
 1

Abstract— Companies operating large data centers are focusing
on how to reduce the electrical energy costs of operating data
centers 24-7. A common way of reducing this cost is to perform
dynamic voltage and frequency scaling (DVFS), thereby matching
the CPU’s performance and power level to the incoming workload.
Another power saving technique is CPU consolidation, which uses
the minimum number of CPUs necessary to meet the service
request demands and turns off the remaining idle CPUs. A key
question that must be answered is which of these two techniques is
more effective and under what conditions. This is the question
that is addressed in this report. After analyzing the power
consumption in a modern server system and developing
appropriate power and performance models for the same, this
report provides an extensive set of hardware-based experimental
results and makes suggestions about how to maximize energy
savings through CPU consolidation and/or DVFS. In addition, the
report also presents new online CPU consolidation algorithms.
The proposed algorithms reduce the energy delay product more
than the Linux default DVFS algorithm (up to 13 %).

Index Terms—Algorithm, consolidation, energy efficiency, and

virtualization

I. INTRODUCTION
ATA centers consist of a very large number of server
machines that can be leased to provide cloud services to a

whole slew of clients running many different applications. The
number of servers employed in data centers has been rapidly
increasing, confirmed by the continuous increase in the
BLADE server shipments in US and worldwide. Although the
energy efficiency of server machines has been improving, this
efficiency advances have not kept pace with the increase in
cloud computing services and the concomitant increase in the
number and size of data centers. As a result, an ever increasing
amount of electrical energy is being consumed in today’s data
centers, giving rise to concerns about the carbon emission
footprint of data centers and the costs of operating them. The
latter is especially important concern from the viewpoint of
datacenter owners and operators (as well as their
customers/clients who must eventually pay the bill).

Two widely accepted and employed techniques for
increasing the power efficiency in data centers are server

This research is sponsored in part by a grant from the Semiconductor
Research Corporation (No. 2012-HJ-2292).

I. Hwang and M. Pedram are with the Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90036 USA (e-mail:
inkwonhw@usc.edu; pedram@usc.edu).

consolidation and DVFS. The former aims at minimizing the
number of active servers in a datacenter by consolidating all the
incoming jobs into as few server machines as possible whereas
the latter attempts to match the performance of each active
server to the assigned workload to it so that energy can be saved
at the level of each server. Server consolidation is needed and
complements DVFS technique because of the energy
no-proportional behavior of modern servers [1], and an
unfortunate effect by which a server machine operating at a low
performance level tends to consume power close to the power it
consumes at its peak performance level. This is somewhat
natural and expected because an electronic circuit (with server
being a special case) consumes static power (leakage in CMOS
digital circuits) regardless of whether it provides any
computational services. The issue is, however, worse than
simple leakage and has to do with the fact that many
components within a modern server system (e.g., “uncore”
logic within the processor chip, DRAM modules on the board,
many of the I/O controllers, and even the network interface)
cannot be scaled/modulated to exhibit a linear relationship
between their power consumption and delivered performance
levels.

A data center is typically under-utilized—by design, it has
been designed to provide the required performance and satisfy
its service level agreements (SLAs) with clients even during
peak workload hours, and hence, at other times its resources are
vastly under-utilized). For example, the minimum and the
maximum utilization of the statically provisioned capacity of
Facebook’s data center are 40% and 90%, respectively [2].
Hence, in light of the energy non-proportionality of today’s
server base, a greater amount of energy costs can be reduced by
consolidating jobs into as few server machines as possible and
turning off the unused machines. The server consolidation has
been studied very well, and many studies have suggested the
use of virtual machine migration (VMM) as a means of doing
server consolidation [3-7].

Although server consolidations can greatly lower a data
center’s total energy consumption, there is still room for further
energy savings due to the limitations and overheads associated
with the server consolidation. For one, it is difficult to conduct
server consolidation very frequently because the migration of
tasks or virtual machines causes high overheads; e.g., heavy
network traffic, high network latency and large system boot
time, plus large energy consumption to move virtual machines
and their local contexts around. Because of these overheads,

CPU Consolidation versus Dynamic Voltage and
Frequency Scaling in a Virtualized Multi-Core

Server: Which is More Effective and When
Inkwon Hwang, Student Member and Massoud Pedram, Fellow, IEEE

D

mailto:inkwonhw@usc.edu
mailto:pedram@usc.edu

 2

there is a relatively long period between server consolidation
decision times. To avoid the SLA violations during each timing
period when virtual machine to server assignments are fixed,
virtual machines (or tasks) are not too tightly consolidated into
active server set in order to provide a safe margin of operation
(too aggressive a consolidation strategy will result in violation
of client SLAs and the characteristic need to compensate the
clients for missing their agree upon performance targets). The
longer the period is, the larger the margin becomes (i.e., more
server machines are utilized). Hence, the server machines are
still under-utilized, which implies that there is the potential of
the further energy savings through additional resource
management techniques.

There are a number of resources in a computer system
(computing, storage, I/ bandwidth). This study focuses on the
computing resource, i.e., the CPU, which is a major energy
consumer. A well-known and common energy-aware CPU
management technique is a Dynamic Voltage and Frequency
Scaling (DVFS) [3, 8, 9]. The DVFS was introduced decades
ago, and it has been one of the most effective power saving
techniques for CPUs. The amount of the energy savings by
DVFS, however, is decreasing due to the following reasons.
First, the supply voltages have already become quite low
(sub-one volt) and hence the remaining headroom for further
supply voltage reductions is small and shrinking. Second, many
modern servers have two or more processor chips, each chip
containing multiple CPUs (cores1) but a single on-chip power
distribution network shared by all the CPUs. Because of this
sharing, the CPUs on the same chip must operate at the same
supply voltage level and hence the same clock frequencies2. In
other words, we cannot set different frequencies for individual
CPUs, which means that, unless we do ‘perfect’ load balancing
among CPUs sharing the same power bus, the voltage level that
is set for the most highly loaded CPU will result in a number of
under-utilized CPUs where the available performance level is
higher than what is actually needed, hence energy is wasted.
Third, in a virtualized server system, it is difficult to gather
sufficient information about the running applications, which is
necessary to choose the optimal clock frequency and voltage
level for the CPUs. This is because the virtual machine
manager (hypervisor), which conducts DVFS, resides in a
privileged domain whereas the applications are running in a
different domain (virtual machine domain) [4].

Another well-known CPU energy management technique is
Dynamic Power State Switching. Many modern processors
support multiple power states (known as C-States). Each
C-state specifies the processor modules which are turned ON or
OFF. Based on the recent workload intensity of the CPU, the
operating system (OS) decides the power state of each CPU.
Note that the power state of each CPU may be different from
that of another CPU (even when the two CPUs are on the same
processor). This is because each CPU is placed in its own
power domain on the processor, and the power to each such
domain can be independently gated. The OS can suggest a

1 The terms ‘CPU’ and ‘core’ are used interchangeably in this paper.
2 Some processors are capable of independent DVFS among cores while

Intel processors are not. This study targets Intel processors.

power state of a CPU, but the final decision is made by a Power
Control Unit (PCU) which resides in the processor chip. This is
because the suggestion from the OS may not be a good one. For
example, it may result in too frequent power state changes or
too quick a transition to a sleep state.

The PCU also decides about the power states of some of the
other modules on the processor chip by using its fine-tuned
algorithms. We believe that the PCU can save more energy if
there is software-level assistance for it. In this study, we present
a CPU consolidation technique, which helps the PCU achieve
more energy savings. This technique explicitly defines sets of
active and inactive (sleep) CPUs, and ensures lower
performance degradation and energy waste by avoiding
unnecessary power state switches.

There have been many research studies that investigate the
effectiveness of the CPU consolidation. In [10] the authors
show that consolidation across CPUs in a single processor and
two processor systems offers a very small amount of energy
savings. They used their own benchmark which is not the
standard and may not create realistic workloads. In [11] Jacob
et al. compare core-level power gating (CPG) with DVFS and
show that CPG saves more energy by 30% than DVFS. This
result implies the energy savings by the CPU consolidation may
be larger if the processor supports the CPG. However, the
reported results are calculated from a combination of real
measurements and estimated leakage power values (the
adopted leakage power model is somewhat simple). In [2] the
authors present a technique called core count management
(CCM), which is a variant of the CPU consolidation technique,
and report 35% energy savings. However, all results are
obtained using a simulator, and the power and performance
models used in the simulator are again fairly simplistic.

This report is differentiated from the prior work because of
the following reasons. First, all results are obtained from the
actual hardware measurements and not simulations. Second,
realistic workloads based on SPEC benchmark suite have been
used. Third, this report investigates the relative effectiveness of
CPU consolidation vs. DVFS as means of power savings in
multi-core/processor server systems.

A preliminary version of this work has been published in
[12]. This technical report is a substantially extended version,
which includes a completely new power model, vastly more
detailed experimental results and discussions, and a more
efficient online CPU consolidation algorithm.

The remainder of the report is organized as follows. Several
mechanisms of CPU power management are reviewed in
Section II. In Section III we present the power and latency
models, which enable us to show how the CPU consolidation
affects the power and latency of a system. A detailed
description of the experimental system setup is provided in
Section IV. Section V presents our detailed experimental
results and discussions. Finally, we summarize the results and
provide some useful conclusions and insights in Section VI.

 3

II. BACKGROUND – POWER MANAGEMENT TECHNOLOGIES
Most of modern operating systems (OS) reduce the power

consumption of a processor by dynamically changing a power
state of the processor. In order to change this state, an OS
requires appropriate interfaces to communicate with the
processor. For this purpose the Advanced Configuration and
Power Interface (ACPI) specification was developed as an
open standard for OS-directed power management. This
specification is a processor-independent standard; hence an OS
is capable of controlling power state of any processors. In this
section, the processor power and performance states as well as
OS-directed power management mechanism are briefly
reviewed.

