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Abstract— Companies operating large data centers are focusing 
on how to reduce the electrical energy costs of operating data 
centers 24-7. A common way of reducing this cost is to perform 
dynamic voltage and frequency scaling (DVFS), thereby matching 
the CPU’s performance and power level to the incoming workload. 
Another power saving technique is CPU consolidation, which uses 
the minimum number of CPUs necessary to meet the service 
request demands and turns off the remaining idle CPUs. A key 
question that must be answered is which of these two techniques is 
more effective and under what conditions. This is the question 
that is addressed in this report. After analyzing the power 
consumption in a modern server system and developing 
appropriate power and performance models for the same, this 
report provides an extensive set of hardware-based experimental 
results and makes suggestions about how to maximize energy 
savings through CPU consolidation and/or DVFS. In addition, the 
report also presents new online CPU consolidation algorithms. 
The proposed algorithms reduce the energy delay product more 
than the Linux default DVFS algorithm (up to 13 %). 

 
Index Terms—Algorithm, consolidation, energy efficiency, and 

virtualization  

I. INTRODUCTION 
ATA centers consist of a very large number of server 
machines that can be leased to provide cloud services to a 

whole slew of clients running many different applications. The 
number of servers employed in data centers has been rapidly 
increasing, confirmed by the continuous increase in the 
BLADE server shipments in US and worldwide. Although the 
energy efficiency of server machines has been improving, this 
efficiency advances have not kept pace with the increase in 
cloud computing services and the concomitant increase in the 
number and size of data centers. As a result, an ever increasing 
amount of electrical energy is being consumed in today’s data 
centers, giving rise to concerns about the carbon emission 
footprint of data centers and the costs of operating them. The 
latter is especially important concern from the viewpoint of 
datacenter owners and operators (as well as their 
customers/clients who must eventually pay the bill).   

Two widely accepted and employed techniques for 
increasing the power efficiency in data centers are server 
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consolidation and DVFS. The former aims at minimizing the 
number of active servers in a datacenter by consolidating all the 
incoming jobs into as few server machines as possible whereas 
the latter attempts to match the performance of each active 
server to the assigned workload to it so that energy can be saved 
at the level of each server. Server consolidation is needed and 
complements DVFS technique because of the energy 
no-proportional behavior of modern servers [1], and an 
unfortunate effect by which a server machine operating at a low 
performance level tends to consume power close to the power it 
consumes at its peak performance level.  This is somewhat 
natural and expected because an electronic circuit (with server 
being a special case) consumes static power (leakage in CMOS 
digital circuits) regardless of whether it provides any 
computational services. The issue is, however, worse than 
simple leakage and has to do with the fact that many 
components within a modern server system (e.g., “uncore” 
logic within the processor chip, DRAM modules on the board, 
many of the I/O controllers, and even the network interface) 
cannot be scaled/modulated to exhibit a linear relationship 
between their power consumption and delivered performance 
levels.  

A data center is typically under-utilized—by design, it has 
been designed to provide the required performance and satisfy 
its service level agreements (SLAs) with clients even during 
peak workload hours, and hence, at other times its resources are 
vastly under-utilized). For example, the minimum and the 
maximum utilization of the statically provisioned capacity of 
Facebook’s data center are 40% and 90%, respectively [2]. 
Hence, in light of the energy non-proportionality of today’s 
server base, a greater amount of energy costs can be reduced by 
consolidating jobs into as few server machines as possible and 
turning off the unused machines. The server consolidation has 
been studied very well, and many studies have suggested the 
use of virtual machine migration (VMM) as a means of doing 
server consolidation [3-7]. 

Although server consolidations can greatly lower a data 
center’s total energy consumption, there is still room for further 
energy savings due to the limitations and overheads associated 
with the server consolidation. For one, it is difficult to conduct 
server consolidation very frequently because the migration of 
tasks or virtual machines causes high overheads; e.g., heavy 
network traffic, high network latency and large system boot 
time, plus large energy consumption to move virtual machines 
and their local contexts around. Because of these overheads, 
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there is a relatively long period between server consolidation 
decision times. To avoid the SLA violations during each timing 
period when virtual machine to server assignments are fixed, 
virtual machines (or tasks) are not too tightly consolidated into 
active server set in order to provide a safe margin of operation 
(too aggressive a consolidation strategy will result in violation 
of client SLAs and the characteristic need to compensate the 
clients for missing their agree upon performance targets). The 
longer the period is, the larger the margin becomes (i.e., more 
server machines are utilized). Hence, the server machines are 
still under-utilized, which implies that there is the potential of 
the further energy savings through additional resource 
management techniques.  

There are a number of resources in a computer system 
(computing, storage, I/ bandwidth).  This study focuses on the 
computing resource, i.e., the CPU, which is a major energy 
consumer. A well-known and common energy-aware CPU 
management technique is a Dynamic Voltage and Frequency 
Scaling (DVFS) [3, 8, 9]. The DVFS was introduced decades 
ago, and it has been one of the most effective power saving 
techniques for CPUs. The amount of the energy savings by 
DVFS, however, is decreasing due to the following reasons. 
First, the supply voltages have already become quite low 
(sub-one volt) and hence the remaining headroom for further 
supply voltage reductions is small and shrinking. Second, many 
modern servers have two or more processor chips, each chip 
containing multiple CPUs (cores1) but a single on-chip power 
distribution network shared by all the CPUs. Because of this 
sharing, the CPUs on the same chip must operate at the same 
supply voltage level and hence the same clock frequencies2. In 
other words, we cannot set different frequencies for individual 
CPUs, which means that, unless we do ‘perfect’ load balancing 
among CPUs sharing the same power bus, the voltage level that 
is set for the most highly loaded CPU will result in a number of 
under-utilized CPUs where the available performance level is 
higher than what is actually needed, hence energy is wasted.  
Third, in a virtualized server system, it is difficult to gather 
sufficient information about the running applications, which is 
necessary to choose the optimal clock frequency and voltage 
level for the CPUs. This is because the virtual machine 
manager (hypervisor), which conducts DVFS, resides in a 
privileged domain whereas the applications are running in a 
different domain (virtual machine domain) [4].   

Another well-known CPU energy management technique is 
Dynamic Power State Switching. Many modern processors 
support multiple power states (known as C-States). Each 
C-state specifies the processor modules which are turned ON or 
OFF. Based on the recent workload intensity of the CPU, the 
operating system (OS) decides the power state of each CPU. 
Note that the power state of each CPU may be different from 
that of another CPU (even when the two CPUs are on the same 
processor). This is because each CPU is placed in its own 
power domain on the processor, and the power to each such 
domain can be independently gated. The OS can suggest a 
 

1 The terms ‘CPU’ and ‘core’ are used interchangeably in this paper. 
2 Some processors are capable of independent DVFS among cores while 

Intel processors are not. This study targets Intel processors. 

power state of a CPU, but the final decision is made by a Power 
Control Unit (PCU) which resides in the processor chip. This is 
because the suggestion from the OS may not be a good one. For 
example, it may result in too frequent power state changes or 
too quick a transition to a sleep state.  

The PCU also decides about the power states of some of the 
other modules on the processor chip by using its fine-tuned 
algorithms. We believe that the PCU can save more energy if 
there is software-level assistance for it. In this study, we present 
a CPU consolidation technique, which helps the PCU achieve 
more energy savings. This technique explicitly defines sets of 
active and inactive (sleep) CPUs, and ensures lower 
performance degradation and energy waste by avoiding 
unnecessary power state switches.  

There have been many research studies that investigate the 
effectiveness of the CPU consolidation. In [10]  the authors 
show that consolidation across CPUs in a single processor and 
two processor systems offers a very small amount of energy 
savings.  They used their own benchmark which is not the 
standard and may not create realistic workloads. In [11] Jacob 
et al. compare core-level power gating (CPG) with DVFS and 
show that CPG saves more energy by 30% than DVFS. This 
result implies the energy savings by the CPU consolidation may 
be larger if the processor supports the CPG. However, the 
reported results are calculated from a combination of real 
measurements and estimated leakage power values (the 
adopted leakage power model is somewhat simple). In [2] the 
authors present a technique called core count management 
(CCM), which is a variant of the CPU consolidation technique, 
and report 35% energy savings. However, all results are 
obtained using a simulator, and the power and performance 
models used in the simulator are again fairly simplistic.  

This report is differentiated from the prior work because of 
the following reasons. First, all results are obtained from the 
actual hardware measurements and not simulations. Second, 
realistic workloads based on SPEC benchmark suite have been 
used. Third, this report investigates the relative effectiveness of 
CPU consolidation vs. DVFS as means of power savings in 
multi-core/processor server systems.  

A preliminary version of this work has been published in  
[12]. This technical report is a substantially extended version, 
which includes a completely new power model, vastly more 
detailed experimental results and discussions, and a more 
efficient online CPU consolidation algorithm.   

The remainder of the report is organized as follows. Several 
mechanisms of CPU power management are reviewed in 
Section II. In Section III we present the power and latency 
models, which enable us to show how the CPU consolidation 
affects the power and latency of a system. A detailed 
description of the experimental system setup is provided in 
Section IV. Section V presents our detailed experimental 
results and discussions. Finally, we summarize the results and 
provide some useful conclusions and insights in Section VI. 
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II. BACKGROUND – POWER MANAGEMENT TECHNOLOGIES 
Most of modern operating systems (OS) reduce the power 

consumption of a processor by dynamically changing a power 
state of the processor. In order to change this state, an OS 
requires appropriate interfaces to communicate with the 
processor. For this purpose the Advanced Configuration and 
Power Interface (ACPI) specification was developed as an 
open standard for OS-directed power management. This 
specification is a processor-independent standard; hence an OS 
is capable of controlling power state of any processors. In this 
section, the processor power and performance states as well as 
OS-directed power management mechanism are briefly 
reviewed. 

