) to a non-controlling value (̅),

then we have two conditions:

Condition I: The off-path signal values should be of the

form < x, ̅>, where x can be either 0 or 1.

Condition II: The off-path signal values should change to

non-controlling value before the on-path input arrives.

We have derived new conditions for all types of gates and

integrated these into our vector generation framework.

5. Estimating the Number of Chips to be Tested

In this section, we formulate the problem of determining

whether a surrogate exists or not, based on measured delay

values for selected paths and specifically generated

vectors. Given a circuit design C and the values of delay

parameters and variations, we apply a vector we generate,

V, to a number, n, of fabricated chips provided by the

foundry for design C. For each chip, we measure the delay

at an output with the goal of detecting a particular instance

of the surrogate. What is the minimum value of n sufficient

to provide the correct disposition of the fabricated chips –

either “surrogate-free” or “has the particular surrogate”

– with low probability of decision error?

We have developed a method to solve the above problem

using hypothesis testing. There are two main categories of

the hypothesis testing methods: parametric tests and non-

parametric tests. Parametric tests such as Student’s t-test

assume that the data follows a general distribution, where

distributions can be characterized by generic metrics such

as mean and variance or mean-squared error (MSE).

However, the actual delay values, strictly speaking, do not

follow a Gaussian distribution and parametric tests are not

adequate to solve our problem. Non-parametric tests like

goodness-of-fit tests are not based on strong distribution

assumptions and they can be performed on any kinds of

fully-specified distributions. But these tests require the

basic assumption that a large number of samples exist. In

addition, non-parametric tests require higher numbers of

samples to achieve a certain level of confidence than

parametric tests [20]. Finally, our problem is to select a

more likely model between two competing models,

“surrogate-free” and “circuit with the target surrogate”.

However, existing hypothesis testing methods make

decisions whether the data follows a certain distribution or

not. Thus any existing test cannot serve as a proper

method for solving our selection/classification problem.

Instead, we propose a more efficient non-parametric test to

identify the existence of the target surrogate using

likelihood-ratio test. It utilizes every single delay value of

a path measured from fabricated chips using a vector and

computes the exact conditional probabilities for both

“surrogate-free” and “circuit with the target surrogate”

models. Because our goal is to choose a more probable

model between these two competing models, we use the

6

likelihood-ratio between conditional probabilities to make

a decision. We also derive equations that estimate the

number of chips required for measurements for a given

vector. To show the effectiveness of our new approach, we

choose Student’s t-test as a baseline method because

Student’s t-test requires less number of chips to be tested

than non-parametric methods for the same level of

confidence. Later, we will compare the number of chips to

be tested required by both methods, Student’s t-test and

our likelihood-ratio based test, for the same level of

confidence.

5.1 Baseline for comparison: Student’s t-test Method

Given the level of confidence ρ and the number of

fabricated chips n, we determine the confidence interval

for the mean value of the path delay μ obtained by

measurements on n fabricated copies of the chip. Suppose

the mean delay derived via simulation for the same vector,

for circuit versions without and with the surrogate are

and , respectively. Let σ be the standard deviation of the

delay values obtained via simulations for both circuit

versions. Then we set null hypothesis and its

corresponding counter hypothesis as follows.

H0: , i.e., target surrogate does not exist,

H1: , i.e., target surrogate does exist.

z-value for testing H0 is computed as follows.

√

H0 is rejected if (surrogate is detected), where

is z-value for level of confidence ρ. Otherwise H0 is not

rejected (surrogate is not detected). By conducting

hypothesis testing with n chips, a decision error may occur

when hypothesis testing falsely identifies a chip as having

the surrogate while the surrogate does not exist (Type-I

error, where probability of occurrence is (100- ρ)%), or

falsely identifies a chip as the surrogate-free chip while

the surrogate does exist (Type-II error). Since it is

dangerous to let a chip containing the surrogate to pass the

test, Type-II error should be avoided. The probability of

Type-II error, β, is

 [] (√) (√)

where k is the expected value of additional delay due to

the surrogate with respect to the value of standard

deviation σ. The probability of decision error decreases as

the value of n increases and the value of k is bigger. The

minimum value of n is given by Eq. 2 depending on the

value of k and β and with the level of confidence ρ.

