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Abstract 

One of the growing issues in IC design is how to 

authenticate chips fabricated by untrusted vendors. Such 

authentication, often called Trojan detection, is 

challenging since the specifics of hardware Trojans 

inserted by intelligent adversaries are difficult to predict 

and most Trojans do not affect the logic behavior of the 

circuit unless they are activated. Also, Trojan detection via 

parametric measurements becomes increasingly difficult 

with increasing levels of process variations.  

In this paper we introduce the new notion of a set of 

surrogate Trojan targets, where the surrogates capture 

the necessary conditions that every Trojan must satisfy. 

We also propose a method that maximizes the resolution 

of each path delay measurement, in terms of its ability 

to detect the targeted surrogate. In particular, for each 

surrogate, our approach accentuates the surrogate’s impact 

by generating a vector that sensitizes the shortest path 

passing via the surrogate’s site. We estimate the minimum 

number of chips to which each vector must be applied to 

detect the surrogate with sufficient confidence for a given 

level of process variations. Finally, we demonstrate the 

significant improvements in effectiveness and cost 

provided by our approach under high process variations. 

Experimental results on several benchmark circuits show 

that we can achieve 3.48X reduction in test cost using our 

approach compared to classical path delay testing with 

Student’s t-test. 

1. Introduction 

In semiconductor industry, to reduce costs, many steps of 

digital IC design are now conducted by outside vendors. In 

addition, it is impossible for the relatively low volume 

applications to develop state-of-the-art fabrication 

facilities by themselves and hence they are increasingly 

forced to use the services of outside fabricators. Due to 

these reasons, it is increasingly common for a new IC’s 

original designers to lose direct control of many design 

and fabrication steps. This increases the opportunities for 

intelligent and resourceful adversaries to tamper with the 

circuit by introducing hardware Trojans, especially during 

fabrication steps. Detecting hardware Trojans by 

destructive physical inspection or reverse engineering is 

costly and might fail as the scaling down of the IC device 

dimensions makes a well-designed Trojan circuitry very 

difficult to detect. Hence, it is important to develop a new 

framework and tools to detect possible hardware Trojans 

within ICs. 

Recently, several Trojan detection techniques have been 

developed. These approaches include logic test methods 

which apply vectors and examine logic values at the 

circuit’s outputs [1][2][3], and parametric test methods 

which apply vectors and measure values of parameters, 

such as power/ground currents [4][5][6] or path delays 

[7][8][9]. In addition, a taxonomy and necessary elements 

of a Trojan are introduced to classify types of Trojans and 

to be used for evaluation of different Trojan detection 

strategies [10][11][12]. However, logic test methods require 

Trojan activation, which has been shown to be extremely 

difficult [10][13]. Since the specifics of the Trojan are 

unknown and we can never be sure of activating the 

Trojan, these approaches are ineffective in most scenarios. 

Many Trojans change the power/ground current by a very 

small percentage, since power/ground measurements are 

performed over large regions of a chip, namely, each 

power/ground pin or even the entire chip [1]. In contrast to 

these and other similar parametric test methods, delay 

measurements benefit from the fact that the delay of each 

path can be measured separately. Thus, the resolution of 

delay measurement for one path is independent of the 

other paths in the block and other blocks on the chip. 

Hence, we pursue Trojan detection via delay 

measurements. In this paper, we provide an approach to 

model Trojans, select paths, and generate vectors to detect 

Trojans with minimum cost and high accuracy.  

In particular, our approach tackles several major 

challenges for Trojan detection that have been mentioned 

in many reports [10][13][14] and provides efficient 

solutions.  

First, all existing approaches try to classify Trojans and 

make many assumptions regarding specific characteristics 

of Trojans. However, the type, size, and physical 

distribution of Trojan may vary with the intent and 

ingenuity of the Trojan designer. Since an intelligent 

adversary will continually develop new types of Trojans to 

retain his/her advantage, any attempt to enumerate every 

possible specific type of Trojans will fail. We assume that 

the adversary will insert the most difficult to detect Trojan 

that is likely to pass typical manufacturing tests and 

validation. At the same time we assume that the adversary 

is likely to insert the same Trojan into every fabricated 

chip, since inserting Trojans into a subset of chips requires 

additional masks and is very expensive [13]. Hence, our 

methodology does not require activation of the Trojan and 

does not assume any specific type of Trojan. Instead, we 

capture characteristics of the most difficult type of Trojans 

for our approach to detect, i.e., Trojans that minimally 
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alter the original circuit’s delay. And we identify a set of 

surrogates that includes the minimal change in the delay 

of the original circuit caused by the most difficult type of 

Trojans to detect, in order to derive the most conservative 

and yet a general Trojan model. 

Second, increasing levels of process variations make it 

more difficult to detect Trojans, since the amount of extra 

delay induced by a minimally-invasive Trojan becomes 

smaller in magnitude compared to the impact of process 

variations [14]. To overcome this challenge, our approach 

exploits a fundamental difference between the effects of 

process variations on delay and the additional delay 

induced by a Trojan: process variation has random (bi-

directional) effect on delay, while a Trojan always 

changes the total delay in a fixed direction (uni-directional 

shift). This fundamental difference causes a change in the 

delay distribution as depicted in Figure 3(a). Hence, the 

change in the distribution can always be detected if we 

measure delays for a sufficient number of chips. In Section 

3, we present a more detailed analysis of this observation. 