A. Processor power states (C-States) 
The ACPI specification defines C-States, which are also 

known as ‘sleep states’.  When a processor is in a 
higher-numbered C-State, which is also called a ‘deeper’ sleep 
state, a larger number of internal modules of the processor are 
turned off. The processor, therefore, consumes lower power in 
a deeper state. However, it also takes longer time for the 
processor to go back to a fully active state (i.e., C0 state) 
starting from a deeper sleep state. The number of supported 
C-States is processor-dependent; e.g., the Intel® Core™ i7 
processor (code-named Nehalem) supports C0, C1/C1E, C3, 
and C6 states. 

There are two types of C-States: core and processor. These 
core C-state (𝐶𝐶𝑛) and processor C-state (𝑃𝐶𝑛) are hardware 
C-states. The CC-state of a core may be different from that of 
others. The PC-state is related to the CC-States. In particular, 
when all cores are in the same CC-State, the processor 
transitions into the corresponding PC-state. This is reasonable 
because of all the processor resources that are shared by the 
cores. For example, the Intel i7 processor’s L2 cache is shared 
by four cores, so the processor cannot make a transition to a 
deep PC-State when any of the cores are still active. Otherwise, 
the shared L2 cache may become inactive, which would 
prohibit the active cores from proper functioning.  

In addition to these hardware C-states, there is the notion of 
logical C-States (𝐶𝑛). An OS ‘requests’ a change in C-State of 
logical cores 3, but the request may be denied (called auto 
demotion). The decision of demotion is made based on each 
core’s immediate residency history; if the transition rate of 
C-States is too high, the request for a transition can be ignored. 
In general, the entry/exit costs (latency and energy overheads) 
increase when the processor/core escapes from a deeper state; 
hence, the auto demotion prevents unnecessary excursions into 
deeper power states, and thereby, reduces both latency and 
energy overheads. 

B. Processor performance state (P-States) 
Each power state (P-State) specifies the clock frequency and 

voltage of the cores (i.e., the voltage/frequency setting). At the 
higher clock frequency, the performance of a core is higher. 
Similar to the C-States, the number of supported P-States is 
 

3 A logical core is identical to a physical core unless Intel hyper-threading is 
enabled. In this study hyper-threading was disabled.   

processor-dependent. A clock frequency of a core is higher at 
lower numbered P-States; e.g., P0 is the highest performance 
state. 

An OS decides which P-State is more appropriate for a core 
and changes the state. This decision is made based on the 
historical workload information. The OS may not choose the 
same state for all cores, but all cores in the Intel processors will 
run at the same clock frequency because the clock generator 
module is shared by all these cores. Therefore, even if the OS 
sets different P-States for the cores, only one state is selected 
and applied to all the cores. In general, the highest performance 
state of any core is selected and used as the P-state for all cores, 
but another decision policy may be used. Because of this 
hardware constraint of the current Intel processors, it is 
recommended to distribute the workload evenly among all 
active cores. Otherwise, the selected P-State will be appropriate 
only for some cores, but not for the others. 

C. Core-level power gating 
Recent state-of-the-art Intel processors are capable of 

core-level power gating, that is, processors can completely shut 
down some of the cores (the OFF cores consume nearly zero 
power). Processors with the power gating feature thus have an 
additional C-State (C7) corresponding to near zero power 
dissipation, but with the largest entry/exit costs. Note that the 
processor used in this study supports core-level power gating. 

III. POWER AND LATENCY MODELS 
In this section we present power and latency models for the 

target server system. Based on these models, we will 
investigate how the CPU consolidation affects the power 
dissipation and latency of the server. From now on, the CPU 
consolidation is simply called ‘consolidation’. From the 
analysis we will derive insights about how the consolidation 
affects the power dissipation and latency. The analysis about 
the power/latency tradeoffs will be verified by empirical results 
in a later section. Note that thermal issues (e.g., leakage power 
variation as a function of chip temperature) are not considered. 
This is because we can do consolidation only when the system 
is under-utilized, which also implies that the temperature of 
processor chips is not so high.   

A. Power model 
This section presents a full platform-level power dissipation 

model, accounting for the power consumed by all components 
within a modern multi-processor server system. This power 
model estimates the system power dissipation by using 
statistical data reported by the system itself; i.e., the percentage 
of time spent in specific core/processor C-state.  

The processor power dissipation consists of core and uncore 
power dissipations. The core includes all circuits used to 
perform arithmetic/logic operations and L1 cache memories 
whereas the term uncore refers to all other components in a 
processor. Next we provide some notation and their definitions. 

• 𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒  – Power dissipation by a core when the core is active 
(i.e., executing tasks)  
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• 𝑃𝐶𝐶𝑛
𝑐𝑜𝑟𝑒 – Power dissipation by a core when it is in the core 

C-state n (𝐶𝐶𝑛), i.e., the core is in some sleep state. Note that 
𝑃𝐶𝐶0
𝑐𝑜𝑟𝑒 is different from 𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒 . 

• 𝑃𝑃𝐶𝑛
𝑢𝑛𝑐𝑜𝑟𝑒  – Power dissipation by uncore when the processor is 

in processor C-state n (𝑃𝐶𝑛). 
• 𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑐𝑜𝑟𝑒𝑖  – Percentage of time when a core is active and 
executing tasks, which is also called (core) utilization (Utili). 

• 𝑇𝐶𝐶𝑛
𝑐𝑜𝑟𝑒𝑖  – Percentage of time when a core is in the 𝐶𝐶𝑛 state. 

• 𝑇𝑃𝐶𝑛
𝑢𝑛𝑐𝑜𝑟𝑒 – Percentage of time spent by the processor in the 

𝑃𝐶𝑛 state. 

Total (server platform) power dissipation is the sum of the 
processor power dissipation and the power consumed by other 
components, e.g., I/O, memory, and hard disc drive (HDD): 

 icoretotal uncore other
iP P P P= + +∑  (1) 

The core power dissipation can be estimated using  𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒 , 
𝑃𝐶𝐶𝑛
𝑐𝑜𝑟𝑒, 𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑐𝑜𝑟𝑒𝑖 , and 𝑇𝐶𝐶𝑛
𝑐𝑜𝑟𝑒𝑖  as shown below. CC0 is a special state; 

a core is in the CC0 state when the core is normal operating state 
(i.e., executing tasks). Note, however, that the CPU stays in that 
state for a certain time (i.e., a timeout period) even when the 
core becomes idle.  
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Similar to the core power dissipation, the uncore power 
dissipation is: 

 
n n

uncore uncore uncore
PC PCnP P T= ⋅∑  (3) 

Let us say we want to reduce the active CPU count (i.e., 
perform CPU consolidation). The workload level does not 
change, so the power dissipations by other parts of the server 
(𝑃𝑜𝑡ℎ𝑒𝑟) are not affected. In addition, the percentage of time 
spent in the 𝑃𝐶𝑛 state (𝑇𝑃𝐶𝑛

𝑢𝑛𝑐𝑜𝑟𝑒 ) is only a function of the 
workload level of the processor. In other words, changing the 
active CPU count does not affect 𝑃𝑢𝑛𝑐𝑜𝑟𝑒  when the workload 
level does not change. Therefore, the amount of change in 
power dissipation as a result of CPU consolidation is: 
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In the above equation, the sum of  𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑐𝑜𝑟𝑒𝑖  is not affected by the 

consolidation because the workload load level does not change; 
that is, 0icore

activei
T∆ =∑ . Therefore, 

 ( )0
i

n n

coretotal core
CC CCn i

P P T
≥

∆ = ∆∑ ∑  (5) 

As shown in the above equation, the power savings of 
consolidation is a function of changes in 𝑇𝐶𝐶𝑛

𝑐𝑜𝑟𝑒𝑖 . CPU 
consolidation makes inactive CPUs go to the deepest CC state, 
which can reduce power dissipation. However, at the same time, 
it also forces the active CPUs to stay in deeper CC states for 
less amount of time because the utilization level of these active 
CPUs increases. This may increase overall power dissipation.  

The percentage of time spent in the 𝐶𝐶𝑛  state (𝑇𝐶𝐶𝑛
𝑐𝑜𝑟𝑒𝑖)  is 

influenced by many factors, and some of these factors are 
unknown, e.g., details of the algorithm responsible for 
changing the core C-states. Therefore, we will quantify the 
power savings of CPU consolidation based on experimental 
results. 