5.2 Our Approach Based on Likelihood-Ratio Test

Suppose that fabricated chips follow some unknown

distribution F and we have i.i.d. delay values (data points)

measured from n samples from fabricated chips

using a test vector. For a given test vector, we have a

probability distribution A and its probability density

function for delay values of the original circuit, and B

and for the circuit with the target surrogate. The

likelihood-ratio test decides between the following

hypotheses.

H0: , i.e., target surrogate does not exist,

H1: , i.e., target surrogate does exist.

The entire sample space is divided into r mutually-

exclusive intervals and each interval has the size Δ, except

the first and the last interval as we divide the entire sample

space [] into r intervals. And we compute and

 the conditional probabilities that one data point

belongs to the interval k given that either one of two above

hypotheses is true.

 []

For n data points and r intervals, every data point belongs

to one unique interval. And numbers of samples that

belong to the interval are
respectively, where ∑

 . Let the event X be a

combination of i.e., { } The

number of possible combinations of is (

) and

the conditional probability of the event given that H0 is

true is

 ∏

The expression for and can be obtained in a

similar way.

The likelihood ratio test statistic can be written as

where is a ratio between and and

is called a likelihood-ratio of the test.

In the above equation, the likelihood ratio is small if

the alternative hypothesis H1 is better than the null

hypothesis H0. It provides the decision rule as below.

If , do not reject H0,

otherwise, reject H0,

where c is a threshold value.

In addition, the probability of Type-II error, β, is computed

as

 ∑

 represents the sum of conditional probabilities given that

H1 is true when the test decides to accept H0 (i.e., when

). Hence, the probability of Type-II error can be

controlled by adjusting the threshold value c. This problem

can be expressed as integer linear programming (ILP)

shown below:

Objective: minimize n for H0 and H1

Constraints:

 ∑ ,

 ∑ ,

7

where and are maximum values of Type-I and

II error probabilities allowed for the test.

The main advantage of the proposed method is that it does

not require the distribution of measured data points to be a

general distribution such as normal distribution, in contrast

to Student’s t-test. The conditional probability of each

interval is computed based on the probability distribution

that results from process variation, where the actual

distribution is not Gaussian. Thus, the proposed method is

applicable to detect a surrogate under any type of process

variations. Also, recall that despite its applicability, we

use Student’s t-test as a baseline for comparison since it

requires fewer chips than most non-parametric methods.

Figure 6: The number of chips to be tested using
Student’s t-test and likelihood-ratio based test for
different sizes of additional delay induced by a
surrogate with respect to the total path delay.

The proposed likelihood-ratio based test dramatically

reduces the number of chips to be tested compared to

Student’s t-test. Figure 6 shows the number of chips to be

tested using the above two methods, Student’s t-test and

likelihood-ratio based test, for different sizes of additional

delay induced by a surrogate with respect to the total path

delay with the fixed sizes of desired Type-I and II error

probabilities of 5% and 5%, respectively. It clearly shows

that the number of chips to be tested increases as the

percentage of the amount of the extra delay induced by a

surrogate to the total path delay decreases. For the same

path and surrogate, our likelihood-ratio based test reduces

the number of chips to be tested significantly when

compared to Student’s t-test and the average reduction in

the number of chips to be tested is 29.7%. It is because our

likelihood-ratio based test is designed to solve our

classification problem, where Student’s t-test only gives

out a decision whether delay values follow a certain

Gaussian distribution and hence requires more chips to be

tested to make a decision between two competing models.

6. Our Trojan Detection Algorithm

Using the surrogate detection test procedures and test

vector generation method discussed above, we have

integrated and implemented all our above results as a

single framework. Figure 7 provides a high-level overview

of our integrated approach. The algorithm generates

surrogate paths and computes the minimum number of

chips to be tested for every surrogate. For every line i in

the circuit, the algorithm enumerates all the paths that pass

via the line i and sorts them in increasing delay order in

Step 1. In Steps 2 and 3, the algorithm selects the path

with the smallest delay (the shortest path) and generates a

test vector for the selected path, until the test generation is

successful. Surrogate targets and a set of detectable

surrogates are updated depending on the result of test

generation. In Step 4, the algorithm computes the number

of chips required for the test to detect every detectable

surrogate. We use surrogate coverage to show the

effectiveness of our approach.

Figure 7: Trojan detection algorithm for generating
vectors for surrogate paths to detect surrogates.

It is possible that some surrogate paths may be used to

detect more than one surrogate and there might be multiple

surrogate paths passing via the same surrogate site. The

goal is to find a minimal set of surrogate paths that detects

every detectable surrogate to minimize the test cost. This

problem can be stated as an ILP problem.