A. Processor power states (C-States)
The ACPI specification defines C-States, which are also

known as ‘sleep states’. When a processor is in a
higher-numbered C-State, which is also called a ‘deeper’ sleep
state, a larger number of internal modules of the processor are
turned off. The processor, therefore, consumes lower power in
a deeper state. However, it also takes longer time for the
processor to go back to a fully active state (i.e., C0 state)
starting from a deeper sleep state. The number of supported
C-States is processor-dependent; e.g., the Intel® Core™ i7
processor (code-named Nehalem) supports C0, C1/C1E, C3,
and C6 states.

There are two types of C-States: core and processor. These
core C-state (𝐶𝐶𝑛) and processor C-state (𝑃𝐶𝑛) are hardware
C-states. The CC-state of a core may be different from that of
others. The PC-state is related to the CC-States. In particular,
when all cores are in the same CC-State, the processor
transitions into the corresponding PC-state. This is reasonable
because of all the processor resources that are shared by the
cores. For example, the Intel i7 processor’s L2 cache is shared
by four cores, so the processor cannot make a transition to a
deep PC-State when any of the cores are still active. Otherwise,
the shared L2 cache may become inactive, which would
prohibit the active cores from proper functioning.

In addition to these hardware C-states, there is the notion of
logical C-States (𝐶𝑛). An OS ‘requests’ a change in C-State of
logical cores 3, but the request may be denied (called auto
demotion). The decision of demotion is made based on each
core’s immediate residency history; if the transition rate of
C-States is too high, the request for a transition can be ignored.
In general, the entry/exit costs (latency and energy overheads)
increase when the processor/core escapes from a deeper state;
hence, the auto demotion prevents unnecessary excursions into
deeper power states, and thereby, reduces both latency and
energy overheads.

B. Processor performance state (P-States)
Each power state (P-State) specifies the clock frequency and

voltage of the cores (i.e., the voltage/frequency setting). At the
higher clock frequency, the performance of a core is higher.
Similar to the C-States, the number of supported P-States is

3 A logical core is identical to a physical core unless Intel hyper-threading is
enabled. In this study hyper-threading was disabled.

processor-dependent. A clock frequency of a core is higher at
lower numbered P-States; e.g., P0 is the highest performance
state.

An OS decides which P-State is more appropriate for a core
and changes the state. This decision is made based on the
historical workload information. The OS may not choose the
same state for all cores, but all cores in the Intel processors will
run at the same clock frequency because the clock generator
module is shared by all these cores. Therefore, even if the OS
sets different P-States for the cores, only one state is selected
and applied to all the cores. In general, the highest performance
state of any core is selected and used as the P-state for all cores,
but another decision policy may be used. Because of this
hardware constraint of the current Intel processors, it is
recommended to distribute the workload evenly among all
active cores. Otherwise, the selected P-State will be appropriate
only for some cores, but not for the others.

C. Core-level power gating
Recent state-of-the-art Intel processors are capable of

core-level power gating, that is, processors can completely shut
down some of the cores (the OFF cores consume nearly zero
power). Processors with the power gating feature thus have an
additional C-State (C7) corresponding to near zero power
dissipation, but with the largest entry/exit costs. Note that the
processor used in this study supports core-level power gating.

III. POWER AND LATENCY MODELS
In this section we present power and latency models for the

target server system. Based on these models, we will
investigate how the CPU consolidation affects the power
dissipation and latency of the server. From now on, the CPU
consolidation is simply called ‘consolidation’. From the
analysis we will derive insights about how the consolidation
affects the power dissipation and latency. The analysis about
the power/latency tradeoffs will be verified by empirical results
in a later section. Note that thermal issues (e.g., leakage power
variation as a function of chip temperature) are not considered.
This is because we can do consolidation only when the system
is under-utilized, which also implies that the temperature of
processor chips is not so high.

A. Power model
This section presents a full platform-level power dissipation

model, accounting for the power consumed by all components
within a modern multi-processor server system. This power
model estimates the system power dissipation by using
statistical data reported by the system itself; i.e., the percentage
of time spent in specific core/processor C-state.

The processor power dissipation consists of core and uncore
power dissipations. The core includes all circuits used to
perform arithmetic/logic operations and L1 cache memories
whereas the term uncore refers to all other components in a
processor. Next we provide some notation and their definitions.

• 𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒 – Power dissipation by a core when the core is active
(i.e., executing tasks)

 4

• 𝑃𝐶𝐶𝑛
𝑐𝑜𝑟𝑒 – Power dissipation by a core when it is in the core

C-state n (𝐶𝐶𝑛), i.e., the core is in some sleep state. Note that
𝑃𝐶𝐶0
𝑐𝑜𝑟𝑒 is different from 𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒 .

• 𝑃𝑃𝐶𝑛
𝑢𝑛𝑐𝑜𝑟𝑒 – Power dissipation by uncore when the processor is

in processor C-state n (𝑃𝐶𝑛).
• 𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑐𝑜𝑟𝑒𝑖 – Percentage of time when a core is active and
executing tasks, which is also called (core) utilization (Utili).

• 𝑇𝐶𝐶𝑛
𝑐𝑜𝑟𝑒𝑖 – Percentage of time when a core is in the 𝐶𝐶𝑛 state.

• 𝑇𝑃𝐶𝑛
𝑢𝑛𝑐𝑜𝑟𝑒 – Percentage of time spent by the processor in the

𝑃𝐶𝑛 state.

Total (server platform) power dissipation is the sum of the
processor power dissipation and the power consumed by other
components, e.g., I/O, memory, and hard disc drive (HDD):

 icoretotal uncore other
iP P P P= + +∑ (1)

The core power dissipation can be estimated using 𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒 ,
𝑃𝐶𝐶𝑛
𝑐𝑜𝑟𝑒, 𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑐𝑜𝑟𝑒𝑖 , and 𝑇𝐶𝐶𝑛
𝑐𝑜𝑟𝑒𝑖 as shown below. CC0 is a special state;

a core is in the CC0 state when the core is normal operating state
(i.e., executing tasks). Note, however, that the CPU stays in that
state for a certain time (i.e., a timeout period) even when the
core becomes idle.

()

()

0 0

0

1

0

i i ii

i
n n

i i
n n

core core corecore core core
active active CC activeCC

corecore
CC CCn

core corecore core core
active CC active CC CCn

P P T P T T

P T

P P T P T

≥

≥

= ⋅ + ⋅ −

+ ⋅

= − ⋅ + ⋅

∑
∑

 (2)

Similar to the core power dissipation, the uncore power
dissipation is:

n n

uncore uncore uncore
PC PCnP P T= ⋅∑ (3)

Let us say we want to reduce the active CPU count (i.e.,
perform CPU consolidation). The workload level does not
change, so the power dissipations by other parts of the server
(𝑃𝑜𝑡ℎ𝑒𝑟) are not affected. In addition, the percentage of time
spent in the 𝑃𝐶𝑛 state (𝑇𝑃𝐶𝑛

𝑢𝑛𝑐𝑜𝑟𝑒) is only a function of the
workload level of the processor. In other words, changing the
active CPU count does not affect 𝑃𝑢𝑛𝑐𝑜𝑟𝑒 when the workload
level does not change. Therefore, the amount of change in
power dissipation as a result of CPU consolidation is:

() ()0 0

i

i i

n n

coretotal
i

core corecore core core
active CC active CC CCi n i

P P

P P T P T
≥

∆ = ∆

= − ∆ + ∆

∑
∑ ∑ ∑

(4)

In the above equation, the sum of 𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑐𝑜𝑟𝑒𝑖 is not affected by the

consolidation because the workload load level does not change;
that is, 0icore

activei
T∆ =∑ . Therefore,

 ()0
i

n n

coretotal core
CC CCn i

P P T
≥

∆ = ∆∑ ∑ (5)

As shown in the above equation, the power savings of
consolidation is a function of changes in 𝑇𝐶𝐶𝑛

𝑐𝑜𝑟𝑒𝑖 . CPU
consolidation makes inactive CPUs go to the deepest CC state,
which can reduce power dissipation. However, at the same time,
it also forces the active CPUs to stay in deeper CC states for
less amount of time because the utilization level of these active
CPUs increases. This may increase overall power dissipation.

The percentage of time spent in the 𝐶𝐶𝑛 state (𝑇𝐶𝐶𝑛
𝑐𝑜𝑟𝑒𝑖) is

influenced by many factors, and some of these factors are
unknown, e.g., details of the algorithm responsible for
changing the core C-states. Therefore, we will quantify the
power savings of CPU consolidation based on experimental
results.