B. Latency (delay) model 
The proposed latency model is a function of its utilization 

level, which is denoted by  𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑐𝑜𝑟𝑒𝑖 . In general, the latency 

rapidly increases when a CPU approaches full utilization [5]: 

 
1 i

i core
active

eL f
T

= +
−

 (6) 

where 𝐿𝑖 is the latency of the 𝑖th CPU. The proposed latency 
model must have another term that causes the latency to reduce 
at higher utilization levels. This is because at higher utilization 
there will be less frequent C-State transitions. Recall that 
although switching to a deeper sleep state saves power, it takes 
additional time to escape from a deeper sleep state. Therefore, 
we have: 

 
1

i

i

core
i activecore

active

eL f gT
T

 
= + −  − 

 (7) 

The latency is affected by CPU consolidation because 
 𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑐𝑜𝑟𝑒𝑖  is a function of the active CPU count. When 𝐾 tasks are 

assigned to the system every second, the tasks are evenly 
distributed to the 𝑚 active CPUs by a scheduler. Each CPU 
thus serves 𝐾/𝑚 tasks every second. It is reasonable to suppose 
 𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑐𝑜𝑟𝑒𝑖  is linearly proportional to the workload (𝐾/𝑚):  
 ( )icore

activeT d K m=  (8) 
However, this statement may not be valid when the workload is 
very high. As an example, consider a scenario whereby 
𝐻 = 𝐾/𝑚  memory-bound tasks are sent to the target CPU 
every second. If more tasks (say 2 × 𝐻) are sent to the target 
CPU per second, the cache miss rate on that CPU will also 
increase (more precisely, the working sets of the 2 × 𝐻 tasks 
will not fit on the cache, and therefore, every task will 
experience a higher cache miss rate on average). This means 
that the execution time of the tasks increases, and therefore, the 
CPU utilization will increase super-linearly. Thus, the 
utilization equation may be written as follows:  

 2( ) ( )icore
activeT c K m d K m= +  (9) 

Now we can write the latency as a function of the active CPU 
count (m) and the total number of tasks (K): 

 
( ) ( )

( ) ( )2
21
eL f gc K m gd K m

c K m d K m
= + − −

− −
(10) 

The relationship between the coefficient ‘c’ and latency is 
shown in Fig. 1(a); the larger ‘c’ is, the larger the latency is. 
This makes sense because bigger overhead causes the latency to 
increase. Therefore, the consolidation may incur potentially 
high latency penalty if ‘c’ is large. The effect of another 
coefficient ‘g’ is shown in Fig. 1(b); the latency may decrease 
as fewer CPUs are used when ‘g’ is positive. However, as 
shown in Fig. 1(b), the latency increases rapidly at last when the 
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CPU count is too small since the CPUs are almost fully utilized. 
Thus, one must carefully choose the number of active CPUs. 
Similar to ‘c’, the coefficient ‘g’ is application-dependent. 

 

Fig. 1 Latency vs. CPU count under the constant overall workload (K) 

As seen from the above analysis, the latency penalty of the 
consolidation is related to a few coefficients. Some of the 
coefficients are dependent on the application characteristics, so 
we are motivated to investigate the performance degradation by 
consolidation for different classes of applications: CPU, 
Memory, and I/O bound applications. 

IV. EXPERIMENTAL SETUP 
The purpose of this study is to verify and quantify the 

relative effectiveness of CPU consolidation and DVFS in 
reducing power dissipation of a modern multi-core/processor 
server system. For this purpose, all results shown are based on 
actual hardware measurement (not simulations). In this section, 
the experimental setup is described in detail. 

A. Hardware test-bed and Xen  
The server system under study has two Intel Xeon E5620 

processors, and each processor in turn includes four CPUs 
(cores) in it (i.e., there are a total eight CPUs in the server). As 
mentioned in section II.B, all CPUs in the same processor chip 
run at the same clock frequency and voltage if they are active. 
The CPUs can, however, be power gated independently of one 
another. Each CPU has its own dedicated L1 and L2 caches but 
shares an L3 cache with the other CPUs. The total size of the 
system memory is 6GBytes. Each processor supports seven 
clock frequency levels, from 1.6GHz to 2.4GHz.  

A power analyzer measures the total platform power 
dissipation, which includes not only the processor power 
consumption but also the power consumption by other devices 
such as HDD and DRAM modules. To precisely quantify the 
effect of CPU consolidation vs. DVFS, the ‘power dissipation’ 
is calculated as the difference between the total system power 
dissipation and the standby power dissipation. The standby 
power dissipation is affected by the C-state limit setting, which 
limits the deepest CC/PC states. The standby power dissipation 
of our system is minimized when the C-state limit is C3, so this 
standby power is chosen for our calculations. In our target 
server system, this standby power is 98.1W. Therefore, all 
power dissipation values reported are calculated as below 
unless there is specific description: 

 98.1measuredpower power W= −  (11) 
A photo of the target system is shown in Fig. 2. 

  

Fig. 2 A server system under experiment and the power analyzer 

We have chosen XEN version 4.0.1 for constructing the 
virtualized system. XEN, which is an open source 
hypervisor-based virtualization product, provides the APIs for 
managing virtual machines. For this study, we ran experiments 
under different configurations in terms of the number of virtual 
CPUs (vCPU), clock frequencies, and the set of active CPUs. 
We change the configurations by calling the XEN built-in 
functions. 

B. Benchmarks 
As shown in section III, the effectiveness of the 

consolidation may be affected by the type of applications. 
Hence, the same experiments are conducted for three common 
application classes: CPU, memory, and I/O-bound. A perlbmk 
and mcf benchmarks, which are parts of the SPEC2K, are 
selected for representative CPU-bound and memory-bound 
applications, respectively. The Instruction per Cycle (IPC) of 
perlbmk is high whereas its Memory Access per Cycle (MPC) is 
low. On the other hand, mcf shows the opposite characteristics 
(i.e., high MPC and low IPC) [3]. The SPEC2K does not 
provide an I/O-bound benchmark, so another benchmark suite, 
SPECWeb2009, was selected as an I/O-bound application. 

C. Performance metrics of interest 
In this study, there are two interesting performance metrics: 

energy per task (E/task) and energy-delay product per task 
(ED/task). The task denotes an instance of executing the 
specified benchmark programs, e.g., perlbmk and mcf. A 
standard way of calculating the energy consumption is by 
integrating instantaneous power dissipation over time. 
However, we can measure only the average power dissipation 
(𝑃𝑎𝑣𝑔), which also includes the power dissipation when CPUs 
are in the idle or sleep states. The consolidation affects the f 
time spent in power states of CPUs (i.e., 𝑇𝐶𝐶𝑛

𝑐𝑜𝑟𝑒𝑖), so the power 
dissipation while the CPUs are in these states should be 
considered. Therefore, the gross energy consumption (𝐸𝑔𝑟𝑜𝑠𝑠 =
𝑃𝑎𝑣𝑔 × 𝑇𝑖𝑚𝑒 ) is an appropriate metric to use for energy 
efficiency comparisons. The gross value of energy 
consumption is proportional to the number of tasks served by 
the system; therefore, the energy consumption per task (E/task) 
is selected as one of our metrics: 

number of active CPUs (m)
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The consolidation may enhance this metric, i.e., reduces the 
gross energy consumption per task; however, it can also cause 
performance degradation. Because the latency (delay) of tasks 
is not included in this metric, we need to define the 
quality-of-service (QoS) in order to see whether the degradation 
is acceptable or not. In this study, the 95th percentile delay is 
selected for the QoS (cf. Fig. 3); that is, if the 95th percentile 
delay is less than or equal to the maximum allowed limit, we 
have met our QoS target. This limit itself is chosen as the 95th 
percentile delay of a fully-loaded base system (without the 
consolidation, i.e., all CPUs are active). The term ‘fully-loaded’ 
means the total CPU utilization is at 80% out of 100%. This is 
reasonable because servers are designed to produce high 
performance at around 80% utilization levels (due to contention 
issues, the CPU performance level drops rapidly as the CPU 
utilization approaches 100%). These maximum delays of 
perlbmk and mcf are 182ms and 188ms, respectively (cf. 
TABLE I).  

 

Fig. 3 Delay (latency) cumulative distribution 

TABLE I  
MAXIMUM ACCEPTABLE DELAY (LATENCY) 

 perlbmk mcf 
Maximum latency (ms) 182.942 188.2305 
There is another performance metric which includes latency 

(delay) in it: 

 

( )

/
#  

              
#  

avg

avg
exe wait

P Time
ED task latency

of tasks
P Time

T T
of tasks

×
= ×

×
= × +

 (13) 

In the above equation, latency is calculated as a sum of the 
execution and wait time of a task. Notice that the ‘latency’ used 
in the ED product is different from the ‘Time’ used for the gross 
energy calculation (12). 

For perlbmk and mcf, the goal is to find the best 
configuration that minimizes these two performance metrics, 
i.e. either 𝐸/𝑡𝑎𝑠𝑘  or 𝐸𝐷/𝑡𝑎𝑠𝑘 , without any performance 
degradation. Our purpose is to compute the energy savings by 
the CPU consolidation technique, so all results correspond to an 
under-utilized server system; hence, the CPU utilization is set 
to be around 30%. Recall that we expect that there are no 
thermal events which can be caused by very high load and that 
chip temperature variation is small. For perlbmk and mcf, we 
investigate the delay and energy efficiency with various 
configurations (defined as combinations of the number of 
vCPUs, the number of active CPUs, and clock frequency of the 
CPUs). 

For SPECWeb2009, the goal is to find the best configuration 
that minimizes the  𝐸𝐷/𝑡𝑎𝑠𝑘 while meeting the performance 
target (i.e., QoS > 95%). For SPECWeb2009, we can specify 
the overall the workload level (i.e., simultaneous user session), 
but instantaneous the workload level changes dynamically. 
Hence, we develop four online consolidation algorithms to 
verify the energy savings by the consolidation. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 
In this section, experimental results for SPEC benchmarks 

are presented and analyzed. We start from investigating the 
consolidation overhead4 and suggest that the number of virtual 
CPUs (vCPU) has to be dynamically changed to reduce the 
overhead. Because there are eight CPUs in the system, it is also 
important to find out, for consolidation, which set of CPUs is 
appropriate in terms of energy efficiency and latency. We also 
present a detailed power model, investigate core and processor 
C-states vs. workload level, and verify the latency model which 
was presented previously. Next we report the E/task, ED/task 
and the latency of perlbmk and mcf benchmarks under various 
configurations (i.e., active CPU counts and clock frequencies), 
and discuss the effectiveness of the consolidation vs. DVFS 
technique. Finally, we present a highly effective, yet simple, 
online consolidation algorithms for SPECWeb2009 and report 
energy savings that is achieved by it. 