 Objective: minimize ,

 Constraints: ∑ for

 , if
 and

 , if
 or ,

where is an indicator that shows whether surrogate i is

detectable using surrogate path j (or not (

 and T is a minimal set of surrogate paths to be used for

0

1000

2000

3000

4000

5000

6000

0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25T
h

e
 n

u
m

b
e
r
 o

f
c
h

ip
s

to

b
e
 t

e
st

e
d

The size of additional delay induced by a surrogate

w.r.t the total path delay

Student's t-test (baseline)

Likelihood-ratio based test

1. Initialize (surrogate path i), (set of

detectable surrogates), (set of surrogate paths) and

 (subset of surrogates that are detectable by

surrogate path i)

for every line in the circuit i = 1,…, m, enumerate every

path passing via the target line i.

Sort paths in increasing delay order and add them into

 begin

2. while test generation is successful or

 Choose the path k having the smallest delay in

 Generate a test vector for corresponding path k

2-1. if (test generation is successful) then

 Update = k

 Add to the set of surrogate paths,

 Add line i to

 Add every line along the path to

 break

2-2. else then

 Remove k from

 end if;

 end loop;

3. if (=) then

 Surrogate path for line i does not exist

 end if;

 end loop;

4. for every surrogate i in every non-empty

 begin

5. Compute the number of fabricated chips, ,

 to be applied to to detect surrogate i.

end

 Surrogate coverage =

 100 (%)

8

testing. The above problem can be solved using greedy

heuristics and test cost is computed as ∑

and it is sum of the number of required chips to be tested

for every surrogate path in T.

7. Experimental Results

We have used our prototype tool to demonstrate the

effectiveness of our approach. We have also compared our

approach with an adaptation of the existing delay testing

approach to demonstrate the dramatic improvement in

effectiveness (surrogate coverage) and dramatic decrease

in test cost.

For our experiments, we use the combinational parts of

eight ISCAS89 benchmark circuits. Path delay values are

measured from Monte-Carlo simulations using Spectre for

an industrial 65nm technology while using levels of

process variations provided by a fabricator, as described in

Section 3. The ATPG tool for the proposed test generation

procedure has been implemented in C. As a surrogate

which induces minimum load to a line in the circuit, we

use a minimum-sized inverter as an extra fanout that

induces extra delay at each particular surrogate site. After

we obtain delay values via simulations under process

variations, we apply two different hypothesis testing

methods, Student’s t-test and our likelihood-ratio based

test, to compare test costs required by these two methods.

In Table 1, we showed the number of surrogate paths

required to achieve the maximum surrogate coverage

using our approach. Our approach significantly reduces the

number of path delays to be measured since it only focuses

on the shortest path passing via each possible surrogate

site.

Table 1: Maximum surrogate coverage and number of
surrogate paths required for selected benchmark
circuits.

Benchmark
circuit

Number
of circuit
lines (m)

Maximum
surrogate

coverage (%)

Surrogate
paths/

Total paths

c17 17 100 8/22

s298 298 72.8 112/462

s368 368 84.2 162/414

s420 420 69.3 131/738

s510 510 94.9 247/738

c880 880 78.9 272/17284

s1488 1488 69.5 365/1924

s5378 5378 67.5 844/27084

Figure 8 shows the number of chips to be tested for each

surrogate path with our approach and classical delay

testing method. It can be seen that using shortest paths as

surrogate paths we significantly reduce the required

number of chips for every possible surrogate site in c17. In

addition, our hypothesis testing method is significantly

more effective than Student’s t-test since it chooses one

likely model between two competing models, “surrogate-

free” and “circuit with the surrogate”, where Student’s t-

test focuses on the closeness of measured delay values to

the surrogate-free model.

(a)

(b)

Figure 8: The number of chips to be tested for
surrogate paths in c17 with our approach and classical
delay testing method. (a) Student’s t-test. (b)
Likelihood-ratio based test.