B. Latency (delay) model
The proposed latency model is a function of its utilization

level, which is denoted by 𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑐𝑜𝑟𝑒𝑖 . In general, the latency

rapidly increases when a CPU approaches full utilization [5]:

1 i

i core
active

eL f
T

= +
−

 (6)

where 𝐿𝑖 is the latency of the 𝑖th CPU. The proposed latency
model must have another term that causes the latency to reduce
at higher utilization levels. This is because at higher utilization
there will be less frequent C-State transitions. Recall that
although switching to a deeper sleep state saves power, it takes
additional time to escape from a deeper sleep state. Therefore,
we have:

1

i

i

core
i activecore

active

eL f gT
T

 
= + −  − 

 (7)

The latency is affected by CPU consolidation because
 𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑐𝑜𝑟𝑒𝑖 is a function of the active CPU count. When 𝐾 tasks are

assigned to the system every second, the tasks are evenly
distributed to the 𝑚 active CPUs by a scheduler. Each CPU
thus serves 𝐾/𝑚 tasks every second. It is reasonable to suppose
 𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑐𝑜𝑟𝑒𝑖 is linearly proportional to the workload (𝐾/𝑚):
 ()icore

activeT d K m= (8)
However, this statement may not be valid when the workload is
very high. As an example, consider a scenario whereby
𝐻 = 𝐾/𝑚 memory-bound tasks are sent to the target CPU
every second. If more tasks (say 2 × 𝐻) are sent to the target
CPU per second, the cache miss rate on that CPU will also
increase (more precisely, the working sets of the 2 × 𝐻 tasks
will not fit on the cache, and therefore, every task will
experience a higher cache miss rate on average). This means
that the execution time of the tasks increases, and therefore, the
CPU utilization will increase super-linearly. Thus, the
utilization equation may be written as follows:

 2() ()icore
activeT c K m d K m= + (9)

Now we can write the latency as a function of the active CPU
count (m) and the total number of tasks (K):

() ()

() ()2
21
eL f gc K m gd K m

c K m d K m
= + − −

− −
(10)

The relationship between the coefficient ‘c’ and latency is
shown in Fig. 1(a); the larger ‘c’ is, the larger the latency is.
This makes sense because bigger overhead causes the latency to
increase. Therefore, the consolidation may incur potentially
high latency penalty if ‘c’ is large. The effect of another
coefficient ‘g’ is shown in Fig. 1(b); the latency may decrease
as fewer CPUs are used when ‘g’ is positive. However, as
shown in Fig. 1(b), the latency increases rapidly at last when the

 5

CPU count is too small since the CPUs are almost fully utilized.
Thus, one must carefully choose the number of active CPUs.
Similar to ‘c’, the coefficient ‘g’ is application-dependent.

Fig. 1 Latency vs. CPU count under the constant overall workload (K)

As seen from the above analysis, the latency penalty of the
consolidation is related to a few coefficients. Some of the
coefficients are dependent on the application characteristics, so
we are motivated to investigate the performance degradation by
consolidation for different classes of applications: CPU,
Memory, and I/O bound applications.

IV. EXPERIMENTAL SETUP
The purpose of this study is to verify and quantify the

relative effectiveness of CPU consolidation and DVFS in
reducing power dissipation of a modern multi-core/processor
server system. For this purpose, all results shown are based on
actual hardware measurement (not simulations). In this section,
the experimental setup is described in detail.

A. Hardware test-bed and Xen
The server system under study has two Intel Xeon E5620

processors, and each processor in turn includes four CPUs
(cores) in it (i.e., there are a total eight CPUs in the server). As
mentioned in section II.B, all CPUs in the same processor chip
run at the same clock frequency and voltage if they are active.
The CPUs can, however, be power gated independently of one
another. Each CPU has its own dedicated L1 and L2 caches but
shares an L3 cache with the other CPUs. The total size of the
system memory is 6GBytes. Each processor supports seven
clock frequency levels, from 1.6GHz to 2.4GHz.

A power analyzer measures the total platform power
dissipation, which includes not only the processor power
consumption but also the power consumption by other devices
such as HDD and DRAM modules. To precisely quantify the
effect of CPU consolidation vs. DVFS, the ‘power dissipation’
is calculated as the difference between the total system power
dissipation and the standby power dissipation. The standby
power dissipation is affected by the C-state limit setting, which
limits the deepest CC/PC states. The standby power dissipation
of our system is minimized when the C-state limit is C3, so this
standby power is chosen for our calculations. In our target
server system, this standby power is 98.1W. Therefore, all
power dissipation values reported are calculated as below
unless there is specific description:

 98.1measuredpower power W= − (11)
A photo of the target system is shown in Fig. 2.

Fig. 2 A server system under experiment and the power analyzer

We have chosen XEN version 4.0.1 for constructing the
virtualized system. XEN, which is an open source
hypervisor-based virtualization product, provides the APIs for
managing virtual machines. For this study, we ran experiments
under different configurations in terms of the number of virtual
CPUs (vCPU), clock frequencies, and the set of active CPUs.
We change the configurations by calling the XEN built-in
functions.

B. Benchmarks
As shown in section III, the effectiveness of the

consolidation may be affected by the type of applications.
Hence, the same experiments are conducted for three common
application classes: CPU, memory, and I/O-bound. A perlbmk
and mcf benchmarks, which are parts of the SPEC2K, are
selected for representative CPU-bound and memory-bound
applications, respectively. The Instruction per Cycle (IPC) of
perlbmk is high whereas its Memory Access per Cycle (MPC) is
low. On the other hand, mcf shows the opposite characteristics
(i.e., high MPC and low IPC) [3]. The SPEC2K does not
provide an I/O-bound benchmark, so another benchmark suite,
SPECWeb2009, was selected as an I/O-bound application.

C. Performance metrics of interest
In this study, there are two interesting performance metrics:

energy per task (E/task) and energy-delay product per task
(ED/task). The task denotes an instance of executing the
specified benchmark programs, e.g., perlbmk and mcf. A
standard way of calculating the energy consumption is by
integrating instantaneous power dissipation over time.
However, we can measure only the average power dissipation
(𝑃𝑎𝑣𝑔), which also includes the power dissipation when CPUs
are in the idle or sleep states. The consolidation affects the f
time spent in power states of CPUs (i.e., 𝑇𝐶𝐶𝑛

𝑐𝑜𝑟𝑒𝑖), so the power
dissipation while the CPUs are in these states should be
considered. Therefore, the gross energy consumption (𝐸𝑔𝑟𝑜𝑠𝑠 =
𝑃𝑎𝑣𝑔 × 𝑇𝑖𝑚𝑒) is an appropriate metric to use for energy
efficiency comparisons. The gross value of energy
consumption is proportional to the number of tasks served by
the system; therefore, the energy consumption per task (E/task)
is selected as one of our metrics:

number of active CPUs (m)

la
te

nc
y

(a) 0 < c1 < c2 < c3

number of active CPUs (m)

la
te

nc
y

(b) 0 < g1 < g2 < g3

c1

c2

c3

g1

g2

g3

 6

 /

gross avgE P Time
E task

of tasks of tasks
×

= = (12)

The consolidation may enhance this metric, i.e., reduces the
gross energy consumption per task; however, it can also cause
performance degradation. Because the latency (delay) of tasks
is not included in this metric, we need to define the
quality-of-service (QoS) in order to see whether the degradation
is acceptable or not. In this study, the 95th percentile delay is
selected for the QoS (cf. Fig. 3); that is, if the 95th percentile
delay is less than or equal to the maximum allowed limit, we
have met our QoS target. This limit itself is chosen as the 95th
percentile delay of a fully-loaded base system (without the
consolidation, i.e., all CPUs are active). The term ‘fully-loaded’
means the total CPU utilization is at 80% out of 100%. This is
reasonable because servers are designed to produce high
performance at around 80% utilization levels (due to contention
issues, the CPU performance level drops rapidly as the CPU
utilization approaches 100%). These maximum delays of
perlbmk and mcf are 182ms and 188ms, respectively (cf.
TABLE I).

Fig. 3 Delay (latency) cumulative distribution

TABLE I
MAXIMUM ACCEPTABLE DELAY (LATENCY)

 perlbmk mcf
Maximum latency (ms) 182.942 188.2305
There is another performance metric which includes latency

(delay) in it:

()

/

avg

avg
exe wait

P Time
ED task latency

of tasks
P Time

T T
of tasks

×
= ×

×
= × +

 (13)

In the above equation, latency is calculated as a sum of the
execution and wait time of a task. Notice that the ‘latency’ used
in the ED product is different from the ‘Time’ used for the gross
energy calculation (12).

For perlbmk and mcf, the goal is to find the best
configuration that minimizes these two performance metrics,
i.e. either 𝐸/𝑡𝑎𝑠𝑘 or 𝐸𝐷/𝑡𝑎𝑠𝑘 , without any performance
degradation. Our purpose is to compute the energy savings by
the CPU consolidation technique, so all results correspond to an
under-utilized server system; hence, the CPU utilization is set
to be around 30%. Recall that we expect that there are no
thermal events which can be caused by very high load and that
chip temperature variation is small. For perlbmk and mcf, we
investigate the delay and energy efficiency with various
configurations (defined as combinations of the number of
vCPUs, the number of active CPUs, and clock frequency of the
CPUs).

For SPECWeb2009, the goal is to find the best configuration
that minimizes the 𝐸𝐷/𝑡𝑎𝑠𝑘 while meeting the performance
target (i.e., QoS > 95%). For SPECWeb2009, we can specify
the overall the workload level (i.e., simultaneous user session),
but instantaneous the workload level changes dynamically.
Hence, we develop four online consolidation algorithms to
verify the energy savings by the consolidation.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, experimental results for SPEC benchmarks

are presented and analyzed. We start from investigating the
consolidation overhead4 and suggest that the number of virtual
CPUs (vCPU) has to be dynamically changed to reduce the
overhead. Because there are eight CPUs in the system, it is also
important to find out, for consolidation, which set of CPUs is
appropriate in terms of energy efficiency and latency. We also
present a detailed power model, investigate core and processor
C-states vs. workload level, and verify the latency model which
was presented previously. Next we report the E/task, ED/task
and the latency of perlbmk and mcf benchmarks under various
configurations (i.e., active CPU counts and clock frequencies),
and discuss the effectiveness of the consolidation vs. DVFS
technique. Finally, we present a highly effective, yet simple,
online consolidation algorithms for SPECWeb2009 and report
energy savings that is achieved by it.