A. Consolidation overhead 
The number of virtual CPUs (i.e., vCPU count) is an 

important parameter of a virtual machine (VM) because this 
count limits the performance of the VM. For example, a VM 
with two vCPUs is able to utilize up to two (physical) CPUs at a 
time, so the maximum CPU utilization of the VM is 200%. 
However, managing vCPU causes additional overheads for the 
virtualized system, thus, the overall performance of the system 
decreases if there are too many vCPUs in the system. The ratio 
of vCPU to CPU count is an appropriate indicator of this 
overhead.  

The experimental results of perlbmk with different ratio 
values are shown in Fig. 4. The active CPU count is four and 
does not change in this experiment, so the total CPU utilization 
is always equal to or less than 400%. The same experiments are 
repeated for four different vCPU counts: 6, 8, 10, and 12. As 
shown in the figure, the power dissipation increases slightly as 
the ratio rises (i.e., the vCPU count increases). The utilization 
rises as the ratio becomes bigger, and reaches to 400% (i.e., 
almost fully-utilized) when the ratio is equal to or greater than 
2.5.  This increase in the utilization implies that larger vCPU 
count causes larger overhead. When the system is almost 
fully-utilized, the throughput (defined as the number of tasks 
served per second) drops, and both execution and wait times 
increase (the wait time is much larger than the execution time). 

 
4 The DVFS overhead has been extensively studied in reference [13] 
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Fig. 4 Consolidation overhead – perlbmk 

The results of mcf are reported in Fig. 5. The utilization 
increases slightly as the ratio becomes higher whereas the 
power and throughput are almost independent of the ratio. The 
wait time increases rapidly when the ratio is greater than four; 
that is, for mcf, the overheads of managing vCPUs are less than 
perlbmk. However, this does not mean that this overhead is 
negligible for mcf; the ratio has to be smaller than four to avoid 
significant performance degradation. 

 

Fig. 5 Consolidation overhead – mcf 

From the results reported above, it is important to adjust the 
vCPU count for both perlbmk and mcf. We keep the vCPU to 
CPU count ratio at around two for all test cases presented from 
now on.  

B. Selecting CPUs for consolidation 
The basic idea of the consolidation is to utilize the minimum 

number of CPUs; hence we can turn off as many CPUs as 
possible. In addition to the active CPU count, CPU selection 
scheme may be important for multi core/processor systems. 

A naming convention for CPUs in the target server system is 
shown in Fig. 6. An ID starts from 0 and the biggest ID is 3. The 
ID of the second processor starts from 4. When two CPUs are 
selected from the eight CPUs, there are total 28 possible cases. 
However, by considering redundancy, only three meaningful 
cases are: ‘0, 1’, ‘0, 2’, and ‘0, 4’ cases. The first one (i.e., ‘0, 1’ 
case) selects the first two CPUs which are close to each other. 
The second case (‘0, 2’ case) chooses two CPUs from the same 
processor package, but there is another CPU between them. The 
last one (‘0, 4’ case) selects a CPU from each package. The 
comparisons among these three cases are shown in Fig. 7. 

 

 

Fig. 6 CPU/core ID naming 

The power and latency comparisons of perlbmk/mcf for three 
distinct sets of active CPUs are shown in Fig. 7. As shown in 
the figure, there is no noticeable difference among the three 
active CPU sets. It is because, as shown in Fig. 6, the 
architecture of the processor is symmetric; hence there is no 
difference between case ‘0, 1’ and ‘0, 2’. In addition, we can 
use only two active CPUs when the utilization is relatively low 
(up to 200% out of 800%); therefore, the difference in power 
dissipation and latency between two active CPU sets, even if it 
exists, may not significant. Therefore, if we need only two 
active CPUs (i.e., when the workload level is quite low), any set 
of CPUs can be selected.  

 

 

Fig. 7 Power and delay vs. CPU IDs – 2 active CPUs 

Now we do similar experiments for the other case that four 
CPUs are active. The three representative active CPU sets are 
selected for the experiments: ‘0, 1, 2, 3’, ‘0, 2, 4, 6’, and ‘0, 1, 4, 
5’ cases. For the first case, all four CPUs are selected from one 
processor. The second case utilizes two CPUs from each 
processor. The third case looks similar to the second one except 
that two CPUs in the same processor reside next to each other.  

The power and latency comparisons of perlbmk/mcf are 
shown in Fig. 8. Both power dissipation and utilization is 
smallest for the first case ‘0, 1, 2, 3’, which selects all CPUs 
from the same processor. However, the amount of difference is 
quite small. Notice that throughputs (i.e., tasks/s) of three sets 
of active CPUs are almost identical to one another. More 
noticeable difference is observed for latency; latency of the first 
case is smallest. It is because the overhead of context switch 
within a processor is less than that of context switch from a 
processor to another one. On the other hand, for mcf, all kinds 
of metrics are almost independent of active CPU sets. 
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Therefore, when we need four active CPUs, we can select all 
CPUs from the same processor regardless of characteristics of 
applications, i.e. either CPU or memory bound. It is because the 
selection method reduces both latency and power dissipation of 
CPU bound applications.    

 

 
Fig. 8 Power and delay vs. CPU IDs – 4 active CPUs 

Based on the experimental results shown above, we use a 
simple active CPU selection method, which is shown in 
TABLE II. This method may not be appropriate for the other 
processors, but a similar method as above can be used to derive 
similar tables for other processor systems. 

TABLE II  
ACTIVE CPU SELECTION  

CPU count CPU IDs CPU count CPU IDs 
2 0, 1 5 0, 1, 2, 3, 4 
3 0, 1, 2 6 0, 1, 2, 3, 4, 5 
4 0, 1, 2, 3 7 0, 1, 2, 3, 4, 5, 6 

C. Power model derivation and verification 
This section presents a full platform-level power dissipation 

model, accounting for the power consumed by the core and 
uncore components within the target server system.  As will be 
seen, this model is more detailed than the generic one that was 
described in section III.A 

Our system allows limiting the deepest C-state, and we can 
set the limit to C1, C2, or C3. The hardware-reported 
information for each C-state limit is shown in TABLE III. As 
shown in this table, not all information is available; percentage 
of times spent in CC0, CC1, PC0, and PC1 are not reported, 
hence these unreported times will be estimated. Our goal is to 
estimate the power dissipation when all C-states are available, 
i.e., the C-state limit is C3, but this is a difficult undertaking. 
Therefore, we start from the simplest case when the C-state 
limit is C1. Subsequently, we go over the second case when the 
C-state limit is C2. Finally, we will derive the power equation 
when the C-state limit is C3. All results shown in this section 
are obtained using perlbmk. The results for mcf are omitted to 
save space. Note that we can derive the power equation for mcf 
by using an identical method. 

Power dissipation is dependent on the C-state limit as shown 
in Fig. 9. For the higher C-state limit, the power dissipation is 
lower. The power difference among different C-state limits is 
greater when the utilization is lower. 

TABLE III  
C-STATE LIMIT AND HARDWARE-REPORTED INFORMATION 

C-state 
limit 

Core C-state Processor C-state 
TCC0  TCC1  TCC3  TCC6  TPC0  TPC1  TPC3  TPC6  

C1 available 
but not 

reported 

n/a n/a available 
but not 

reported 

n/a n/a 
C2 OK n/a OK n/a 
C3 OK OK OK OK 

 
Fig. 9 power dissipation vs. utilization for three C-state limits 

We provide details about how we derive the power 
dissipation equations for the three C-state limits in the 
Appendix. The key idea behind the derivation is to start with 
equation  (2) and (3), and then use a combination of analytical 
expansion of terms, lookups from hardware-reported 
information (TABLE III), and regression analysis to derive the 
appropriate power macro-models as shown in TABLE IV. Note 
that time spent in power states of a core is almost identical to 
one another because a CPU scheduler evenly distributes tasks. 
Hence, these times in TABLE IV are core-independent terms. 

TABLE IV  
POWER MACRO-MODELS 

C-state 
limit Power equation 

C1 𝑃𝑒𝑠𝑡.
𝑡𝑜𝑡𝑎𝑙 = 21.88𝑇𝑎𝑐𝑡𝑖𝑣𝑒 + 141.12  

C2 𝑃𝑒𝑠𝑡.
𝑡𝑜𝑡𝑎𝑙 = 22.48𝑇𝑎𝑐𝑡𝑖𝑣𝑒 − 5.76𝑇𝐶𝐶3 − 31.16𝑇𝑃𝐶3 + 140.7  

C3 
𝑃𝑒𝑠𝑡.
𝑡𝑜𝑡𝑎𝑙 = 22.48𝑇𝑎𝑐𝑡𝑖𝑣𝑒 − 5.76𝑇𝐶𝐶3 − 8.56𝑇𝐶𝐶6 −

31.16𝑇𝑃𝐶3 − 42.55𝑇𝑃𝐶6 + 140.7  
The power models presented in the above table are highly 

accurate. For example, Fig. 10 shows a comparison between 
actual measurements and model predictions for the case that 
C-state limit is set to C3 (the most complex case). As you can 
see the difference between the actual and predicted values is 
extremely small. 