Based on this observation, the next question is: Which 

paths and vectors should we choose to detect this change 

effectively while maximizing the test resolution and 

minimizing the number of chips to be tested?  

Hence, we develop a path selection scheme for a target 

Trojan. As Trojans are expected to cause minimal delay 

deviations, our goal is to select paths which maximize the 

additional delay induced by the Trojan with respect to the 

nominal path delays and effects of process variations. In 

contrast to existing methods that target critical paths [13], 

our path selection scheme targets paths having the smallest 

path delay values to maximize the impact of a Trojan on 

each path’s delay. We also derive new logic and timing 

conditions that sequences of vectors must satisfy to detect 

any particular Trojan at a desired level of confidence and 

at a minimum cost.  

We have also developed a new hypothesis testing method 

based on likelihood-ratio test that improves the resolution 

of Trojan detection while minimizing test cost. The new 

hypothesis testing method decides whether a target Trojan 

in the circuit exists or not based on measured delay values 

from fabricated chips. The effectiveness of our approach is 

demonstrated using an industrial 65nm technology for 

high levels of process variations provided by a foundry 

and benchmark circuits. 

The rest of the paper is organized as follows. Section 2 

introduces our approach for characterization of Trojans as 

a set of surrogates that capture necessary conditions that 

every Trojan satisfies. In Section 3, we propose our 

approach to improve the resolution of the test by targeting 

shorter paths. Section 4 presents test generation procedure 

for paths having the smallest delays. In Section 5, we 

formulate this problem as hypothesis testing that 

minimizes test cost with a desired level of confidence 

under a given level of process variations. We present an 

integrated Trojan detection algorithm in Section 6 and 

present experimental results in Section 7. Finally, 

conclusions are drawn in Section 8. 

2. Characterization of Trojans 

Any existing strategy that enumerates specific types of 

Trojans is likely to be incomplete since Trojans are 

continuously developed by intelligent adversaries. To 

improve completeness of our models of Trojans, we 

propose a new approach for capturing the necessary 

characteristics of Trojans.  

Our method focuses on detecting Trojans by measuring 

path delays due to the several advantages of delay 

measurements discussed in Section 1. To ensure that we 

evaluate our Trojan detection method under the most 

challenging conditions, we assume that our adversary has 

designed Trojans that will cause minimal changes in 

circuit delays. Hence, in this paper we characterize all 

possible Trojans by deriving a set of necessary conditions 

that any Trojan must satisfy in terms of minimal impact on 

delays.  

Every sequential circuit consists of combinational logic 

blocks and flip-flops. Since making too many changes to a 

logic block in a given design (referred to as the original 

design) will change delays of many paths, we focus on the 

alternative where the adversary designs its logic as a 

separate Trojan block, as shown in Figure 1. (We assume 

that a Trojan block can be spatially distributed, placed in 

the unused areas within and between logic blocks and 

under interconnects, but we depict it in a simplified form 

as a single block in Figure 1.) It is necessary for such a 

Trojan block to have at least one connection with the 

original logic blocks, e.g., line x in block C1 in Figure 1. 

In absence of at least one connection with the original 

logic, a Trojan will be totally harmless as it will (a) not 

affect the operation of the original block in any manner, 

and (b) not able to copy any values from the original logic. 

We call a line in the original block that has a connection 

with the Trojan block e.g., line x in block C1 in Figure 1, a 

Trojan site.  

In this context, two cases are possible. Case-1: the 

adversary inserting the Trojan redesigns the original logic 

block to hide the impact of the additional delay of this 

connection, e.g., redesigns C1 in Figure 1 to hide the 

impact of the connection at line x. Case-2: the adversary 

leaves the original block unchanged but makes the 

connection to the Trojan block at a Trojan site in the 

original block, e.g., line x in Figure 1, in a manner that 

minimally changes the delay at that line.  

In this paper we focus on Case-2, since Case-1 will change 

delay values of many paths and will be relatively easier to 

detect. (A demonstration of the ease of detection of 

Trojans in Case-1 is a subject of our ongoing research.)  

 
Figure 1:  Trojan block connected to the original design 
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The above reasoning provides us with a set of Trojans with 

the following characteristics.  

1) A Trojan must involve a connection between at least 

one line, say x, called a Trojan site, in at least one original 

circuit block and the newly added Trojan block(s).  

2) This connection may use the value at the Trojan site, 

say line x, in the original circuit block to drive an input 

line of the Trojan block. In the least intrusive case, this 

will take the form of an additional fanout of minimum load 

at line x, which is the most difficult type of Trojan for our 

approach to detect. This will cause a small additional delay 

at line x. Alternatively, this connection may be used to 

alter the logic function implemented by the original logic 

block by injecting a value from an output of a Trojan 

block at the Trojan site. This will require either insertion 

of another gate at the Trojan site or modification of an 

existing gate. Again, this will cause a small additional 

delay at line x. 

We capture the above two conditions using a set of 

surrogate Trojan targets which contains one surrogate at 

each line x in the original circuit, where the surrogate at 

line x represents a minimal additional delay at that line. 

Under this model, for an original logic block with m lines, 

the set of surrogates will have m surrogate targets.  

In the next section we introduce our approach for selecting 

paths that pass via surrogate Trojans and generating 

vectors for Trojans that satisfy the above necessary 

conditions. 

3. Impact of Trojans on Delay 

Based on the basic properties of surrogates, we propose a 

path selection scheme that maximizes the impact of 

Trojans on delay. We also describe the models used by our 

scheme, including process variations and delay 

measurements.  