A. Consolidation overhead
The number of virtual CPUs (i.e., vCPU count) is an

important parameter of a virtual machine (VM) because this
count limits the performance of the VM. For example, a VM
with two vCPUs is able to utilize up to two (physical) CPUs at a
time, so the maximum CPU utilization of the VM is 200%.
However, managing vCPU causes additional overheads for the
virtualized system, thus, the overall performance of the system
decreases if there are too many vCPUs in the system. The ratio
of vCPU to CPU count is an appropriate indicator of this
overhead.

The experimental results of perlbmk with different ratio
values are shown in Fig. 4. The active CPU count is four and
does not change in this experiment, so the total CPU utilization
is always equal to or less than 400%. The same experiments are
repeated for four different vCPU counts: 6, 8, 10, and 12. As
shown in the figure, the power dissipation increases slightly as
the ratio rises (i.e., the vCPU count increases). The utilization
rises as the ratio becomes bigger, and reaches to 400% (i.e.,
almost fully-utilized) when the ratio is equal to or greater than
2.5. This increase in the utilization implies that larger vCPU
count causes larger overhead. When the system is almost
fully-utilized, the throughput (defined as the number of tasks
served per second) drops, and both execution and wait times
increase (the wait time is much larger than the execution time).

4 The DVFS overhead has been extensively studied in reference [13]

0

100

delay

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

(%
)

↑ 95%

95th
percentile →
delay

 7

Fig. 4 Consolidation overhead – perlbmk

The results of mcf are reported in Fig. 5. The utilization
increases slightly as the ratio becomes higher whereas the
power and throughput are almost independent of the ratio. The
wait time increases rapidly when the ratio is greater than four;
that is, for mcf, the overheads of managing vCPUs are less than
perlbmk. However, this does not mean that this overhead is
negligible for mcf; the ratio has to be smaller than four to avoid
significant performance degradation.

Fig. 5 Consolidation overhead – mcf

From the results reported above, it is important to adjust the
vCPU count for both perlbmk and mcf. We keep the vCPU to
CPU count ratio at around two for all test cases presented from
now on.

B. Selecting CPUs for consolidation
The basic idea of the consolidation is to utilize the minimum

number of CPUs; hence we can turn off as many CPUs as
possible. In addition to the active CPU count, CPU selection
scheme may be important for multi core/processor systems.

A naming convention for CPUs in the target server system is
shown in Fig. 6. An ID starts from 0 and the biggest ID is 3. The
ID of the second processor starts from 4. When two CPUs are
selected from the eight CPUs, there are total 28 possible cases.
However, by considering redundancy, only three meaningful
cases are: ‘0, 1’, ‘0, 2’, and ‘0, 4’ cases. The first one (i.e., ‘0, 1’
case) selects the first two CPUs which are close to each other.
The second case (‘0, 2’ case) chooses two CPUs from the same
processor package, but there is another CPU between them. The
last one (‘0, 4’ case) selects a CPU from each package. The
comparisons among these three cases are shown in Fig. 7.

Fig. 6 CPU/core ID naming

The power and latency comparisons of perlbmk/mcf for three
distinct sets of active CPUs are shown in Fig. 7. As shown in
the figure, there is no noticeable difference among the three
active CPU sets. It is because, as shown in Fig. 6, the
architecture of the processor is symmetric; hence there is no
difference between case ‘0, 1’ and ‘0, 2’. In addition, we can
use only two active CPUs when the utilization is relatively low
(up to 200% out of 800%); therefore, the difference in power
dissipation and latency between two active CPU sets, even if it
exists, may not significant. Therefore, if we need only two
active CPUs (i.e., when the workload level is quite low), any set
of CPUs can be selected.

Fig. 7 Power and delay vs. CPU IDs – 2 active CPUs

Now we do similar experiments for the other case that four
CPUs are active. The three representative active CPU sets are
selected for the experiments: ‘0, 1, 2, 3’, ‘0, 2, 4, 6’, and ‘0, 1, 4,
5’ cases. For the first case, all four CPUs are selected from one
processor. The second case utilizes two CPUs from each
processor. The third case looks similar to the second one except
that two CPUs in the same processor reside next to each other.

The power and latency comparisons of perlbmk/mcf are
shown in Fig. 8. Both power dissipation and utilization is
smallest for the first case ‘0, 1, 2, 3’, which selects all CPUs
from the same processor. However, the amount of difference is
quite small. Notice that throughputs (i.e., tasks/s) of three sets
of active CPUs are almost identical to one another. More
noticeable difference is observed for latency; latency of the first
case is smallest. It is because the overhead of context switch
within a processor is less than that of context switch from a
processor to another one. On the other hand, for mcf, all kinds
of metrics are almost independent of active CPU sets.

 8

Therefore, when we need four active CPUs, we can select all
CPUs from the same processor regardless of characteristics of
applications, i.e. either CPU or memory bound. It is because the
selection method reduces both latency and power dissipation of
CPU bound applications.

Fig. 8 Power and delay vs. CPU IDs – 4 active CPUs

Based on the experimental results shown above, we use a
simple active CPU selection method, which is shown in
TABLE II. This method may not be appropriate for the other
processors, but a similar method as above can be used to derive
similar tables for other processor systems.

TABLE II
ACTIVE CPU SELECTION

CPU count CPU IDs CPU count CPU IDs
2 0, 1 5 0, 1, 2, 3, 4
3 0, 1, 2 6 0, 1, 2, 3, 4, 5
4 0, 1, 2, 3 7 0, 1, 2, 3, 4, 5, 6

C. Power model derivation and verification
This section presents a full platform-level power dissipation

model, accounting for the power consumed by the core and
uncore components within the target server system. As will be
seen, this model is more detailed than the generic one that was
described in section III.A

Our system allows limiting the deepest C-state, and we can
set the limit to C1, C2, or C3. The hardware-reported
information for each C-state limit is shown in TABLE III. As
shown in this table, not all information is available; percentage
of times spent in CC0, CC1, PC0, and PC1 are not reported,
hence these unreported times will be estimated. Our goal is to
estimate the power dissipation when all C-states are available,
i.e., the C-state limit is C3, but this is a difficult undertaking.
Therefore, we start from the simplest case when the C-state
limit is C1. Subsequently, we go over the second case when the
C-state limit is C2. Finally, we will derive the power equation
when the C-state limit is C3. All results shown in this section
are obtained using perlbmk. The results for mcf are omitted to
save space. Note that we can derive the power equation for mcf
by using an identical method.

Power dissipation is dependent on the C-state limit as shown
in Fig. 9. For the higher C-state limit, the power dissipation is
lower. The power difference among different C-state limits is
greater when the utilization is lower.

TABLE III
C-STATE LIMIT AND HARDWARE-REPORTED INFORMATION

C-state
limit

Core C-state Processor C-state
TCC0 TCC1 TCC3 TCC6 TPC0 TPC1 TPC3 TPC6

C1 available
but not

reported

n/a n/a available
but not

reported

n/a n/a
C2 OK n/a OK n/a
C3 OK OK OK OK

Fig. 9 power dissipation vs. utilization for three C-state limits

We provide details about how we derive the power
dissipation equations for the three C-state limits in the
Appendix. The key idea behind the derivation is to start with
equation (2) and (3), and then use a combination of analytical
expansion of terms, lookups from hardware-reported
information (TABLE III), and regression analysis to derive the
appropriate power macro-models as shown in TABLE IV. Note
that time spent in power states of a core is almost identical to
one another because a CPU scheduler evenly distributes tasks.
Hence, these times in TABLE IV are core-independent terms.

TABLE IV
POWER MACRO-MODELS

C-state
limit Power equation

C1 𝑃𝑒𝑠𝑡.
𝑡𝑜𝑡𝑎𝑙 = 21.88𝑇𝑎𝑐𝑡𝑖𝑣𝑒 + 141.12

C2 𝑃𝑒𝑠𝑡.
𝑡𝑜𝑡𝑎𝑙 = 22.48𝑇𝑎𝑐𝑡𝑖𝑣𝑒 − 5.76𝑇𝐶𝐶3 − 31.16𝑇𝑃𝐶3 + 140.7

C3
𝑃𝑒𝑠𝑡.
𝑡𝑜𝑡𝑎𝑙 = 22.48𝑇𝑎𝑐𝑡𝑖𝑣𝑒 − 5.76𝑇𝐶𝐶3 − 8.56𝑇𝐶𝐶6 −

31.16𝑇𝑃𝐶3 − 42.55𝑇𝑃𝐶6 + 140.7
The power models presented in the above table are highly

accurate. For example, Fig. 10 shows a comparison between
actual measurements and model predictions for the case that
C-state limit is set to C3 (the most complex case). As you can
see the difference between the actual and predicted values is
extremely small.