 
Fig. 10 Power estimation vs. measurements when the C-state li it is C3 
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D. Core and processor C-states vs. workload level 
Now we investigate the relationship between the active CPU 

count and CC/PC states. The percentage of time spent in 
core/processor C-states for three active CPU count settings are 
shown in Fig. 11 and Fig. 12. The inactive CPUs stay in the 
deepest sleep state (i.e., CC6 and PC6). For the same workload 
(number of arriving tasks per second), fewer active CPUs 
implies higher workload per CPU; therefore, the active CPUs 
stay in the deeper C-state for a shorter period of time. For 
example, when the workload level is 40 tasks per second, the 
time spent in the CC3 state for the four active CPU case is 
greater than that for the eight active CPU case. On the other 
hand, the percentage of time spent in CC6 for the four active 
CPU case is smaller than that for the eight active CPU case. If 
we plot the same graph as a function of the number of tasks per 
core (i.e., core workload), there is no difference among three 
active CPU count settings (cf. Fig. 11). Therefore, if we know 
about the amount of time spent is core C-states (𝑇𝐶𝐶𝑘) as a 
function of the core workload, we also estimate a new 𝑇𝐶𝐶𝑘 
when we change active CPU count.  

 

Fig. 11 Core C-state vs. workload levels 

Percentages of time spent in various processor states (𝑇𝑃𝐶𝑘) 
are reported in Fig. 12. There is only a small difference among 
three active CPU counts as assumed in (5). Small amount of 
time is spent in the PC3 state under all workload levels and 
active CPU counts. The percentage of time spent in the PC6 
state drops dramatically when the workload level increases. 

 

Fig. 12 Processor C-state vs. workload levels 

The system power dissipations of the three active CPU 
counts are reported in Fig. 13. Note that the difference in power 
dissipation values for various active CPU counts is larger under 
higher workload. Furthermore, when we decrease the active 
CPU count, power dissipation by inactive CPUs decreases 
because these CPUs stay in the deepest CC state. However, at 
the same time, the amount of time when the active CPUs stay in 
the deeper CC states reduces, and this in turn increases the 
power dissipation by active CPUs. These two effects tend to 
cancel each other when the workload level is low. For higher 
workload, there is no big difference in the gross time spent in 
the CC states (except the deepest state) among the three active 
CPU counts while times spent in the deepest states are still 
quite different from each other; therefore, the power difference 
becomes greater. In addition, this difference is larger for higher 
clock frequencies. More detailed analysis about the CPU 
consolidation will be presented at the Section V.TABLE V. 

 

Fig. 13 Power dissipation vs. active CPU counts 

E. Latency model verification 
We investigate how accurate the presented latency model is. 

Results for perlbmk/mcf and the corresponding regression lines 
are shown in Fig. 14. The models do not consider DVFS (i.e., 
assume that frequency is fixed), hence the lowest frequency (i.e. 
1.6 GHz) is chosen for this experiment. The R2 (also known as 
the coefficient of determination) in the figure represents how 
much the model fits the real data points. Generally, a model is 
more accurate as its R2 is closer to 1. According to the R2 values, 
the average utilization 𝑈𝑖  (i.e., utilization of one CPU) and 
latency model are quite accurate as shown in Fig. 14.  

The regression coefficients are presented in TABLE V. The 
first coefficient ‘c’ represents the degree of consolidation 
overheads. The coefficient from perlbmk results is always 
bigger than that from mcf results. This implies that perlbmk 
(CPU bound application) causes higher consolidation 
overheads than mcf (memory bound application). The second 
coefficient ‘g’ captures a power state switch effect. If the 
coefficient is positive and large enough, the latency possibly 
decrease by the consolidation. The latency of perlbmk is 
minimized when there are five as shown in Fig. 14. On the other 
hand, this coefficient g of mcf is very small; hence, the latency 
of mcf monotonically increases as active CPU count decreases. 
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(a) perlbmk  

 
(b) mcf 

 
Fig. 14 Regression results (freqency = 1.6GHz) 

TABLE V  
COEFFICIENTS OF THE DELAY MODEL 

 c g 
perlbmk 2.39 3.99 

mcf 0.67 -0.06 

F. E/task and ED/task improvement of perlbmk / mcf 
One of the goals of this study is to quantify the energy 

savings via the CPU consolidation, which is important for 
investigating the effectiveness of the technique. In this section, 
the energy savings under different conditions (i.e., the number 
of active CPUs and clock frequencies) are compared.  

Experimental results of four different the workload levels 
(i.e., tasks/s) are reported in Fig. 15. Various columns depict the 
number of tasks (tasks/s), the sum of execution and waiting 
times (i.e., delay), energy per task (E/task), and energy per task 
times delay (ED/task), respectively. Recall that the maximum 
allowed delay of perlbmk is 182ms. If either the system is fully 
loaded or the delay is greater than its maximum value, the 
corresponding configuration (i.e., the combination of active 
CPU count and clock frequency) is tagged as invalid. For 
example, when 48 tasks arrive in the system every second, the 
configuration of three active CPUs and 1.6GHz clock 
frequency is invalid. All invalid configurations are ignored.   

As mentioned before, there are two performance metrics of 
interest. The first metric, energy dissipation per task (E/task), is 
reported in the third row of the figure. Smaller E/task implies 
the system consumes less power to execute a task, so the best 
configuration is the one that minimizes this metric without any 
performance violation. Generally speaking, lower clock 
frequency and smaller active CPU count result in lower E/task; 
this trend is observed for all the workload levels. On the other 
hand, the E/task decreases as the workload increases due to the 
power state switching mechanism as explained next. When a 
system becomes idle, it does not switch its power state to the 
deeper state immediately. Only when the idle state persists for 
some predefined time, the power state can be switched. This 
policy avoids too frequent power switching. E/task includes not 

only the energy consumed by executing tasks but also the 
energy consumed when cores are staying in intermediate power 
state (excluding the deepest power state). The first energy 
consumption term (for executing a task) is not affected by 
workload while the second energy consumption term (staying 
in the intermediate power state) increases as the workload 
reduces; therefore, the magnitude of E/task decreases as the 
workload increase. 

The second interesting performance metric is ED/task, which 
is shown in the last column of the figure. This metric shows a 
very different trend from that of E/task; higher CPU frequency 
is desirable in terms of minimizing the ED/task. On the other 
hand, smaller active CPU count decreases the ED/task (which 
is the same trend when considering E/task). This implies that 
there is much lower impact on delay by CPU consolidation than 
by reducing the CPU frequency. Therefore, higher frequency 
and smaller active CPU is a better configuration for minimizing 
the ED/task if the configuration does not violate performance.  
Another observation is that the ED/task is much more sensitive 
to active CPU count than the E/task. In particular, ED/task 
dramatically increases when the system is almost fully loaded, 
e.g., four active CPUs and 1.6GHz when tasks/s is 48. 

 Fig. 15 Experimental results - perlbmk 

A similar experiment was conducted using the mcf 
benchmark. Results are reported in Fig. 16. Generally speaking, 
CPU consolidation does not impact the E/task; this is observed 
for all the workload levels. The magnitude of E/task metric is 
smaller as the workload level increases, which is the same as 
the trend observed for the perlbmk benchmark. Similar to the 
E/task, the ED/task is not affected by CPU consolidation. Only 
selection of the CPU frequency affects both the E/task and 
ED/task metrics. Lower frequency decreases the E/task 
whereas higher frequency decreases the ED/task; clearly, the 
best configuration for a metric could be different from that of 
another metric. 
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 Fig. 16 Experimental results - mcf 

From the previous results, we can find the best 
configurations (combinations of clock frequency setting and 
active CPU count). The reductions in E/task and ED/task by 
voltage/frequency setting and consolidation are graphically 
depicted in Fig. 17 and Fig. 18. The amount of reduction in 
E/task increases as the workload level becomes higher. The 
E/task is minimized when both CPU consolidation and 
voltage/frequency setting are applied. Consolidation does not 
reduce E/task noticeably for mcf whereas it reduces E/tasks up 
to 20% for perlbmk. In short, the amount of E/task reduction 
increases as workload becomes greater, and consolidation does 
not change E/task of mcf. The second metric ED/task is not 
improved by the voltage/frequency setting for both perlbmk 
and mcf. However, consolidation decreases the ED/task of 
perlbmk by up to 33%. The amount of ED/task (perlbmk) 
improvement decreases slightly as the workload level increases. 
On the other hand, there is no improvement on ED/task by 
consolidation for mcf. In the end, there are several findings as 
described next. 
perlbmk (CPU-intensive) 
• Lower voltage/frequency and smaller active CPU count 

result in lower E/task (as long as the minimum delay target is 
met)—DVFS and consolidation can be effective techniques 
for reducing E/task. 

• Higher voltage/frequency and smaller active CPU is a better 
configuration for minimizing the ED/task (again as long as 
the configuration does not violate the minimum performance 
specs)—DVFS is ineffective for reducing ED/task whereas 
consolidation can reduce ED/task. 

mcf (memory-bound) 
• Lower voltage/frequency results in lower E/task but higher 

ED/task (Higher voltage/frequency is better for minimizing 
ED/task, but increases E/task)—DVFS can be useful for 
lowering E/task but is ineffective for reducing ED/task. 

• CPU consolidation does not have much of an impact on both 
E/task and ED/task. 

Summary 
• For both CPU-intensive and memory-bound tasks, low 

voltages/frequencies are good for minimizing E/task whereas 
minimum ED/task is typically achieved at higher 
voltages/frequencies. 