3.1 Process Variations 

First, for any given vector, we characterize delays of paths 

in benchmark circuits using realistic delay values and 

under realistic levels of process variations supplied by the 

vendors for the fabrication process in the form of 

technology files. We consider inter-die as well as intra-die 

process variations. In particular, we use an industrial 65nm 

technology and use the delay model, including inter- and 

intra-die variations, provided by the foundry which 

fabricates chips using this technology. We perform Monte 

Carlo simulations to obtain realistic distributions of path 

delay values, using the Cadence Spectre simulator in a 

manner where it uses the foundry-supplied model of 

process variations in terms of variations in about 50 device 

parameters                 etc.) [15]. 

3.2 Delay Measurements 

To detect a target surrogate, we apply a test vector that we 

generate to excite a selected path via the target surrogate. 

In some ways this is similar to classical delay testing. 

However, in contrast to classical delay testing here we are 

trying to capture the increase in the path delay caused by 

the Trojan. As discussed in Section 2, we assume that the 

Trojan induces a minimum additional load at a line in the 

circuit and hence it minimally alters the delays of paths 

that pass via the surrogate site. Thus, it is important to 

precisely measure path delays to capture suitably small 

differences in delay, around 8ps in our 65nm technology. 

Also, to increase the relative importance of the Trojan’s 

impact on the delay, we test paths with short delays. While 

postponing the discussion of why and how we select paths 

for testing to the next subsection, here we focus on how 

we apply vectors and measure responses to serve our 

purpose. 

We focus on how to make measurements so we can (1) 

measure small differences in delays while considering the 

capabilities of available measurement approaches, and (2) 

eliminate any concerns about excessive heat dissipation 

that might otherwise occur when testing focuses on short 

delay paths [13].  

In modern ICs, scan registers are connected to the inputs 

and outputs of each combinational logic block to apply test 

vectors and capture response values. Hence we try to 

measure delays by modifying the architecture and the 

structure of a scan register. For example, a path delay 

measurement architecture using a shadow register to 

measure register-to-register delay is introduced in [8][16]. 

In this approach, a scan-register connected to each output 

pin includes an additional shadow register operated by a 

separate shadow clock to measure the path delay at the 

primary outputs. This approach provides path delay value 

by comparing logic values captured at both registers while 

controlling the skew size. Recent approaches, e.g., the one 

proposed in [17], use digitally variable resistors to control 

the skew size to a resolution of 1ps. While this resolution 

is sufficient for our purposes, we can further improve the 

resolution by introducing two different clocks spaced with 

controllable skew steps. In Figure 2, the first clock 

controls the scan-register at an input pin of a 

combinational path and the second clock which is skewed 

by   is applied to the output scan register. Now we use a 

combination of multiple slow clocks followed by one fast 

clock (a slight modification of the classical approach used 

for path delay testing [18]) and capture logic values for 

different skew sizes. Note that our approach does not 

require high frequency clocks and hence avoids all 

problems associated with excessive heat dissipation during 

testing of short delay paths. 

 

Figure 2: Path delay measurement architecture. 
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3.3 Path Selection: Targeting Shortest Paths 

The total delay of a path p can be expressed as the sum of 

three parameters as shown below: 

                         , 

where three parameters are (1) nominal delay of path p, 

  , (2) the effect of process variations on the delay of p, 

           , which is the overall effect of inter- and intra-

chip variations on the path delay, and (3) extra delay 

induced by a surrogate at a site, say line x, along path p, 

          Among these three parameters, the effect of 

process variation follows random distribution, which is 

typically bi-directional around a mean, e.g., normal or 

truncated normal distribution [19]. In contrast, extra delay 

induced by surrogate is uni-directional and always 

increases the total delay of path p. For every copy of the 

design, i.e., for every fabricated chip, for the design with 

the surrogate, the delay of the gate/line at the surrogate site 

increases.  

This observation is one foundation of our approach for 

Trojan detection. In fact, by itself this observation enables 

us to prove that a minimal-delay surrogate can always be 

detected, provided that we make measurements on a 

sufficient number of chips for specifically generated 

vectors.  

The next question is: How can we minimize the cost of 

testing for Trojan detection? We address this problem by 

making a second observation: The greater the uni-

directional increase due to a surrogate compared to the 

standard deviation for the delay of path due to process 

variations, the smaller the number of chips that need to be 

tested. So to maximize the impact of a surrogate, we select 

the path with the smallest delay that passes via the 

surrogate site, since the standard deviation of variations is 

approximately proportional to the nominal delay of the 

path. The example shown below supports our idea. (Every 

example we have studied exhibits the same trend.) 

To show the effectiveness of selecting the shortest path, 

we choose two different paths with significantly different 

path delays that pass via the same surrogate site in the 

s420 benchmark circuit. We perform Monte Carlo 

simulations to obtain delay values shown in Figure 3.  

The distribution of delay for the original version of the 

s420 benchmark circuit for a specific vector is shown by 

the darker curve in Figure 3(a). We then obtained a 

version of this circuit with a surrogate by inserting an 

additional fanout at line 371 of the circuit, where the 

additional fanout was configured to drive the input of an 

inverter with minimum-sized transistors. We then repeated 

the simulations to obtain the delay distribution shown by 

the lighter curve in Figure 3(a). Note that the surrogate 

causes a relatively small change in delays, namely 8ps, 

compared to the nominal delay for the original benchmark 

circuit, and the variations in the delay of the original 

circuit caused by process variations.  