Fig. 10 Power estimation vs. measurements when the C-state li it is C3

0,1,2,3 0,2,4,6 0,1,4,5
0

20

40

60

CPU ID

po
w

er
 (W

)

0

100

200

300

ut
il

(%
)

power
util

0,1,2,3 0,2,4,6 0,1,4,5
0

20

40

60

80

CPU IDs
la

te
nc

y
(m

s)

(a) perlbmk

0

10

20

ta
sk

s
/ s

exe
wait
throughput

0,1,2,3 0,2,4,6 0,1,4,5
0

20

40

60

CPU ID

po
w

er
 (W

)

0

100

200

ut
il

(%
)

power
util

0,1,2,3 0,2,4,6 0,1,4,5
0

50

100

CPU IDs

la
te

nc
y

(m
s)

(b) mcf

0

5

10

15

ta
sk

s
/ s

exe
wait
throughput 0 20 40 60 80 100

100

110

120

130

140

150

160

utilization (%)

sy
st

em
 p

ow
er

 (W
)

C-state limit: C1
C-state limit: C2
C-state limit: C3

0 20 40 60 80 100
100

120

140

160

utilization (%)

sy
st

em
 p

ow
er

 (W
)

Powermeasured

Powerestimated

 9

D. Core and processor C-states vs. workload level
Now we investigate the relationship between the active CPU

count and CC/PC states. The percentage of time spent in
core/processor C-states for three active CPU count settings are
shown in Fig. 11 and Fig. 12. The inactive CPUs stay in the
deepest sleep state (i.e., CC6 and PC6). For the same workload
(number of arriving tasks per second), fewer active CPUs
implies higher workload per CPU; therefore, the active CPUs
stay in the deeper C-state for a shorter period of time. For
example, when the workload level is 40 tasks per second, the
time spent in the CC3 state for the four active CPU case is
greater than that for the eight active CPU case. On the other
hand, the percentage of time spent in CC6 for the four active
CPU case is smaller than that for the eight active CPU case. If
we plot the same graph as a function of the number of tasks per
core (i.e., core workload), there is no difference among three
active CPU count settings (cf. Fig. 11). Therefore, if we know
about the amount of time spent is core C-states (𝑇𝐶𝐶𝑘) as a
function of the core workload, we also estimate a new 𝑇𝐶𝐶𝑘
when we change active CPU count.

Fig. 11 Core C-state vs. workload levels

Percentages of time spent in various processor states (𝑇𝑃𝐶𝑘)
are reported in Fig. 12. There is only a small difference among
three active CPU counts as assumed in (5). Small amount of
time is spent in the PC3 state under all workload levels and
active CPU counts. The percentage of time spent in the PC6
state drops dramatically when the workload level increases.

Fig. 12 Processor C-state vs. workload levels

The system power dissipations of the three active CPU
counts are reported in Fig. 13. Note that the difference in power
dissipation values for various active CPU counts is larger under
higher workload. Furthermore, when we decrease the active
CPU count, power dissipation by inactive CPUs decreases
because these CPUs stay in the deepest CC state. However, at
the same time, the amount of time when the active CPUs stay in
the deeper CC states reduces, and this in turn increases the
power dissipation by active CPUs. These two effects tend to
cancel each other when the workload level is low. For higher
workload, there is no big difference in the gross time spent in
the CC states (except the deepest state) among the three active
CPU counts while times spent in the deepest states are still
quite different from each other; therefore, the power difference
becomes greater. In addition, this difference is larger for higher
clock frequencies. More detailed analysis about the CPU
consolidation will be presented at the Section V.TABLE V.

Fig. 13 Power dissipation vs. active CPU counts

E. Latency model verification
We investigate how accurate the presented latency model is.

Results for perlbmk/mcf and the corresponding regression lines
are shown in Fig. 14. The models do not consider DVFS (i.e.,
assume that frequency is fixed), hence the lowest frequency (i.e.
1.6 GHz) is chosen for this experiment. The R2 (also known as
the coefficient of determination) in the figure represents how
much the model fits the real data points. Generally, a model is
more accurate as its R2 is closer to 1. According to the R2 values,
the average utilization 𝑈𝑖 (i.e., utilization of one CPU) and
latency model are quite accurate as shown in Fig. 14.

The regression coefficients are presented in TABLE V. The
first coefficient ‘c’ represents the degree of consolidation
overheads. The coefficient from perlbmk results is always
bigger than that from mcf results. This implies that perlbmk
(CPU bound application) causes higher consolidation
overheads than mcf (memory bound application). The second
coefficient ‘g’ captures a power state switch effect. If the
coefficient is positive and large enough, the latency possibly
decrease by the consolidation. The latency of perlbmk is
minimized when there are five as shown in Fig. 14. On the other
hand, this coefficient g of mcf is very small; hence, the latency
of mcf monotonically increases as active CPU count decreases.

0 50 100
0

50

100

tasks/s

pe
rc

en
ta

ge
 (%

)

CC34CPU

CC36CPU

CC38CPU

0 50 100
0

50

100

tasks/s

CC64CPU

CC66CPU

CC68CPU

0 5 10
0

50

100

tasks/s per core

pe
rc

en
ta

ge
 (%

)

CC34CPU

CC36CPU

CC38CPU

0 5 10
0

50

100

tasks/s per core

CC64CPU

CC66CPU

CC68CPU

0 50 100
0

50

100

tasks/s

pe
rc

en
ta

ge
 (%

)

PC34CPU

PC36CPU

PC38CPU

0 50 100
0

50

100

tasks/s

PC64CPU

PC66CPU

PC68CPU

0 20 40 60 80 100 120 140
100

120

140

160

180

200

tasks/s

sy
st

em
 p

ow
er

 (W
)

power4CPU

power6CPU

power8CPU

 10

(a) perlbmk

(b) mcf

Fig. 14 Regression results (freqency = 1.6GHz)

TABLE V
COEFFICIENTS OF THE DELAY MODEL

 c g
perlbmk 2.39 3.99

mcf 0.67 -0.06

F. E/task and ED/task improvement of perlbmk / mcf
One of the goals of this study is to quantify the energy

savings via the CPU consolidation, which is important for
investigating the effectiveness of the technique. In this section,
the energy savings under different conditions (i.e., the number
of active CPUs and clock frequencies) are compared.

Experimental results of four different the workload levels
(i.e., tasks/s) are reported in Fig. 15. Various columns depict the
number of tasks (tasks/s), the sum of execution and waiting
times (i.e., delay), energy per task (E/task), and energy per task
times delay (ED/task), respectively. Recall that the maximum
allowed delay of perlbmk is 182ms. If either the system is fully
loaded or the delay is greater than its maximum value, the
corresponding configuration (i.e., the combination of active
CPU count and clock frequency) is tagged as invalid. For
example, when 48 tasks arrive in the system every second, the
configuration of three active CPUs and 1.6GHz clock
frequency is invalid. All invalid configurations are ignored.

As mentioned before, there are two performance metrics of
interest. The first metric, energy dissipation per task (E/task), is
reported in the third row of the figure. Smaller E/task implies
the system consumes less power to execute a task, so the best
configuration is the one that minimizes this metric without any
performance violation. Generally speaking, lower clock
frequency and smaller active CPU count result in lower E/task;
this trend is observed for all the workload levels. On the other
hand, the E/task decreases as the workload increases due to the
power state switching mechanism as explained next. When a
system becomes idle, it does not switch its power state to the
deeper state immediately. Only when the idle state persists for
some predefined time, the power state can be switched. This
policy avoids too frequent power switching. E/task includes not

only the energy consumed by executing tasks but also the
energy consumed when cores are staying in intermediate power
state (excluding the deepest power state). The first energy
consumption term (for executing a task) is not affected by
workload while the second energy consumption term (staying
in the intermediate power state) increases as the workload
reduces; therefore, the magnitude of E/task decreases as the
workload increase.

The second interesting performance metric is ED/task, which
is shown in the last column of the figure. This metric shows a
very different trend from that of E/task; higher CPU frequency
is desirable in terms of minimizing the ED/task. On the other
hand, smaller active CPU count decreases the ED/task (which
is the same trend when considering E/task). This implies that
there is much lower impact on delay by CPU consolidation than
by reducing the CPU frequency. Therefore, higher frequency
and smaller active CPU is a better configuration for minimizing
the ED/task if the configuration does not violate performance.
Another observation is that the ED/task is much more sensitive
to active CPU count than the E/task. In particular, ED/task
dramatically increases when the system is almost fully loaded,
e.g., four active CPUs and 1.6GHz when tasks/s is 48.

 Fig. 15 Experimental results - perlbmk

A similar experiment was conducted using the mcf
benchmark. Results are reported in Fig. 16. Generally speaking,
CPU consolidation does not impact the E/task; this is observed
for all the workload levels. The magnitude of E/task metric is
smaller as the workload level increases, which is the same as
the trend observed for the perlbmk benchmark. Similar to the
E/task, the ED/task is not affected by CPU consolidation. Only
selection of the CPU frequency affects both the E/task and
ED/task metrics. Lower frequency decreases the E/task
whereas higher frequency decreases the ED/task; clearly, the
best configuration for a metric could be different from that of
another metric.

3 4 5 6 7 8

30

40

50

R2 = 0.995
T ac

tiv
e (%

)

active CPUs
3 4 5 6 7 8

120

130

140

150

active CPUs

R2 = 0.986

la
te

nc
y

(m
s)

3 4 5 6 7 8

40

50

60

70

80

R2 = 0.999

T ac
tiv

e (%
)

active CPUs
3 4 5 6 7 8

300

400

500

600

active CPUs

R2 = 0.989
la

te
nc

y
(m

s)

 11

 Fig. 16 Experimental results - mcf

From the previous results, we can find the best
configurations (combinations of clock frequency setting and
active CPU count). The reductions in E/task and ED/task by
voltage/frequency setting and consolidation are graphically
depicted in Fig. 17 and Fig. 18. The amount of reduction in
E/task increases as the workload level becomes higher. The
E/task is minimized when both CPU consolidation and
voltage/frequency setting are applied. Consolidation does not
reduce E/task noticeably for mcf whereas it reduces E/tasks up
to 20% for perlbmk. In short, the amount of E/task reduction
increases as workload becomes greater, and consolidation does
not change E/task of mcf. The second metric ED/task is not
improved by the voltage/frequency setting for both perlbmk
and mcf. However, consolidation decreases the ED/task of
perlbmk by up to 33%. The amount of ED/task (perlbmk)
improvement decreases slightly as the workload level increases.
On the other hand, there is no improvement on ED/task by
consolidation for mcf. In the end, there are several findings as
described next.
perlbmk (CPU-intensive)
• Lower voltage/frequency and smaller active CPU count

result in lower E/task (as long as the minimum delay target is
met)—DVFS and consolidation can be effective techniques
for reducing E/task.