• For CPU-intensive tasks, consolidation helps lower both 
E/task and ED/task; Consolidation has little effect for 
memory-bound workload. 

 

Fig. 17 E/task and ED/task reduction - perlbmk 

 

Fig. 18 E/task and ED/task reduction - mcf 

G. CPU consolidation for SPECWeb2009 
In the previous section, the effectiveness of the CPU 

consolidation was studied for the CPU bound (perlbmk) and 
memory bound (mcf) applications. In this section, experimental 
results of the SPECWeb2009, which is an I/O bound 
benchmark, are presented. SPECWeb2009 is a very well 
developed benchmark suite, and its main purpose is to evaluate 
a web server which is an I/O-bound application; hence, the 
SPECWeb2009 results can show how the CPU consolidation 
affects the delay and energy efficiency of I/O-bound 
applications. The energy efficiency is quantified as energy 
delay product per packet (ED/packet). SPECWeb2009 requires 
a simultaneous user sessions (SUS) count as an input. We can 
specify level of workload by setting this SUS count, but this 
specifies only the overall workload intensity; i.e., instantaneous 
workload fluctuates. Hence, an online consolidation method is 
necessary. In this section, we start from understanding the 
characteristics of the SPECWeb2009. After that, four online 
consolidation algorithms are presented. Finally, the 
experimental results are shown and analyzed.  

Web applications are not compute intensive in general [14]; 
hence, the performance (i.e., the average response time) is less 
dependent on the clock frequencies as shown in Fig. 19 (a). 
This is because the performance of web servers is highly related 
to the I/O processes, such as network and disk access. Likewise, 
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the performance is almost independent of the active CPU count 
if a sufficient number of CPUs is active. The relationship 
between the power dissipation and frequencies/active CPU 
count is shown in Fig. 19 (b). The amount of power dissipation 
declines as the frequency becomes lower and/or the active CPU 
count is reduced. This result implies that both DVFS and the 
CPU consolidation improve the energy efficiency without 
significant performance degradation. In addition, we expect the 
further improvement when both techniques are applied at the 
same time. 

 

Fig. 19 Response time and power dissipation 

It is necessary to investigate the relationship between 
frequency and utilization. When an OS changes the clock 
frequency, the utilization also changes even if the workload 
intensity does not change. Hence, before changing the 
frequency the corresponding utilization needs to be estimated 
to prevent an undesirable situation whereby the active CPUs are 
overloaded because the chosen frequency is too low for the 
level of workload. The relationship between the frequency and 
utilization is depicted in Fig. 20. According to the R2 value the 
equation is almost perfectly fit the real data points. The 
relationship is as follows: 

 ( )u fβ α− =  (14) 
where 𝛼 = 150.4, 𝛽 = 29.9 and 0 ≤ 𝑢 ≤ 800 (i.e., there are 
eight CPUs). The coefficient β is relatively small and can be 
ignored. Hence, the equation can be simplified as follows: 

 i i j jf u f u α= =  (15) 

 

Fig. 20 Frequency vs. total utilization 

H. Online CPU consolidation algorithms 
As shown in the previous section, both the clock frequency 

and the active CPU count affect E/task and ED/task. In this 
section, we present online algorithms, which perform 
voltage/frequency setting and consolidation simultaneously. 
These algorithms monitor the CPU utilization, and change the 
frequency setting and/or the active CPU count if and when 

desirable. The main idea of these algorithms is to utilize as few 
CPUs at low frequencies as possible (while meeting the 
performance constraints); the decision is made by considering 
the current CPU utilization levels. This approach is reasonable 
for I/O bound applications because performance degradation is 
not significant unless the CPU is very highly utilized [10]. To 
avoid energy and delay overheads associated with frequent 
state changes, the proposed algorithms change the system 
configuration conservatively, that is, if the system is 
overloaded, these algorithms promptly increase the frequency 
and/or the number of active CPUs. If, however, the system is 
underutilized, they apply a state change (reduce frequency 
and/or turn off some CPUs) only if this situation persists for at 
least five seconds. 

We present four algorithms whose main idea is quite similar 
to each other:  if the average utilization (𝑢𝑖) of a CPU is greater 
than an upper threshold (𝑢ℎ𝑖𝑔ℎ), these algorithms assign more 
resource by increasing the clock frequency of the active CPUs 
and/or adding to the number of active CPUs. On the other hand, 
if the average utilization is less than a lower threshold (𝑢𝑙𝑜𝑤), 
they will release some resource by decreasing the CPU 
frequency and/or reducing the number of active CPUs. It is 
necessary to estimate the new utilization level under the new 
frequency and active CPU count setting in order to avoid any 
performance degradation. Equation (15) does not account for 
the number of active CPUs (𝑐𝑖) in the system, and hence, it 
must be modified to apply to this new situation: 

 i i i j j jc f u c f u=  (16) 
Because we can change both the CPU frequency and the active 
CPU count (when needed), we must decide which one has 
higher priority: 1. Change the clock frequency first and the 
CPU count next, 2. Change the CPU count first and the clock 
frequency next. Two pseudo codes are presented in Fig. 21. The 
first function 𝑚𝑖𝑛_𝑐𝑝𝑢() finds the minimum CPU count (𝑥𝑐) 
without any performance degradation. After finding the 
minimum CPU count, it determines the slowest frequency (𝑥𝑓) 
with the new CPU count that would still avoid any performance 
degradation. This function tries to make a new utilization close 
to 𝑢𝑚𝑖𝑑 , which is the median of high/low thresholds and is 
calculated as follows: 

 ,  85%,   65%
2

high low
mid high high

u u
u u and u

+
= = =  (17) 

The second function 𝑚𝑖𝑛_𝑓𝑟𝑒𝑞() finds the slowest frequency 
first, and then finds the minimum CPU count with the new 
frequency. Again no performance penalty is allowed. 

Function min_cpu(𝑢𝑖 , 𝑓𝑖 , 𝑐𝑖) { 
      𝑥𝑐 = � 𝑢𝑖𝑓𝑖

𝑢𝑚𝑖𝑑𝑓𝑚𝑎𝑥 
𝑐𝑖�;  

      𝑥𝑓 = � 𝑢𝑖𝑐𝑖
𝑢𝑚𝑖𝑑𝑥𝑐 

𝑓𝑖�; 
      return (𝑥𝑐 , 𝑥𝑓); 
} 

Function min_freq(𝑢𝑖 , 𝑓𝑖 , 𝑐𝑖) { 
     𝑥𝑓 = � 𝑢𝑖𝑐𝑖

𝑢𝑚𝑖𝑑𝑐𝑚𝑎𝑥 
𝑓𝑖�;  

      𝑥𝑐 = � 𝑢𝑖𝑓𝑖
𝑢𝑚𝑖𝑑𝑥𝑓 

𝑐𝑖�; 
      return (𝑥𝑐 , 𝑥𝑓); 
} 

Fig. 21 Psuedo codes for min_cpu() and min_freq() 

The above two functions are called when the system is 
under-utilized (i.e., the current utilization is smaller than 𝑢𝑙𝑜𝑤) 
or over-utilized (i.e., the current utilization is greater than 𝑢ℎ𝑖𝑔ℎ 
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). For each case, we can choose which function is called, i.e., 
𝑚𝑖𝑛_𝑐𝑝𝑢() or 𝑚𝑖𝑛_𝑓𝑟𝑒𝑞(). Therefore, there are a total of four 
online algorithms, which are shown in Fig. 22. The first 
algorithm (type1) calls 𝑚𝑖𝑛_𝑐𝑝𝑢() function for both the under 
and over-utilized CPU cases. The type2 algorithm calls  
𝑚𝑖𝑛_𝑐𝑝𝑢() when a CPU is over-utilized and 𝑚𝑖𝑛_𝑓𝑟𝑒𝑞() if it 
is under-utilized. The type3 algorithm calls 𝑚𝑖𝑛_𝑓𝑟𝑒𝑞() when 
a CPU is over-utilized and 𝑚𝑖𝑛_𝑐𝑝𝑢() if it is under-utilized. 
The last algorithm (type4) calls 𝑚𝑖𝑛_𝑓𝑟𝑒𝑞() for both over and 
under-utilized CPU cases. 

 

 

Fig. 22 Four online consolidation algorithms 

We do experiments for three different SUS counts and 
compare the energy-delay product per packet (ED/packet) and 
the quality of service (QoS) for the aforesaid four consolidation 
algorithms and two more baseline algorithms. The QoS refers 
to the percentage of packets for which delay is less than a 
pre-defined limit. This QoS is reported by SPECWeb2009 
benchmark suite. In addition to the four proposed algorithms, 
we provide results for two other algorithms: base and 
ondemand. The base algorithm means there is no dynamic 
adjustment of the active CPU count and frequency, i.e., 
frequency is the highest one and all CPUs are active. The 
ondemand algorithm is the default voltage/frequency setting 
method used in LinuxTM, which does not change the active CPU 
count but changes the CPU frequency (all CPUs will have the 
same frequency at any time). 

Experimental results are reported in Fig. 23. Regardless of 
the SUS counts, the proposed algorithms always result in 
smaller ED/packet compared to the base and ondemand 
algorithms. Among the four proposed algorithms, type1 
algorithm is the best one in terms of ED/packet. As the SUS 
count increases, QoS of all algorithms decreases, but QoS 
remains greater than 95%; hence, there are no performance 
degradation concerns. Note that the magnitude of ED/packet 
metric also decreases as the SUS count increases, which 
implies that the system consumes less energy for executing a 
packet. This is because of the energy non-proportionality of the 
existing server systems (including the one used in this study). 
From these results, we can state that the type1 consolidation 
algorithm is the best. This implies that, at least for the system 
under experiment, adjusting the CPU frequency has higher 
impact on the ED/packet metric than changing the CPU count. 