Table 2 compares the cost for eight benchmark circuits of

four different methods: (i) Classical delay testing method

with Student’s t-test, (ii) Our approach with Student’s t-

test, (iii) Classical delay testing method with likelihood-

ratio based test, and (iv) Our approach with likelihood-

ratio based test. In each method, we use 95% confidence

level and 5% Type-II error probability. Note that method

(i) is the classical method, method (iv) is the proposed

method, and other two are intermediate methods. In order

to show improvement in the quality of the test, we also

compute test costs required for various surrogate coverage

levels for all the four methods. The maximum values of

surrogate coverage for four methods are the same, because

the maximum surrogate coverage is determined by the

existence of a testable surrogate path for each surrogate

site. However, our new approach with likelihood-ratio

based test (method (iv)) dramatically improves 3.48X in

the test cost compared to the existing delay testing

targeting the longest paths with Student’s t-test (method

(i)), for the same value of surrogate coverage. For

sensitive chips that are fabricated in small volumes, our

approach may be the only one that can perform Trojan

detection with desired level of confidence. The results

clearly demonstrate that our approach which targets the

shortest paths gives better results than classical delay

testing method. In addition, the results show that the

Trojan detection procedure incorporated with our

hypothesis testing method reduces test cost significantly.

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
h

e
 n

u
m

b
e
r
 o

f
c
h

ip
s

to

b
e
 t

e
st

e
d

Surrogate path number

Our approach Classical delay testing

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
h

e
 n

u
m

b
e
r
 o

f
c
h

ip
s

to
 b

e

te
st

e
d

Surrogate path number

Our approach Classical delay testing

9

8. Conclusions

We have developed new principles for characterization of

Trojans inserted by intelligent adversaries using our new

notion of surrogates. We have also identified several

principles for selection of target paths and generation of

vectors to enable identification of surrogates in presence of

increasing levels of process variations, that cannot be

detected by classical testing and validation approaches.

The experimental results show that the proposed approach

reduces test cost significantly compared to classical

methods.

We are in the process of applying our principles to identify

other surrogate sets of Trojans and developing an

extensive set of effective and efficient approaches for their

detection.

9. References
[1] F. Wolff, C. Papachristou, S. Bhunia and R. Chakraborty, “Towards

Trojan-free trusted ICs: Problem analysis and detection scheme,”

Design and Test in Europe (DATE), 2008, pp. 1362-1365.

[2] S. Jha and S. K. Jha, “Randomization Based Probabilistic Approach

to Detect Trojan Circuits,” High Assurance Systems Engineering

Symposium (HASE), 2008, pp. 117-124.
[3] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A Novel

Technique for Improving Hardware Trojan Detection and Reducing

Trojan Activation Time,” IEEE Transactions on VLSI, Vol. 20,
Issue 1, 2012, pp. 112-125.

[4] X. Wang, H. Salmani, M. Tehranipoor and J. Plusquellic,
„„Hardware Trojan Detection and Isolation Using Current

Integration and Localized Current Analysis,” IEEE International

Symposium on Defect and Fault Tolerance of VLSI Systems (DFT),
2008, pp. 87-95.

[5] M. Banga and M. S. Hsiao, "A Region Based Approach for the

Identification of Hardware Trojans," IEEE International Workshop
on Hardware-Oriented Security and Trust (HOST), 2008, pp. 40-47.

[6] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi and B. Sunar,

“Trojan Detection using IC Fingerprinting,” Symposium on Security

and Privacy, 2007, pp. 296-310.

[7] Y. Jin and Y. Makris, "Hardware Trojan Detection Using Path

Delay Fingerprint," IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST), 2008, pp. 51-57.

[8] J. Li and J. Lach, „„At-Speed Delay Characterization for IC

Authentication and Trojan Horse Detection,‟‟ IEEE International
Workshop on Hardware-Oriented Security and Trust (HOST), 2008,

pp. 8-14.

[9] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey,
“Hardware Trojan horse detection using gate-level

characterization,” Design Automation Conference. (DAC), 2009, pp.

688-693.
[10] M. Tehranipoor and F. Koushanfar, "A Survey of Hardware Trojan

Taxonomy and Detection," IEEE Design & Test of Computers,

2010, pp. 10-25.
[11] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting Malicious

Inclusions in Secure Hardware: Challenges and Solutions,” IEEE

International Workshop on Hardware-Oriented Security and Trust
(HOST), 2008, pp. 15-19.

[12] R.S. Chakraborty, S. Narasimhan and S. Bhunia, “Hardware Trojan:

Threats and emerging solutions,” High Level Design Validation and
Test Workshop (HLDVT), 2009, pp. 166-171.