For the same circuit and the same surrogate, we repeated 

the simulations for a different vector that was selected to 

excite a much shorter path that passed via the surrogate’s 

site, namely line 371. It is easy to see in Figure 3(b), that 

while the expected value of the additional delay due to the 

surrogate remains at around 8ps, i.e., the same level as in 

Figure 3(a), the impact of the surrogate increases 

significantly as a percentage of the average delay of the 

path. Surrogate’s impact also increases with respect to the 

values of the variance due to process variations. 

 
(a) 

 (b) 

Figure 3: The distribution of delay at an output of 
benchmark circuit s420 for a particular vector, 
considering realistic process variations for the original 
circuit version, and a version with an additional fanout 
driving a minimum load at a surrogate site along the 
path (line 371). For a vector that excites (a) a long path, 
and (b) a shorter path. 

The idea of targeting the shortest paths is also useful due 

to the fact that a surrogate always increases the total path 

delay. The conventional delay testing method targets the 

longest paths and captures logic values at primary outputs. 

Thus any logic values which arrive at primary outputs later 

than the desired clock period will produce errors. Even 

though the size of additional delay due to the surrogate is 

very small, it might be detected if it increases delay of any 

longest path and the path delay goes beyond the clock 

period. Since the adversary is aware of every kind of 

conventional testing method, they will try to insert a 

Trojan to paths other than the longest paths to avoid 

detection.  

Another benefit of targeting short paths is that shorter 

paths tend to have fewer off-path inputs than longer paths. 

Due to this reason, the probability that a test vector exists 

is greater for a shorter path. 

Hence, in order to detect a surrogate at a specific site, say 

line x, using path delay measurement, we select the 
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shortest path passing via line x. We consider the following 

set of paths as surrogate paths 

  {          }, 

where    is the shortest delay path passing via line i, and m 

is the number of lines in the circuit. As we select a 

surrogate path for each surrogate target, the total number 

of surrogate paths is only proportional to the number of 

lines in the circuit. Testing of all possible surrogates using 

surrogate paths in the circuit only needs O(m) time.  

For each of these paths, we must generate an appropriate 

vector that excites the path. This requires a very different 

set of test generation conditions from the classical delay 

testing which typically focuses on the longest paths [18]. 

Later in this paper, we derive our conditions and compare 

our approach with the classical approach of using vectors 

that excite the longest delay paths and show dramatic 

benefits. 

4. Conditions for Generating a Test for a Trojan 

Our next task is to generate a vector that invokes the delay 

of a given surrogate. This task is similar to the problem of 

test vector generation for path delay testing during high-

volume manufacturing (HVM) testing with two important 

differences. First, here we have selected the shortest paths, 

in contrast to the longest paths in delay testing. Second, 

our objective is to excite the delay of the selected path, 

whereas in delay testing the goal is to invoke a delay that 

is either greater than or equal to that of the selected path. 

For any path selected as a surrogate path, we have derived 

conditions that must be satisfied by a vector to ensure that 

our objective is satisfied. Figure 4 shows the conditions 

that must be satisfied by a vector generated for path delay 

testing. In contrast, Figure 5 shows the conditions derived 

for generating a vector for a surrogate path, for an on-path 

NAND gate. For the first case, where the on-path input of 

the NAND gate has a falling transition, delay testing as 

well as surrogate detection both require the off-path input 

to have a steady-1. This is because in both cases we must 

ensure that a transition at any off-path input does not 

decrease the delay of the target path.  

 

Figure 4: Conditions for robust path delay testing for 
an on-path NAND gate. The thick and thin lines denote 
on-path and off-path lines, respectively.  

 

Figure 5: Conditions for a NAND gate along a surrogate 
path, to detect above category of surrogates. 

In the second case, where the on-path input of the NAND 

gate has a rising transition, robust testing only focuses on 

invoking delay that that is equal to or greater than the 

delay of the path [18]. Since in surrogate detection our 

goal is to invoke the delay of the target path, we must 

modify these conditions to preclude cases where a late 

transition at an off-path input invokes delay greater than 

that of the target path. 

If the transition at a gate’s input on the path being tested is 

from a controlling value (c) to a non-controlling value ( ̅), 

then we have two conditions: 

Condition I: The off-path signal values should be of the 

form < x,  ̅>, where x can be either 0 or 1. 

Condition II: The off-path signal values should change to 

non-controlling value before the on-path input arrives. 

We have derived new conditions for all types of gates and 

integrated these into our vector generation framework. 

5. Estimating the Number of Chips to be  Tested 

In this section, we formulate the problem of determining 

whether a surrogate exists or not, based on measured delay 

values for selected paths and specifically generated 

vectors. Given a circuit design C and the values of delay 

parameters and variations, we apply a vector we generate, 

V, to a number, n, of fabricated chips provided by the 

foundry for design C. For each chip, we measure the delay 

at an output with the goal of detecting a particular instance 

of the surrogate. What is the minimum value of n sufficient 

to provide the correct disposition of the fabricated chips – 

either “surrogate-free” or “has the particular surrogate” 

– with low probability of decision error? 

We have developed a method to solve the above problem 

using hypothesis testing. There are two main categories of 

the hypothesis testing methods: parametric tests and non-

parametric tests. Parametric tests such as Student’s t-test 

assume that the data follows a general distribution, where 

distributions can be characterized by generic metrics such 

as mean and variance or mean-squared error (MSE). 