(a) SUS=1000 

 

(b) SUS=1400 

 

(c) SUS=1900 

 

Fig. 23 ED/pack and QoS comparisons 

We compare ED/packet of the ondemand and type1 algorithm, 
which is shown in TABLE VI. For three SUS settings, 
ED/packet of type1 algorithm is always smaller than that of 
ondemand. In addition, the difference between them increases 
for the larger number of user sessions. 

TABLE VI  
COEFFICIENTS OF THE DELAY MODEL 

SUS ED/packet (Js) 
∆ED/packet(%) ondemand type1 

1000 0.91 0.82 9.44 
1400 0.76 0.67 11.83 
1900 0.51 0.44 13.648 
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VI. CONCLUSION 
DVFS has been a promising method for reducing the energy 

consumption, but the energy saving leverage of DVFS 
decreases as the supply voltage level decreases with CMOS 
scaling. In this report, CPU consolidation was considered as a 
substitute, or better stated, as a complement. The idea of this 
technique is simple; however, we need to investigate the CPU 
consolidation under realistic environment to maximize the 
energy savings via the consolidation. The effectiveness of CPU 
consolidation was thus investigated for different configurations: 
types of applications, the virtual CPU count, the active CPU 
count, and the active CPU set. By analyzing the experimental 
results, we learn a few lessons useful. First, unnecessarily large 
number of virtual CPUs causes significant performance 
degradation; hence, the virtual CPU count must be dynamically 
adjusted. Second, the CPU consolidation improves the energy 
efficiency of CPU bound applications more than that of 
memory bound applications. Third, the maximum improvement 
on the energy efficiency is achieved when both DVFS and the 
consolidation are applied.  
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APPENDIX 
We start by estimating the power dissipation when the 

C-state limit is C1. In this case, there are two CC states and two 
PC states: CC0, CC1, PC0, and PC1. If more than one sleep state 
is available, the power dissipation is supposed to decrease 
super-linearly as the utilization decreases. This is because the 
amount of time spent in deeper sleep states is greater when the 
utilization is lower. The measured power dissipation, however, 
is linearly proportional to CPU utilization, as reported in Fig. 9. 
This linearity can be explained once we realize that the C-state 
of core/processor is promptly switched to the deepest sleep 
state, i.e., CC1 and PC1, that is, in our target system the amount 
of time spent in CC0 and PC0 is very small. The power 
dissipation is a linear function of utilization, so we can easily 
estimate the power dissipation using the utilization level (𝑈𝑡𝑖𝑙): 

 .  21.88 141.12total
est activeP T= +  (18) 

If we set the deepest C-state to C2, there is no longer a linear 
relationship between the utilization and the power dissipation 
as reported in Fig. 9To explain this behavior, recall that total 
(platform) power dissipation is the sum of the processor power 
dissipation and the power consumed by other components: 

 icoretotal uncore other
iP P P P= + +∑  (19) 

General purpose CPU schedulers evenly distribute tasks to 
active CPUs. Because we have eight CPUs, the total power 
dissipation is: 

 8total core uncore otherP P P P= + +  (20) 
Calculating the difference between power dissipations for two 
cases, i.e., case 1 where the C-state limit is C1 (up to CC1/PC1 
are available) and case 2 where the C-state limit is C2 (up to 
CC3/PC3 are available), we write: 

 ( ) ( )1 2 1 2

8

         8

total core uncore

core core uncore uncore
C C C C

P P P

P P P P

∆ = ∆ + ∆

= − + −
 (21) 

Notice that the power difference equation does not include the 
difference of 𝑃𝑜𝑡ℎ𝑒𝑟   terms because the C-state limit does not 
change power consumptions of other components.  

The core power dissipation can be formulated by using the 
utilization level and the time spent in each core C-state (i.e., 
CC0, CC1, and CC3). The core power dissipations when the 
C-state limit is C1 and C2 are: 

 
1 0 0 1 1

2 0 0 1 1 3 3

core core core core
C active active CC CC CC CC

core core core core core
C active active CC CC CC CC CC CC

P P T P x P x

P P T P y P y P T

= + +

= + + +
 (22) 

where 𝑥𝐶𝐶0 + 𝑥𝐶𝐶1 = 1 − 𝑇𝑎𝑐𝑡𝑖𝑣𝑒  and 𝑦𝐶𝐶0 + 𝑦𝐶𝐶1 = 1 −
𝑇𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑇𝐶𝐶3 . In above equations 𝑥𝐶𝐶𝑛  and 𝑦𝐶𝐶𝑛  are the 
percentages of time spent in the 𝐶𝐶𝑛  state when the C-state 
limit is C1 and C2, respectively (these parameters are not 
reported by the system hardware as shown in TABLE III). The 
power difference is: 

 
( ) ( )

1 2

0 0 0 1 1 1 3 3
    

core core core
C C

core core core
CC CC CC CC CC CC CC CC

P P P

P x y P x y P T

∆ = −

= − + − −
(23) 

For simplicity, we state that 𝑥𝐶𝐶0 = 𝑦𝐶𝐶0 . This implies a core 
stays in the CC0 power state for the same amount of time under 

the same utilization levels regardless of the C-state limit. Thus, 
we have: 

 ( )1 1 1 3 3
core core core

CC CC CC CC CCP P x y P T∆ = − −  (24) 

If we make the assumption that 𝑥𝐶𝐶0 = 𝑦𝐶𝐶0 = 0  (this is 
because power dissipation is ONLY linearly dependent on the 
utilization level when the C-state limit is C1; note that the 
non-linear power dissipation vs. utilization graph for the case 
that the C-state limit is C2 cannot be used to confirm or reject 
this assumption), the power difference can be re-written as 
below: 

 
( ) ( )( )

( )
1 3

3 3 1 3 3

1 1

             

core core
CC active active CC

core core core
CC CC CC CC CC

P P T T T

P T P P T

∆ = − − − −

− = −
 (25) 

Similarly, the uncore power dissipations when the C-state limit 
is C1 and C2 are: 

 
1 0 0 0 1 1

2 30 0 0 1 1 3

uncore uncore uncore uncore
C PC active PC PC PC PC

uncore uncore uncore uncore uncore
C PC active PC PC PC PC PC PC

P P T P k P k

P P T P h P h P T

= + +

= + + +
(26) 

where 𝑘𝑃𝐶0 + 𝑘𝑃𝐶1 = 1 − 𝑈𝑡𝑖𝑙 and ℎ𝑃𝐶0 + ℎ𝑃𝐶1 = 1 − 𝑈𝑡𝑖𝑙 −
𝑃𝐶3. With a similar assumption that 𝑘𝑃𝐶0 = ℎ𝑃𝐶0 = 0, we 
have: 

 
( ) ( )( )

( )
1 3

3 3 1 3 3

1 1

               

uncore uncore
PC active active PC

uncore uncore uncore
PC PC PC PC PC

P P T T T

P T P P T

∆ = − − − −

− = −
 (27) 

Finally, the difference in the total power dissipation is: 

 ( ) ( )1 3 3 1 3 3

8

          8

total core uncore

core core uncore uncore
CC CC CC PC PC PC

P P P

P P T P P T

∆ = ∆ + ∆

= − + −
 (28) 

In the above equation, �𝑃𝐶𝐶1
𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3_

𝑐𝑜𝑟𝑒�  and �𝑃𝑃𝐶1
𝑢𝑛𝑐𝑜𝑟𝑒 −

𝑃𝑃𝐶3_
𝑢𝑛𝑐𝑜𝑟𝑒� are unknown parameters to be determined. The total 

power dissipation, the percentage of time in the core C-states 
(𝐶𝐶3  and 𝐶𝐶6), and the percentage of time in the processor 
C-states (𝑃𝐶3  and  𝑃𝐶6 ) are reported in TABLE VII. The 
difference in the total power dissipation when all cores are idle 
is: 

 ( ) ( )1 3 1 30
8 1.0 0.79

                  140.7 -110.3 30.4

total core core uncore uncore
CC CC PC PCutil

P P P P P

W
=

∆ = − × + − ×

= =
(29) 

Therefore, we can calculate �𝑃𝑃𝐶1
𝑢𝑛𝑐𝑜𝑟𝑒 − 𝑃𝑃𝐶3_

𝑢𝑛𝑐𝑜𝑟𝑒� as a function 
of �𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3_
𝑐𝑜𝑟𝑒�: 

 ( )1 3 1 3
38.48 8 1.27uncore uncore core core

PC PC CC CCP P P P− = − − ×  (30) 
TABLE VII  

POWER DISSIPATION AND C-STATES WHEN EVERY CORE IS IDLE  

C-state 
limit 

Utilization 
(%) 

Core 
C-state 

Processor 
C-state Power 

(W) CC3 CC6 PC3 PC6 
C1 0 n/a n/a n/a n/a 140.7 
C2 0 99.0 n/a 79.1 n/a 110.3 
C3 0 0.0 99.9 0.0 79.9 98.1 

Next, we obtain value of �𝑃𝐶𝐶1
𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3

𝑐𝑜𝑟𝑒� by changing the 
active CPU count. Note that in experimental results reported 
above, we always had eight active CPUs whereas in the results 
to be reported next, the active CPU count is changed. If 𝑚 
CPUs are active and fully utilized, (8 −𝑚) CPUs are inactive 
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and in the deepest power state (𝐶𝐶𝑘). Therefore, the total power 
dissipation in this case is: 