• Higher voltage/frequency and smaller active CPU is a better
configuration for minimizing the ED/task (again as long as
the configuration does not violate the minimum performance
specs)—DVFS is ineffective for reducing ED/task whereas
consolidation can reduce ED/task.

mcf (memory-bound)
• Lower voltage/frequency results in lower E/task but higher

ED/task (Higher voltage/frequency is better for minimizing
ED/task, but increases E/task)—DVFS can be useful for
lowering E/task but is ineffective for reducing ED/task.

• CPU consolidation does not have much of an impact on both
E/task and ED/task.

Summary
• For both CPU-intensive and memory-bound tasks, low

voltages/frequencies are good for minimizing E/task whereas
minimum ED/task is typically achieved at higher
voltages/frequencies.

• For CPU-intensive tasks, consolidation helps lower both
E/task and ED/task; Consolidation has little effect for
memory-bound workload.

Fig. 17 E/task and ED/task reduction - perlbmk

Fig. 18 E/task and ED/task reduction - mcf

G. CPU consolidation for SPECWeb2009
In the previous section, the effectiveness of the CPU

consolidation was studied for the CPU bound (perlbmk) and
memory bound (mcf) applications. In this section, experimental
results of the SPECWeb2009, which is an I/O bound
benchmark, are presented. SPECWeb2009 is a very well
developed benchmark suite, and its main purpose is to evaluate
a web server which is an I/O-bound application; hence, the
SPECWeb2009 results can show how the CPU consolidation
affects the delay and energy efficiency of I/O-bound
applications. The energy efficiency is quantified as energy
delay product per packet (ED/packet). SPECWeb2009 requires
a simultaneous user sessions (SUS) count as an input. We can
specify level of workload by setting this SUS count, but this
specifies only the overall workload intensity; i.e., instantaneous
workload fluctuates. Hence, an online consolidation method is
necessary. In this section, we start from understanding the
characteristics of the SPECWeb2009. After that, four online
consolidation algorithms are presented. Finally, the
experimental results are shown and analyzed.

Web applications are not compute intensive in general [14];
hence, the performance (i.e., the average response time) is less
dependent on the clock frequencies as shown in Fig. 19 (a).
This is because the performance of web servers is highly related
to the I/O processes, such as network and disk access. Likewise,

10 20 30 40 50
0

50

100
E/task

tasks/s

re
du

ct
io

n
(%

)

Volt/freq setting
Consolidation
Both

10 20 30 40 50
0

50

100
ED/task

tasks/s

10 20 30
0

50

100
E/task

tasks/s

re
du

ct
io

n
(%

)

Volt/freq setting
Consolidation
Both

10 20 30
0

50

100
ED/task

tasks/s

 12

the performance is almost independent of the active CPU count
if a sufficient number of CPUs is active. The relationship
between the power dissipation and frequencies/active CPU
count is shown in Fig. 19 (b). The amount of power dissipation
declines as the frequency becomes lower and/or the active CPU
count is reduced. This result implies that both DVFS and the
CPU consolidation improve the energy efficiency without
significant performance degradation. In addition, we expect the
further improvement when both techniques are applied at the
same time.

Fig. 19 Response time and power dissipation

It is necessary to investigate the relationship between
frequency and utilization. When an OS changes the clock
frequency, the utilization also changes even if the workload
intensity does not change. Hence, before changing the
frequency the corresponding utilization needs to be estimated
to prevent an undesirable situation whereby the active CPUs are
overloaded because the chosen frequency is too low for the
level of workload. The relationship between the frequency and
utilization is depicted in Fig. 20. According to the R2 value the
equation is almost perfectly fit the real data points. The
relationship is as follows:

 ()u fβ α− = (14)
where 𝛼 = 150.4, 𝛽 = 29.9 and 0 ≤ 𝑢 ≤ 800 (i.e., there are
eight CPUs). The coefficient β is relatively small and can be
ignored. Hence, the equation can be simplified as follows:

 i i j jf u f u α= = (15)

Fig. 20 Frequency vs. total utilization

H. Online CPU consolidation algorithms
As shown in the previous section, both the clock frequency

and the active CPU count affect E/task and ED/task. In this
section, we present online algorithms, which perform
voltage/frequency setting and consolidation simultaneously.
These algorithms monitor the CPU utilization, and change the
frequency setting and/or the active CPU count if and when

desirable. The main idea of these algorithms is to utilize as few
CPUs at low frequencies as possible (while meeting the
performance constraints); the decision is made by considering
the current CPU utilization levels. This approach is reasonable
for I/O bound applications because performance degradation is
not significant unless the CPU is very highly utilized [10]. To
avoid energy and delay overheads associated with frequent
state changes, the proposed algorithms change the system
configuration conservatively, that is, if the system is
overloaded, these algorithms promptly increase the frequency
and/or the number of active CPUs. If, however, the system is
underutilized, they apply a state change (reduce frequency
and/or turn off some CPUs) only if this situation persists for at
least five seconds.

We present four algorithms whose main idea is quite similar
to each other: if the average utilization (𝑢𝑖) of a CPU is greater
than an upper threshold (𝑢ℎ𝑖𝑔ℎ), these algorithms assign more
resource by increasing the clock frequency of the active CPUs
and/or adding to the number of active CPUs. On the other hand,
if the average utilization is less than a lower threshold (𝑢𝑙𝑜𝑤),
they will release some resource by decreasing the CPU
frequency and/or reducing the number of active CPUs. It is
necessary to estimate the new utilization level under the new
frequency and active CPU count setting in order to avoid any
performance degradation. Equation (15) does not account for
the number of active CPUs (𝑐𝑖) in the system, and hence, it
must be modified to apply to this new situation:

 i i i j j jc f u c f u= (16)
Because we can change both the CPU frequency and the active
CPU count (when needed), we must decide which one has
higher priority: 1. Change the clock frequency first and the
CPU count next, 2. Change the CPU count first and the clock
frequency next. Two pseudo codes are presented in Fig. 21. The
first function 𝑚𝑖𝑛_𝑐𝑝𝑢() finds the minimum CPU count (𝑥𝑐)
without any performance degradation. After finding the
minimum CPU count, it determines the slowest frequency (𝑥𝑓)
with the new CPU count that would still avoid any performance
degradation. This function tries to make a new utilization close
to 𝑢𝑚𝑖𝑑 , which is the median of high/low thresholds and is
calculated as follows:

 , 85%, 65%
2

high low
mid high high

u u
u u and u

+
= = = (17)

The second function 𝑚𝑖𝑛_𝑓𝑟𝑒𝑞() finds the slowest frequency
first, and then finds the minimum CPU count with the new
frequency. Again no performance penalty is allowed.

Function min_cpu(𝑢𝑖 , 𝑓𝑖 , 𝑐𝑖) {
 𝑥𝑐 = � 𝑢𝑖𝑓𝑖

𝑢𝑚𝑖𝑑𝑓𝑚𝑎𝑥
𝑐𝑖�;

 𝑥𝑓 = � 𝑢𝑖𝑐𝑖
𝑢𝑚𝑖𝑑𝑥𝑐

𝑓𝑖�;
 return (𝑥𝑐 , 𝑥𝑓);
}

Function min_freq(𝑢𝑖 , 𝑓𝑖 , 𝑐𝑖) {
 𝑥𝑓 = � 𝑢𝑖𝑐𝑖

𝑢𝑚𝑖𝑑𝑐𝑚𝑎𝑥
𝑓𝑖�;

 𝑥𝑐 = � 𝑢𝑖𝑓𝑖
𝑢𝑚𝑖𝑑𝑥𝑓

𝑐𝑖�;
 return (𝑥𝑐 , 𝑥𝑓);
}

Fig. 21 Psuedo codes for min_cpu() and min_freq()

The above two functions are called when the system is
under-utilized (i.e., the current utilization is smaller than 𝑢𝑙𝑜𝑤)
or over-utilized (i.e., the current utilization is greater than 𝑢ℎ𝑖𝑔ℎ

1.5 2 2.5
1

1.2

1.4

1.6

1.8
(a)

frequency (GHz)

re
sp

. t
im

e (
s)

3CPU
4CPU
5CPU
6CPU

1.5 2 2.5
45

50

55

60

65
(b)

frequency (GHz)

po
w

er
 (W

)

0.4 0.45 0.5 0.55 0.6 0.65
90

100

110

120

130

1/freqency (1/GHz)

to
ta

l u
til

iz
at

io
n

(%
)

u = α / f + β
α = 150.422, β = 29.854
R2 = 0.999

 13

). For each case, we can choose which function is called, i.e.,
𝑚𝑖𝑛_𝑐𝑝𝑢() or 𝑚𝑖𝑛_𝑓𝑟𝑒𝑞(). Therefore, there are a total of four
online algorithms, which are shown in Fig. 22. The first
algorithm (type1) calls 𝑚𝑖𝑛_𝑐𝑝𝑢() function for both the under
and over-utilized CPU cases. The type2 algorithm calls
𝑚𝑖𝑛_𝑐𝑝𝑢() when a CPU is over-utilized and 𝑚𝑖𝑛_𝑓𝑟𝑒𝑞() if it
is under-utilized. The type3 algorithm calls 𝑚𝑖𝑛_𝑓𝑟𝑒𝑞() when
a CPU is over-utilized and 𝑚𝑖𝑛_𝑐𝑝𝑢() if it is under-utilized.
The last algorithm (type4) calls 𝑚𝑖𝑛_𝑓𝑟𝑒𝑞() for both over and
under-utilized CPU cases.