However, the actual delay values, strictly speaking, do not 

follow a Gaussian distribution and parametric tests are not 

adequate to solve our problem. Non-parametric tests like 

goodness-of-fit tests are not based on strong distribution 

assumptions and they can be performed on any kinds of 

fully-specified distributions. But these tests require the 

basic assumption that a large number of samples exist. In 

addition, non-parametric tests require higher numbers of 

samples to achieve a certain level of confidence than 

parametric tests [20]. Finally, our problem is to select a 

more likely model between two competing models, 

“surrogate-free” and “circuit with the target surrogate”. 

However, existing hypothesis testing methods make 

decisions whether the data follows a certain distribution or 

not. Thus any existing test cannot serve as a proper 

method for solving our selection/classification problem. 

Instead, we propose a more efficient non-parametric test to 

identify the existence of the target surrogate using 

likelihood-ratio test. It utilizes every single delay value of 

a path measured from fabricated chips using a vector and 

computes the exact conditional probabilities for both 

“surrogate-free” and “circuit with the target surrogate” 

models. Because our goal is to choose a more probable 

model between these two competing models, we use the 
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likelihood-ratio between conditional probabilities to make 

a decision. We also derive equations that estimate the 

number of chips required for measurements for a given 

vector. To show the effectiveness of our new approach, we 

choose Student’s t-test as a baseline method because 

Student’s t-test requires less number of chips to be tested 

than non-parametric methods for the same level of 

confidence. Later, we will compare the number of chips to 

be tested required by both methods, Student’s t-test and 

our likelihood-ratio based test, for the same level of 

confidence. 

5.1 Baseline for comparison: Student’s t-test Method 

Given the level of confidence ρ and the number of 

fabricated chips n, we determine the confidence interval 

for the mean value of the path delay μ obtained by 

measurements on n fabricated copies of the chip. Suppose 

the mean delay derived via simulation for the same vector, 

for circuit versions without and with the surrogate are    

and   , respectively. Let σ be the standard deviation of the 

delay values obtained via simulations for both circuit 

versions. Then we set null hypothesis and its 

corresponding counter hypothesis as follows. 

H0:     , i.e., target surrogate does not exist,  

H1:     , i.e., target surrogate does exist. 

z-value for testing H0 is computed as follows. 

   
    

 

√ 

                                            

H0 is rejected if         (surrogate is detected), where    

is z-value for level of confidence ρ. Otherwise H0 is not 

rejected (surrogate is not detected). By conducting 

hypothesis testing with n chips, a decision error may occur 

when hypothesis testing falsely identifies a chip as having 

the surrogate while the surrogate does not exist (Type-I 

error, where probability of occurrence is (100- ρ)%), or 

falsely identifies a chip as the surrogate-free chip while 

the surrogate does exist (Type-II error). Since it is 

dangerous to let a chip containing the surrogate to pass the 

test, Type-II error should be avoided. The probability of 

Type-II error, β, is  

    [     ]   (    √ )   (     √ )        

where k is the expected value of additional delay due to 

the surrogate with respect to the value of standard 

deviation σ. The probability of decision error decreases as 

the value of n increases and the value of k is bigger. The 

minimum value of n is given by Eq. 2 depending on the 

value of k and β and with the level of confidence ρ. 

5.2 Our Approach Based on Likelihood-Ratio Test 

Suppose that fabricated chips follow some unknown 

distribution F and we have i.i.d. delay values (data points) 

measured from n samples from fabricated chips         

using a test vector. For a given test vector, we have a 

probability distribution A and its probability density 

function    for delay values of the original circuit, and B 

and    for the circuit with the target surrogate. The 

likelihood-ratio test decides between the following 

hypotheses. 

H0:    , i.e., target surrogate does not exist, 

H1:    , i.e., target surrogate does exist. 

The entire sample space is divided into r mutually-

exclusive intervals and each interval has the size Δ, except 

the first and the last interval as we divide the entire sample 

space [     ] into r intervals. And we compute     and 

     the conditional probabilities that one data point 

belongs to the interval k given that either one of two above 

hypotheses is true. 

     [                  ]                      

For n data points and r intervals, every data point belongs 

to one unique interval. And numbers of samples that 

belong to the interval         are          
respectively, where ∑      

   . Let the event X be a 

combination of          i.e.,   {       }  The 

number of possible combinations of   is   (     
 

) and 

the conditional probability of the event   given that H0 is 

true is  

        ∏   
  

 

   

 
  

          
                      

The expression for     and         can be obtained in a 

similar way.  

The likelihood ratio test statistic can be written as 

     
       

       
                                        

where      is a ratio between         and         and 

is called a likelihood-ratio of the test.  

In the above equation, the likelihood ratio      is small if 

the alternative hypothesis H1 is better than the null 

hypothesis H0. It provides the decision rule as below. 

If       , do not reject H0, 

otherwise, reject H0, 

where c is a threshold value.  

In addition, the probability of Type-II error, β, is computed 

as 

  ∑         

      

                               

  represents the sum of conditional probabilities given that 

H1 is true when the test decides to accept H0 (i.e., when 

      ). Hence, the probability of Type-II error can be 

controlled by adjusting the threshold value c. This problem 

can be expressed as integer linear programming (ILP) 

shown below: 

Objective: minimize n for H0 and H1 

Constraints:       

        ∑              , 

       ∑              ,  
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where      and      are maximum values of Type-I and 

II error probabilities allowed for the test. 