 
( )

( )            8

coretotal uncore otheri
i

core core uncore other
active CCk

P m P P P

mP m P P P

= + +

= + − + +

∑
 (31) 

If another CPU becomes active, i.e. there will be (𝑚 + 1) 
active CPUs, and the total power dissipation will be: 

( ) ( ) ( ) '1 1 7total core core uncore other
active CCk

P m m P m P P P+ = + + − + + (32) 

The power dissipation of other parts (𝑃𝑜𝑡ℎ𝑒𝑟  ) can be affected 
by the active CPU count because the number of tasks served by 
the system increases as the active CPU count increases. Note 
that all active CPUs are fully utilized, i.e., 100% utilization, 
hence, more active CPU count means higher throughput (i.e., 
the number of tasks served per second). However, we assume 
power dissipation by other parts of 𝑚 active CPUs is not very 
different from that of (𝑚 + 1) active CPUs: 𝑃𝑜𝑡ℎ𝑒𝑟 ≅ 𝑃𝑜𝑡ℎ𝑒𝑟′. 
Consequently, we have: 

 ( ) ( ) ( )1total total core core
active CCk

P m P m P P+ − ≅ −  (33) 

The left term of the above equation can be obtained by 
experiments, so we can find (𝑃𝐶𝐶1 − 𝑃𝐶𝐶3) as follows: 

 ( ) ( )1 3 3 1

                  ( ,3) ( ,1)

core core core core core core
CC CC active CC active CCP P P P P P

g m g m

− = − − −

= −
 (34) 

where ( ) ( )
    

( , ) 1total total

deepest CC state CCk
g m k P m P m

=
 = + −  . 

The right term in the above equation is a function of active CPU 
count (𝑛), but it does not make sense because �𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3_
𝑐𝑜𝑟𝑒� 

is supposed to be constant and not a function of  𝑛 . The 
experimental results imply that �𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3_
𝑐𝑜𝑟𝑒�  is not a 

function of 𝑛 as shown in Fig. 24. This figure shows the power 
dissipation when all active cores are fully utilized with three 
different C-state limits. The slope of a plot in this figure 
is  𝑔(𝑚, 𝑘) , and is independent of the active CPU count 𝑛 
(i.e.,  𝑔(𝑚, 𝑘) = 𝑔(𝑘)) because the slope is constant (linear 
plot). Therefore, we can find �𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3_
𝑐𝑜𝑟𝑒�  and �𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 −
𝑃𝐶𝐶6_
𝑐𝑜𝑟𝑒� as follows: 

 1 3

1 6

(3) (1) 3.53 2.81 0.72

(6) (1) 3.88 2.81 1.07

core core
CC CC

core core
CC CC

P P g g

P P g g

− = − = − =

− = − = − =
 (35) 

 

Fig. 24 Total power dissipation vs. active CPU count (every core is 
fully utilized) 

Now we now calculate �𝑃𝑃𝐶1
𝑢𝑛𝑐𝑜𝑟𝑒 − 𝑃𝑃𝐶3

𝑢𝑛𝑐𝑜𝑟𝑒�: 

 ( )1 3 1 3
38.48 8 1.27 31.16uncore uncore core core

PC PC CC CCP P P P− = − − × = (36) 

All required information for power estimation is collected, and 
we go about finding the final power estimation equation and 
qualifying it: 

 ( )
( )

1 3 3 3

1 3 3 3

8

1

1

total core uncore other

core core core core
active active CC active CC CC CC

uncore uncore uncore
PC PC PC PC

P P P P

P P T P T T P T

P P T P T

= + +

= + − − +

= − +

 (37) 

Now, the estimation equation can be re-written: 
 

 
( ) ( )

( ) ( )
1 1 3 3

1 3 3 1 1

8 8

         8

total core core core core
active CC active CC CC CC

uncore uncore core uncore other
PC PC PC CC PC

P P P T P P T

P P T P P P

= − − −

− − + + +
(38) 

As found before, we have 𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶1
𝑐𝑜𝑟𝑒 = 2.81,  𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 −
𝑃𝐶𝐶3_
𝑐𝑜𝑟𝑒 = 0.72  and  𝑃𝑃𝐶1

𝑢𝑛𝑐𝑜𝑟𝑒 − 𝑃𝑃𝐶3
𝑢𝑛𝑐𝑜𝑟𝑒 = 31.16 . The last term 

�8𝑃𝐶𝐶1
𝑐𝑜𝑟𝑒 +  𝑃𝑃𝐶1

𝑢𝑛𝑐𝑜𝑟𝑒 + 𝑃𝑜𝑡ℎ𝑒𝑟�  is the total power dissipation 
when the C-state limit is C1 and the system is idle (i.e., 
utilization level is 0%). The measured value of this is 140.7W 
as shown in TABLE VII. Therefore, the final estimation 
equation is: 

 
3 3

22.48 5.76 31.16 140.7total
active CC PCP T T T= − − +  (39) 

Our estimation is very close to the real power dissipation 
measured by the power analyzer as shown in Fig. 25 This 
implies that the power estimation method is very accurate, in 
spite of our simplifying assumptions. 

 

Fig. 25 Power estimation equation vs. measurement 

If the C-state limit is C3, the deepest core and processor 
C-states are CC6 and PC6, respectively.  Using a method similar 
to the one for the previous case (i.e., when the C-stat limit is 
C2), the power estimation equation can be written as follows: 

  (40) 
𝑃𝐶3
𝑐𝑜𝑟𝑒 denotes the total power dissipation by cores when the 

C-state limit is C3. In this case, the deepest core C-state is CC6; 
therefore, 𝑃𝐶3_

𝑐𝑜𝑟𝑒 can be re-written:  

 
( )1 3 6

3 3 6 6

3 1

          

core core core
C active active CC active CC CC

core core
CC CC CC CC

P P T P T T T

P T P T

= + − − −

+ +
 (41) 

Likewise, the deepest process C-state is 𝑃𝐶6, so the total power 
dissipation by uncore (𝑃𝐶3_

𝑢𝑛𝑐𝑜𝑟𝑒) is: 

 ( )1 3 6 3 3 6 63 1uncore uncore uncore uncore
C PC PC PC PC PC PC PCP P T T P T P T= − − + + (42) 

Hence, the power estimation equation becomes: 
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( ) ( )
( ) ( )

( ) ( )

1 1 3 3

1 6 6 1 3 3

1 6 6 1 1

. 8 8

         8

         8

total core core core core
est active CC active CC CC CC

core core uncore uncore
CC CC CC PC PC PC

uncore uncore core uncore other
PC PC PC CC PC

P P P T P P T

P P T P P T

P P T P P P

= − − −

− − − −

− − + + +

(43) 

Nearly all necessary parameters are already known: 𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒 −
𝑃𝐶𝐶1_
𝑐𝑜𝑟𝑒 = 2.81,  𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3
𝑐𝑜𝑟𝑒 = 0.72,𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶6
𝑐𝑜𝑟𝑒 =

1.07,  𝑃𝑃𝐶1
𝑢𝑛𝑐𝑜𝑟𝑒 − 𝑃𝑃𝐶3_

𝑢𝑛𝑐𝑜𝑟𝑒 = 31.16 , and 8𝑃𝐶𝐶1
𝑐𝑜𝑟𝑒 +  𝑃𝑃𝐶1

𝑢𝑛𝑐𝑜𝑟𝑒 +
𝑃𝑜𝑡ℎ𝑒𝑟 = 140.07 . Therefore, there is only one parameter 
(𝑃𝑃𝐶1 − 𝑃𝑃𝐶6) is unknown. This parameter can be found using 
a similar method to that used for the previous case that C-state 
limit is C2. More precisely, the difference in power dissipation 
between cases of C-state limits being C1 and C3 is: 

 ( ) ( )
( ) ( )

1 3 3 1 6 6

1 3 3 1 6 6

8

          8 8

            

total core uncore

core core core core
CC CC CC CC CC CC

uncore uncore uncore uncore
PC PC PC PC PC PC

P P P

P P T P P T

P P T P P T

∆ = ∆ + ∆

= − + −

+ − + −

(44) 

The percentage time spent in core/processor C-states when the 
system is idle is shown in TABLE VII. Hence, the idle power 
difference is: 

 ( ) ( )1 6 1 60
8 1 0.8

                  140.7 - 98.1 42.6

total core core uncore uncore
CC CC PC PCutil

P P P P P

W
=

∆ = − × + − ×

= =
(45) 

The parameter (𝑃𝑃𝐶1 − 𝑃𝑃𝐶6) is a function of (𝑃𝐶𝐶1 − 𝑃𝐶𝐶6 ), 
and its value is calculated as follows: 

 ( )1 61 6
53.25 8 1.25 42.55core core

CC CC
uncore uncore

PC PC P PP P W− ×− = − = (46) 

Thus, the final power estimation equation is: 

 3 6

3 6

. 22.48 5.76 8.56

           31.16 42.55 140.7

total
est active CC CC

PC PC

P T T T

T T

= − −

− − +
 (47) 

The estimated power dissipation using the above equation 
is very close to the measurement as shown in Fig. 26. This 
result again demonstrates that the estimation equation is 
quite accurate. Therefore, if we know the percentage of time 
spent in a specific C-state (both processor and core C-states), 
we can accurately estimate the power dissipation. 

 

Fig. 26 Power estimation equation vs. measurement 
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