Fig. 22 Four online consolidation algorithms

We do experiments for three different SUS counts and
compare the energy-delay product per packet (ED/packet) and
the quality of service (QoS) for the aforesaid four consolidation
algorithms and two more baseline algorithms. The QoS refers
to the percentage of packets for which delay is less than a
pre-defined limit. This QoS is reported by SPECWeb2009
benchmark suite. In addition to the four proposed algorithms,
we provide results for two other algorithms: base and
ondemand. The base algorithm means there is no dynamic
adjustment of the active CPU count and frequency, i.e.,
frequency is the highest one and all CPUs are active. The
ondemand algorithm is the default voltage/frequency setting
method used in LinuxTM, which does not change the active CPU
count but changes the CPU frequency (all CPUs will have the
same frequency at any time).

Experimental results are reported in Fig. 23. Regardless of
the SUS counts, the proposed algorithms always result in
smaller ED/packet compared to the base and ondemand
algorithms. Among the four proposed algorithms, type1
algorithm is the best one in terms of ED/packet. As the SUS
count increases, QoS of all algorithms decreases, but QoS
remains greater than 95%; hence, there are no performance
degradation concerns. Note that the magnitude of ED/packet
metric also decreases as the SUS count increases, which
implies that the system consumes less energy for executing a
packet. This is because of the energy non-proportionality of the
existing server systems (including the one used in this study).
From these results, we can state that the type1 consolidation
algorithm is the best. This implies that, at least for the system
under experiment, adjusting the CPU frequency has higher
impact on the ED/packet metric than changing the CPU count.

(a) SUS=1000

(b) SUS=1400

(c) SUS=1900

Fig. 23 ED/pack and QoS comparisons

We compare ED/packet of the ondemand and type1 algorithm,
which is shown in TABLE VI. For three SUS settings,
ED/packet of type1 algorithm is always smaller than that of
ondemand. In addition, the difference between them increases
for the larger number of user sessions.

TABLE VI
COEFFICIENTS OF THE DELAY MODEL

SUS ED/packet (Js)
∆ED/packet(%) ondemand type1

1000 0.91 0.82 9.44
1400 0.76 0.67 11.83
1900 0.51 0.44 13.648

 14

VI. CONCLUSION
DVFS has been a promising method for reducing the energy

consumption, but the energy saving leverage of DVFS
decreases as the supply voltage level decreases with CMOS
scaling. In this report, CPU consolidation was considered as a
substitute, or better stated, as a complement. The idea of this
technique is simple; however, we need to investigate the CPU
consolidation under realistic environment to maximize the
energy savings via the consolidation. The effectiveness of CPU
consolidation was thus investigated for different configurations:
types of applications, the virtual CPU count, the active CPU
count, and the active CPU set. By analyzing the experimental
results, we learn a few lessons useful. First, unnecessarily large
number of virtual CPUs causes significant performance
degradation; hence, the virtual CPU count must be dynamically
adjusted. Second, the CPU consolidation improves the energy
efficiency of CPU bound applications more than that of
memory bound applications. Third, the maximum improvement
on the energy efficiency is achieved when both DVFS and the
consolidation are applied.

ACKNOWLEDGMENT
The authors would like to thank Dr. Timothy Kam of Intel

Corp. who contributed to a preliminary version of this work and
provided helpful feedback and advice regarding the
experimental setup, results analysis, and discussions.

REFERENCES
[1] L. A. Barroso and U. Holzle, "The case for energy-proportional

computing," Computer Magazine, vol. 40, pp. 33-37, 2007.
[2] O. Bilgir, M. Martonosi, and Q. Wu, "Exploring the potential of

CMP core count management on data center energy savings," in
Proceedings of the 3rd Workshop on Energy Efficient Design,
2011.

[3] G. Dhiman, G. Marchetti, and T. Rosing, "vGreen: a system for
energy efficient computing in virtualized environments," in
Proceedings of the 14th ACM/IEEE International Symposium on
Low Power Electronics and Design, San Fancisco, CA, USA,
2009.

[4] R. Nathuji and K. Schwan, "VirtualPower: coordinated power
management in virtualized enterprise systems," in Proceedings of
twenty-first ACM SIGOPS Symposium on Operating Systems
Principles, Stevenson, Washington, USA, 2007.

[5] N. . Bobroff, A. Kochut, and K. Beaty, "Dynamic Placement of
Virtual Machines for Managing SLA Violations," in Proceedings
of 10th IFIP/IEEE International Symposium on Integrated
Network Management, 2007, pp. 119-128.

[6] H. N. Van, F. D. Tran, and J.-M. Menaud, "Autonomic virtual
resource management for service hosting platforms," in
Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing, 2009.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I.
Pratt, and A. Warfield, "Live migration of virtual machines," in
Proceedings of the 2nd Symposium on Networked Systems Design
& Implementation - Volume 2, 2005.

[8] G. von Laszewski, W. Lizhe, A. J. Younge, and H. Xi,
"Power-aware scheduling of virtual machines in DVFS-enabled
clusters," in Proceedings of IEEE International Conference on
Cluster Computing and Workshops, 2009, pp. 1-10.

[9] P. Pillai and K. G. Shin, "Real-time dynamic voltage scaling for
low-power embedded operating systems," in Proceedings of the
eighteenth ACM Symposium on Operating Systems Principles,
Banff, Alberta, Canada, 2001.

[10] M. Pedram and I. Hwang, "Power and Performance Modeling in a
Virtualized Server System," in Proceedings of Parallel
Processing Workshops (ICPPW), 2010 39th International
Conference on, 2010, pp. 520-526.

[11] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C.
Kozyrakis, "Power Management of Datacenter Workloads Using
Per-Core Power Gating," Computer Architecture Letters, vol. 8,
pp. 48-51, 2009.

[12] I. . Hwang, T. Kam, and M. Pedram, "A study of the effectiveness
of CPU consolidation in a virtualized multi-core server system,"
in Proceedings of the 2012 ACM/IEEE International Symposium
on Low Power Electronics and Design, Redondo Beach,
California, USA, 2012.

[13] P. Sangyoung, P. JaeHyun, S. Donghwa, W. Yanzhi, X. Qing, M.
Pedram, and C. Naehyuck, "Accurate Modeling of the Delay and
Energy Overhead of Dynamic Voltage and Frequency Scaling in
Modern Microprocessors," Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 32, pp. 695-708,
2013.

 [14] D. Meisner, C. M. Sadler, L. Andre Barroso, W.D. Weber, and T.
F. Wenisch, "Power management of online data-intensive
services," in Proceedings of the 38th International Symposium on
Computer Architecture, San Jose, California, USA, 2011, pp.
319-330.

 15

APPENDIX
We start by estimating the power dissipation when the

C-state limit is C1. In this case, there are two CC states and two
PC states: CC0, CC1, PC0, and PC1. If more than one sleep state
is available, the power dissipation is supposed to decrease
super-linearly as the utilization decreases. This is because the
amount of time spent in deeper sleep states is greater when the
utilization is lower. The measured power dissipation, however,
is linearly proportional to CPU utilization, as reported in Fig. 9.
This linearity can be explained once we realize that the C-state
of core/processor is promptly switched to the deepest sleep
state, i.e., CC1 and PC1, that is, in our target system the amount
of time spent in CC0 and PC0 is very small. The power
dissipation is a linear function of utilization, so we can easily
estimate the power dissipation using the utilization level (𝑈𝑡𝑖𝑙):

 . 21.88 141.12total
est activeP T= + (18)

If we set the deepest C-state to C2, there is no longer a linear
relationship between the utilization and the power dissipation
as reported in Fig. 9To explain this behavior, recall that total
(platform) power dissipation is the sum of the processor power
dissipation and the power consumed by other components:

 icoretotal uncore other
iP P P P= + +∑ (19)

General purpose CPU schedulers evenly distribute tasks to
active CPUs. Because we have eight CPUs, the total power
dissipation is:

 8total core uncore otherP P P P= + + (20)
Calculating the difference between power dissipations for two
cases, i.e., case 1 where the C-state limit is C1 (up to CC1/PC1
are available) and case 2 where the C-state limit is C2 (up to
CC3/PC3 are available), we write:

 () ()1 2 1 2

8

 8

total core uncore

core core uncore uncore
C C C C

P P P

P P P P

∆ = ∆ + ∆

= − + −
 (21)

Notice that the power difference equation does not include the
difference of 𝑃𝑜𝑡ℎ𝑒𝑟 terms because the C-state limit does not
change power consumptions of other components.