The main advantage of the proposed method is that it does 

not require the distribution of measured data points to be a 

general distribution such as normal distribution, in contrast 

to Student’s t-test. The conditional probability of each 

interval is computed based on the probability distribution 

that results from process variation, where the actual 

distribution is not Gaussian. Thus, the proposed method is 

applicable to detect a surrogate under any type of process 

variations. Also, recall that despite its applicability, we 

use Student’s t-test as a baseline for comparison since it 

requires fewer chips than most non-parametric methods. 

 
Figure 6: The number of chips to be tested using 
Student’s t-test and likelihood-ratio based test for 
different sizes of additional delay induced by a 
surrogate with respect to the total path delay.  

The proposed likelihood-ratio based test dramatically 

reduces the number of chips to be tested compared to 

Student’s t-test. Figure 6 shows the number of chips to be 

tested using the above two methods, Student’s t-test and 

likelihood-ratio based test, for different sizes of additional 

delay induced by a surrogate with respect to the total path 

delay with the fixed sizes of desired Type-I and II error 

probabilities of 5% and 5%, respectively. It clearly shows 

that the number of chips to be tested increases as the 

percentage of the amount of the extra delay induced by a 

surrogate to the total path delay decreases. For the same 

path and surrogate, our likelihood-ratio based test reduces 

the number of chips to be tested significantly when 

compared to Student’s t-test and the average reduction in 

the number of chips to be tested is 29.7%. It is because our 

likelihood-ratio based test is designed to solve our 

classification problem, where Student’s t-test only gives 

out a decision whether delay values follow a certain 

Gaussian distribution and hence requires more chips to be 

tested to make a decision between two competing models.  

6. Our Trojan Detection Algorithm 

Using the surrogate detection test procedures and test 

vector generation method discussed above, we have 

integrated and implemented all our above results as a 

single framework. Figure 7 provides a high-level overview 

of our integrated approach. The algorithm generates 

surrogate paths and computes the minimum number of 

chips to be tested for every surrogate. For every line i in 

the circuit, the algorithm enumerates all the paths that pass 

via the line i and sorts them in increasing delay order in 

Step 1. In Steps 2 and 3, the algorithm selects the path 

with the smallest delay (the shortest path) and generates a 

test vector for the selected path, until the test generation is 

successful. Surrogate targets and a set of detectable 

surrogates are updated depending on the result of test 

generation. In Step 4, the algorithm computes the number 

of chips required for the test to detect every detectable 

surrogate. We use surrogate coverage to show the 

effectiveness of our approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Trojan detection algorithm for generating 
vectors for surrogate paths to detect surrogates. 

It is possible that some surrogate paths may be used to 

detect more than one surrogate and there might be multiple 

surrogate paths passing via the same surrogate site. The 

goal is to find a minimal set of surrogate paths that detects 

every detectable surrogate to minimize the test cost. This 

problem can be stated as an ILP problem. 

 Objective: minimize    ,      

 Constraints:  ∑            for       

         , if      
 and      

         , if      
 or     , 

where      is an indicator that shows whether surrogate i is 

detectable using surrogate path j (        or not (     

   and T is a minimal set of surrogate paths to be used for 
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The size of additional delay induced by a surrogate 

w.r.t the total path delay 

Student's t-test (baseline)

Likelihood-ratio based test

1. Initialize         (surrogate path i),     (set of 

detectable surrogates),     (set of surrogate paths) and 

   
   (subset of surrogates that are detectable by 

surrogate path i) 

 

for every line in the circuit i = 1,…, m, enumerate every 

path passing via the target line i.  

Sort paths in increasing delay order and add them into    

 begin 

2.      while test generation is successful or        

  Choose the path k having the smallest delay in    

  Generate a test vector for corresponding path k 

2-1.             if (test generation is successful) then  

  Update    = k 

  Add    to the set of surrogate paths,    

  Add line i to    

  Add every line along the path    to    
 

  break 

2-2.  else then 

  Remove k from    

  end if; 

            end loop; 

3.      if (   =  ) then 

 Surrogate path for line i does not exist  

            end if; 

       end loop; 

4. for every surrogate i in every non-empty     

  begin 

5.         Compute the number of fabricated chips,     ,  

        to be applied to    to detect surrogate i.  

end 

      Surrogate coverage =  
   

 
 100 (%) 
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testing. The above problem can be solved using greedy 

heuristics and test cost is computed as ∑               
 

and it is sum of the number of required chips to be tested 

for every surrogate path in T. 

7. Experimental Results 

We have used our prototype tool to demonstrate the 

effectiveness of our approach. We have also compared our 

approach with an adaptation of the existing delay testing 

approach to demonstrate the dramatic improvement in 

effectiveness (surrogate coverage) and dramatic decrease 

in test cost.   

For our experiments, we use the combinational parts of 

eight ISCAS89 benchmark circuits. Path delay values are 

measured from Monte-Carlo simulations using Spectre for 

an industrial 65nm technology while using levels of 

process variations provided by a fabricator, as described in 

Section 3. The ATPG tool for the proposed test generation 

procedure has been implemented in C. As a surrogate 

which induces minimum load to a line in the circuit, we 

use a minimum-sized inverter as an extra fanout that 

induces extra delay at each particular surrogate site. After 

we obtain delay values via simulations under process 

variations, we apply two different hypothesis testing 

methods, Student’s t-test and our likelihood-ratio based 

test, to compare test costs required by these two methods.  