Table 2: The cost and surrogate coverage (SC) for benchmark circuits for different values of surrogate coverage. (i)
Classical delay testing method with Student’s t-test. (ii) Our approach with Student’s t-test. (iii) Classical delay testing
method with likelihood-ratio based test. (iv) Our approach with likelihood-ratio based test.
* Improvement in test cost: {Test cost of method (i)}/{Test cost of method (iv)}

c17 s298

SC

(%)

Test cost Improvement in

test cost

SC

(%)

Test cost Improvement in

test cost (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

76.5 68 55 43 47 1.45X 55 10793 3588 5848 2110 5.12X

82.4 179 101 115 61 2.93X 60 17097 6750 10062 3804 4.49X

88.2 396 311 227 188 2.11X 65 28302 10305 17589 5649 5.01X

94.1 619 393 355 230 2.69X 70 48754 14874 30629 8736 5.58X

100 960 470 542 275 3.49X 72.8 63950 18278 40934 10706 5.97X

s386 s420

SC

(%)

Test cost Improvement in

test cost

SC

(%)

Test cost Improvement in

test cost (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

65 87742 46047 55712 34168 2.57X 50 32723 5439 19531 2980 10.98X

70 102814 63311 67190 45473 2.26X 55 41423 9141 24616 4667 8.88X

75 124239 81067 90358 60573 2.05X 60 66715 16084 38396 9222 7.23X

80 155495 100089 130320 87871 1.77X 65 95771 22545 59570 14587 6.57X

84.2 187199 115550 156000 109600 1.71X 69.3 228157 110054 117080 55859 4.08X

s510 c880

SC

(%)

Test cost Improvement in

test cost

SC

(%)

Test cost Improvement in

test cost (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

75 73327 23777 44207 13780 5.32X 60 35079 52547 22452 34634 1.01X

80 97323 30827 55348 17805 5.47X 65 79133 57215 45503 39752 1.99X

85 158462 45302 93494 28137 5.63X 70 143292 120899 95549 76798 1.87X

90 232830 70233 140860 41552 5.60X 75 255270 259200 157480 130950 1.95X

94.9 327474 94835 191330 57688 5.68X 78.9 345825 332553 192440 175740 1.97X

s1488 s5378

SC

(%)

Test cost Improvement in

test cost

SC

(%)

Test cost Improvement in

test cost (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

50 239100 60443 148320 37738 6.34X 50 762350 452831 521020 382930 1.99X

55 299358 88430 195980 54385 5.50X 55 842330 659029 732930 469280 1.79X

60 397046 134034 265950 77942 5.09X 60 930023 782729 803820 523920 1.78X

65 480751 227759 311680 140760 3.42X 65 1232523 837293 837260 653840 1.89X

69.5 683190 366669 385610 223510 3.06X 67.5 1442322 1083721 1102340 769280 1.87X

10

[13] M. Tehranipoor, H. Salmani, X. Zhang, X. Wang, R. Karri, J.

Rajendran and K. Rosenfeld, "Trustworthy Hardware: Trojan

Detection Solutions and Design-for-Trust Challenges," IEEE

Computer Magazine, Vol. 44, Issue 7, 2011, pp. 66-74.

[14] D. Rai and J. Lach, "Performance of delay-based Trojan detection
techniques under parameter variations," IEEE International

Workshop on Hardware-Oriented Security and Trust (HOST), 2009,

pp. 58-65.
[15] K. Bernstein et al., “High- Performance CMOS variability in the 65-

nm regime and beyond,” IBM Journal of Research and

Development, Vol. 50, Issue 4.5, 2006, pp. 433-449.
[16] J. Li and J. Lach, “Negative-Skewed Shadow Registers for At-

Speed Delay Variation Characterization,” International Conference

on Computer Design (ICCD), 2007, pp. 354-359.

[17] M. Saint-Laurent and M. Swaminathan, “A digitally adjustable

resistor for path delay characterization in high frequency

microprocessors,” Southwest Symposium on Mixed-Signal Design,

2001, pp. 61-64.

[18] N. Jha and S. K. Gupta, Testing of Digital Systems, Cambridge,
U.K.: Cambridge Univ. Press, 2003.

[19] F. Liu, “A general framework for spatial correlation modeling in

VLSI design,” Design Automation Conference. (DAC), 2007, pp.
817-822.

[20] R. V. Hogg and E. A. Tanis, Probability and Statistical Inference,

Pearson Education, 2008, pp. 407-463.