In Table 1, we showed the number of surrogate paths 

required to achieve the maximum surrogate coverage 

using our approach. Our approach significantly reduces the 

number of path delays to be measured since it only focuses 

on the shortest path passing via each possible surrogate 

site.  

Table 1: Maximum surrogate coverage and number of 
surrogate paths required for selected benchmark 
circuits. 

Benchmark 
circuit 

Number 
of circuit 
lines (m) 

Maximum 
surrogate 

coverage (%) 

Surrogate 
paths/ 

Total paths 

c17 17 100 8/22 

s298 298 72.8 112/462 

s368 368 84.2 162/414 

s420 420 69.3 131/738 

s510 510 94.9 247/738 

c880 880 78.9 272/17284 

s1488 1488 69.5 365/1924 

s5378 5378 67.5 844/27084 

 

Figure 8 shows the number of chips to be tested for each 

surrogate path    with our approach and classical delay 

testing method. It can be seen that using shortest paths as 

surrogate paths we significantly reduce the required 

number of chips for every possible surrogate site in c17. In 

addition, our hypothesis testing method is significantly 

more effective than Student’s t-test since it chooses one 

likely model between two competing models, “surrogate-

free” and “circuit with the surrogate”, where Student’s t-

test focuses on the closeness of measured delay values to 

the surrogate-free model. 

 
(a) 

 
(b) 

Figure 8: The number of chips to be tested for 
surrogate paths in c17 with our approach and classical 
delay testing method. (a) Student’s t-test. (b) 
Likelihood-ratio based test. 

Table 2 compares the cost for eight benchmark circuits of 

four different methods: (i) Classical delay testing method 

with Student’s t-test, (ii) Our approach with Student’s t-

test, (iii) Classical delay testing method with likelihood-

ratio based test, and (iv) Our approach with likelihood-

ratio based test. In each method, we use 95% confidence 

level and 5% Type-II error probability. Note that method 

(i) is the classical method, method (iv) is the proposed 

method, and other two are intermediate methods. In order 

to show improvement in the quality of the test, we also 

compute test costs required for various surrogate coverage 

levels for all the four methods. The maximum values of 

surrogate coverage for four methods are the same, because 

the maximum surrogate coverage is determined by the 

existence of a testable surrogate path for each surrogate 

site. However, our new approach with likelihood-ratio 

based test (method (iv)) dramatically improves 3.48X in 

the test cost compared to the existing delay testing 

targeting the longest paths with Student’s t-test (method 

(i)), for the same value of surrogate coverage. For 

sensitive chips that are fabricated in small volumes, our 

approach may be the only one that can perform Trojan 

detection with desired level of confidence. The results 

clearly demonstrate that our approach which targets the 

shortest paths gives better results than classical delay 

testing method. In addition, the results show that the 

Trojan detection procedure incorporated with our 

hypothesis testing method reduces test cost significantly. 
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8. Conclusions 

We have developed new principles for characterization of 

Trojans inserted by intelligent adversaries using our new 

notion of surrogates. We have also identified several 

principles for selection of target paths and generation of 

vectors to enable identification of surrogates in presence of 

increasing levels of process variations, that cannot be 

detected by classical testing and validation approaches. 

The experimental results show that the proposed approach 

reduces test cost significantly compared to classical 

methods.  

We are in the process of applying our principles to identify 

other surrogate sets of Trojans and developing an 

extensive set of effective and efficient approaches for their 

detection. 

9. References 
[1] F. Wolff, C. Papachristou, S. Bhunia and R. Chakraborty, “Towards 

Trojan-free trusted ICs: Problem analysis and detection scheme,” 

Design and Test in Europe (DATE), 2008, pp. 1362-1365. 

[2] S. Jha and S. K. Jha, “Randomization Based Probabilistic Approach 

to Detect Trojan Circuits,” High Assurance Systems Engineering 

Symposium (HASE), 2008, pp. 117-124. 
[3] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A Novel 

Technique for Improving Hardware Trojan Detection and Reducing 

Trojan Activation Time,” IEEE Transactions on VLSI, Vol. 20, 
Issue 1, 2012, pp. 112-125. 

[4] X. Wang, H. Salmani, M. Tehranipoor and J. Plusquellic, 
„„Hardware Trojan Detection and Isolation Using Current 

Integration and Localized Current Analysis,” IEEE International 

Symposium on Defect and Fault Tolerance of VLSI Systems (DFT), 
2008, pp. 87-95. 

[5] M. Banga and M. S. Hsiao, "A Region Based Approach for the 

Identification of Hardware Trojans," IEEE International Workshop 
on Hardware-Oriented Security and Trust (HOST), 2008, pp. 40-47. 

[6] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi and B. Sunar, 

“Trojan Detection using IC Fingerprinting,” Symposium on Security 

and Privacy, 2007, pp. 296-310. 

[7] Y. Jin and Y. Makris, "Hardware Trojan Detection Using Path 

Delay Fingerprint," IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST), 2008, pp. 51-57.  

[8] J. Li and J. Lach, „„At-Speed Delay Characterization for IC 

Authentication and Trojan Horse Detection,‟‟ IEEE International 
Workshop on Hardware-Oriented Security and Trust (HOST), 2008, 

pp. 8-14. 

[9] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey, 
“Hardware Trojan horse detection using gate-level 

characterization,” Design Automation Conference. (DAC), 2009, pp. 

688-693. 
[10] M. Tehranipoor and F. Koushanfar, "A Survey of Hardware Trojan 

Taxonomy and Detection," IEEE Design & Test of Computers, 

2010, pp. 10-25.  
[11] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting Malicious 

Inclusions in Secure Hardware: Challenges and Solutions,” IEEE 

International Workshop on Hardware-Oriented Security and Trust 
(HOST), 2008, pp. 15-19. 

[12] R.S. Chakraborty, S. Narasimhan and S. Bhunia, “Hardware Trojan: 

Threats and emerging solutions,” High Level Design Validation and 
Test Workshop (HLDVT), 2009, pp. 166-171.  

Table 2: The cost and surrogate coverage (SC) for benchmark circuits for different values of surrogate coverage. (i) 
Classical delay testing method with Student’s t-test. (ii)  Our approach with Student’s t-test. (iii) Classical delay testing 
method with likelihood-ratio based test. (iv) Our approach with likelihood-ratio based test. 
* Improvement in test cost: {Test cost of method (i)}/{Test cost of method (iv)} 

c17 s298 

SC 

(%) 

Test cost Improvement in 

test cost 

SC 

(%) 

Test cost Improvement in 

test cost (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) 

76.5 68 55 43 47 1.45X 55 10793 3588 5848 2110 5.12X 

82.4 179 101 115 61 2.93X 60 17097 6750 10062 3804 4.49X 

88.2 396 311 227 188 2.11X 65 28302 10305 17589 5649 5.01X 

94.1 619 393 355 230 2.69X 70 48754 14874 30629 8736 5.58X 

100 960 470 542 275 3.49X 72.8 63950 18278 40934 10706 5.97X 

s386 s420 

SC 

(%) 

Test cost Improvement in 

test cost 

SC 

(%) 

Test cost Improvement in 

test cost (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) 

65 87742 46047 55712 34168 2.57X 50 32723 5439 19531 2980 10.98X 

70 102814 63311 67190 45473 2.26X 55 41423 9141 24616 4667 8.88X 

75 124239 81067 90358 60573 2.05X 60 66715 16084 38396 9222 7.23X 

80 155495 100089 130320 87871 1.77X 65 95771 22545 59570 14587 6.57X 

84.2 187199 115550 156000 109600 1.71X 69.3 228157 110054 117080 55859 4.08X 

s510 c880 

SC 

(%) 

Test cost Improvement in 

test cost 

SC 

(%) 

Test cost Improvement in 

test cost (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) 

75 73327 23777 44207 13780 5.32X 60 35079 52547 22452 34634 1.01X 

80 97323 30827 55348 17805 5.47X 65 79133 57215 45503 39752 1.99X 

85 158462 45302 93494 28137 5.63X 70 143292 120899 95549 76798 1.87X 

90 232830 70233 140860 41552 5.60X 75 255270 259200 157480 130950 1.95X 

94.9 327474 94835 191330 57688 5.68X 78.9 345825 332553 192440 175740 1.97X 

s1488 s5378 

SC 

(%) 

Test cost Improvement in 

test cost 

SC 

(%) 

Test cost Improvement in 

test cost (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) 

50 239100 60443 148320 37738 6.34X 50 762350 452831 521020 382930 1.99X 

55 299358 88430 195980 54385 5.50X 55 842330 659029 732930 469280 1.79X 

60 397046 134034 265950 77942 5.09X 60 930023 782729 803820 523920 1.78X 

65 480751 227759 311680 140760 3.42X 65 1232523 837293 837260 653840 1.89X 

69.5 683190 366669 385610 223510 3.06X 67.5 1442322 1083721 1102340 769280 1.87X 

 



 

10                            

                                                    

[13] M. Tehranipoor, H. Salmani, X. Zhang, X. Wang, R. Karri, J. 

Rajendran and K. Rosenfeld, "Trustworthy Hardware: Trojan 

Detection Solutions and Design-for-Trust Challenges," IEEE 

Computer Magazine, Vol. 44, Issue 7, 2011, pp. 66-74. 

[14] D. Rai and J. Lach, "Performance of delay-based Trojan detection 
techniques under parameter variations," IEEE International 

Workshop on Hardware-Oriented Security and Trust (HOST), 2009, 

pp. 58-65. 
[15] K. Bernstein et al., “High- Performance CMOS variability in the 65-

nm regime and beyond,” IBM Journal of Research and 

Development, Vol. 50, Issue 4.5, 2006, pp. 433-449. 
[16] J. Li and J. Lach, “Negative-Skewed Shadow Registers for At-

Speed Delay Variation Characterization,” International Conference 

on Computer Design (ICCD), 2007, pp. 354-359. 

[17] M. Saint-Laurent and M. Swaminathan, “A digitally adjustable 

resistor for path delay characterization in high frequency 

microprocessors,” Southwest Symposium on Mixed-Signal Design, 

2001, pp. 61-64.  

[18] N. Jha and S. K. Gupta, Testing of Digital Systems, Cambridge, 
U.K.: Cambridge Univ. Press, 2003. 

[19] F. Liu, “A general framework for spatial correlation modeling in 

VLSI design,” Design Automation Conference. (DAC), 2007, pp. 
817-822.  

[20] R. V. Hogg and E. A. Tanis, Probability and Statistical Inference, 

Pearson Education, 2008, pp. 407-463.  

 