The core power dissipation can be formulated by using the
utilization level and the time spent in each core C-state (i.e.,
CC0, CC1, and CC3). The core power dissipations when the
C-state limit is C1 and C2 are:

1 0 0 1 1

2 0 0 1 1 3 3

core core core core
C active active CC CC CC CC

core core core core core
C active active CC CC CC CC CC CC

P P T P x P x

P P T P y P y P T

= + +

= + + +
 (22)

where 𝑥𝐶𝐶0 + 𝑥𝐶𝐶1 = 1 − 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 and 𝑦𝐶𝐶0 + 𝑦𝐶𝐶1 = 1 −
𝑇𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑇𝐶𝐶3 . In above equations 𝑥𝐶𝐶𝑛 and 𝑦𝐶𝐶𝑛 are the
percentages of time spent in the 𝐶𝐶𝑛 state when the C-state
limit is C1 and C2, respectively (these parameters are not
reported by the system hardware as shown in TABLE III). The
power difference is:

() ()

1 2

0 0 0 1 1 1 3 3

core core core
C C

core core core
CC CC CC CC CC CC CC CC

P P P

P x y P x y P T

∆ = −

= − + − −
(23)

For simplicity, we state that 𝑥𝐶𝐶0 = 𝑦𝐶𝐶0 . This implies a core
stays in the CC0 power state for the same amount of time under

the same utilization levels regardless of the C-state limit. Thus,
we have:

 ()1 1 1 3 3
core core core

CC CC CC CC CCP P x y P T∆ = − − (24)

If we make the assumption that 𝑥𝐶𝐶0 = 𝑦𝐶𝐶0 = 0 (this is
because power dissipation is ONLY linearly dependent on the
utilization level when the C-state limit is C1; note that the
non-linear power dissipation vs. utilization graph for the case
that the C-state limit is C2 cannot be used to confirm or reject
this assumption), the power difference can be re-written as
below:

() ()()

()
1 3

3 3 1 3 3

1 1

core core
CC active active CC

core core core
CC CC CC CC CC

P P T T T

P T P P T

∆ = − − − −

− = −
 (25)

Similarly, the uncore power dissipations when the C-state limit
is C1 and C2 are:

1 0 0 0 1 1

2 30 0 0 1 1 3

uncore uncore uncore uncore
C PC active PC PC PC PC

uncore uncore uncore uncore uncore
C PC active PC PC PC PC PC PC

P P T P k P k

P P T P h P h P T

= + +

= + + +
(26)

where 𝑘𝑃𝐶0 + 𝑘𝑃𝐶1 = 1 − 𝑈𝑡𝑖𝑙 and ℎ𝑃𝐶0 + ℎ𝑃𝐶1 = 1 − 𝑈𝑡𝑖𝑙 −
𝑃𝐶3. With a similar assumption that 𝑘𝑃𝐶0 = ℎ𝑃𝐶0 = 0, we
have:

() ()()

()
1 3

3 3 1 3 3

1 1

uncore uncore
PC active active PC

uncore uncore uncore
PC PC PC PC PC

P P T T T

P T P P T

∆ = − − − −

− = −
 (27)

Finally, the difference in the total power dissipation is:

 () ()1 3 3 1 3 3

8

 8

total core uncore

core core uncore uncore
CC CC CC PC PC PC

P P P

P P T P P T

∆ = ∆ + ∆

= − + −
 (28)

In the above equation, �𝑃𝐶𝐶1
𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3_

𝑐𝑜𝑟𝑒� and �𝑃𝑃𝐶1
𝑢𝑛𝑐𝑜𝑟𝑒 −

𝑃𝑃𝐶3_
𝑢𝑛𝑐𝑜𝑟𝑒� are unknown parameters to be determined. The total

power dissipation, the percentage of time in the core C-states
(𝐶𝐶3 and 𝐶𝐶6), and the percentage of time in the processor
C-states (𝑃𝐶3 and 𝑃𝐶6) are reported in TABLE VII. The
difference in the total power dissipation when all cores are idle
is:

 () ()1 3 1 30
8 1.0 0.79

 140.7 -110.3 30.4

total core core uncore uncore
CC CC PC PCutil

P P P P P

W
=

∆ = − × + − ×

= =
(29)

Therefore, we can calculate �𝑃𝑃𝐶1
𝑢𝑛𝑐𝑜𝑟𝑒 − 𝑃𝑃𝐶3_

𝑢𝑛𝑐𝑜𝑟𝑒� as a function
of �𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3_
𝑐𝑜𝑟𝑒�:

 ()1 3 1 3
38.48 8 1.27uncore uncore core core

PC PC CC CCP P P P− = − − × (30)
TABLE VII

POWER DISSIPATION AND C-STATES WHEN EVERY CORE IS IDLE

C-state
limit

Utilization
(%)

Core
C-state

Processor
C-state Power

(W) CC3 CC6 PC3 PC6
C1 0 n/a n/a n/a n/a 140.7
C2 0 99.0 n/a 79.1 n/a 110.3
C3 0 0.0 99.9 0.0 79.9 98.1

Next, we obtain value of �𝑃𝐶𝐶1
𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3

𝑐𝑜𝑟𝑒� by changing the
active CPU count. Note that in experimental results reported
above, we always had eight active CPUs whereas in the results
to be reported next, the active CPU count is changed. If 𝑚
CPUs are active and fully utilized, (8 −𝑚) CPUs are inactive

 16

and in the deepest power state (𝐶𝐶𝑘). Therefore, the total power
dissipation in this case is:

()

() 8

coretotal uncore otheri
i

core core uncore other
active CCk

P m P P P

mP m P P P

= + +

= + − + +

∑
 (31)

If another CPU becomes active, i.e. there will be (𝑚 + 1)
active CPUs, and the total power dissipation will be:

() () () '1 1 7total core core uncore other
active CCk

P m m P m P P P+ = + + − + + (32)

The power dissipation of other parts (𝑃𝑜𝑡ℎ𝑒𝑟) can be affected
by the active CPU count because the number of tasks served by
the system increases as the active CPU count increases. Note
that all active CPUs are fully utilized, i.e., 100% utilization,
hence, more active CPU count means higher throughput (i.e.,
the number of tasks served per second). However, we assume
power dissipation by other parts of 𝑚 active CPUs is not very
different from that of (𝑚 + 1) active CPUs: 𝑃𝑜𝑡ℎ𝑒𝑟 ≅ 𝑃𝑜𝑡ℎ𝑒𝑟′.
Consequently, we have:

 () () ()1total total core core
active CCk

P m P m P P+ − ≅ − (33)

The left term of the above equation can be obtained by
experiments, so we can find (𝑃𝐶𝐶1 − 𝑃𝐶𝐶3) as follows:

 () ()1 3 3 1

 (,3) (,1)

core core core core core core
CC CC active CC active CCP P P P P P

g m g m

− = − − −

= −
 (34)

where () ()

(,) 1total total

deepest CC state CCk
g m k P m P m

=
 = + −  .

The right term in the above equation is a function of active CPU
count (𝑛), but it does not make sense because �𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3_
𝑐𝑜𝑟𝑒�

is supposed to be constant and not a function of 𝑛 . The
experimental results imply that �𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3_
𝑐𝑜𝑟𝑒� is not a

function of 𝑛 as shown in Fig. 24. This figure shows the power
dissipation when all active cores are fully utilized with three
different C-state limits. The slope of a plot in this figure
is 𝑔(𝑚, 𝑘) , and is independent of the active CPU count 𝑛
(i.e., 𝑔(𝑚, 𝑘) = 𝑔(𝑘)) because the slope is constant (linear
plot). Therefore, we can find �𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3_
𝑐𝑜𝑟𝑒� and �𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 −
𝑃𝐶𝐶6_
𝑐𝑜𝑟𝑒� as follows:

 1 3

1 6

(3) (1) 3.53 2.81 0.72

(6) (1) 3.88 2.81 1.07

core core
CC CC

core core
CC CC

P P g g

P P g g

− = − = − =

− = − = − =
 (35)

Fig. 24 Total power dissipation vs. active CPU count (every core is
fully utilized)

Now we now calculate �𝑃𝑃𝐶1
𝑢𝑛𝑐𝑜𝑟𝑒 − 𝑃𝑃𝐶3

𝑢𝑛𝑐𝑜𝑟𝑒�:

 ()1 3 1 3
38.48 8 1.27 31.16uncore uncore core core

PC PC CC CCP P P P− = − − × = (36)

All required information for power estimation is collected, and
we go about finding the final power estimation equation and
qualifying it:

 ()
()

1 3 3 3

1 3 3 3

8

1

1

total core uncore other

core core core core
active active CC active CC CC CC

uncore uncore uncore
PC PC PC PC

P P P P

P P T P T T P T

P P T P T

= + +

= + − − +

= − +

 (37)

Now, the estimation equation can be re-written:

() ()

() ()
1 1 3 3

1 3 3 1 1

8 8

 8

total core core core core
active CC active CC CC CC

uncore uncore core uncore other
PC PC PC CC PC

P P P T P P T

P P T P P P

= − − −

− − + + +
(38)

As found before, we have 𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶1
𝑐𝑜𝑟𝑒 = 2.81, 𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 −
𝑃𝐶𝐶3_
𝑐𝑜𝑟𝑒 = 0.72 and 𝑃𝑃𝐶1

𝑢𝑛𝑐𝑜𝑟𝑒 − 𝑃𝑃𝐶3
𝑢𝑛𝑐𝑜𝑟𝑒 = 31.16 . The last term

�8𝑃𝐶𝐶1
𝑐𝑜𝑟𝑒 + 𝑃𝑃𝐶1

𝑢𝑛𝑐𝑜𝑟𝑒 + 𝑃𝑜𝑡ℎ𝑒𝑟� is the total power dissipation
when the C-state limit is C1 and the system is idle (i.e.,
utilization level is 0%). The measured value of this is 140.7W
as shown in TABLE VII. Therefore, the final estimation
equation is:

3 3

22.48 5.76 31.16 140.7total
active CC PCP T T T= − − + (39)

Our estimation is very close to the real power dissipation
measured by the power analyzer as shown in Fig. 25 This
implies that the power estimation method is very accurate, in
spite of our simplifying assumptions.

Fig. 25 Power estimation equation vs. measurement

If the C-state limit is C3, the deepest core and processor
C-states are CC6 and PC6, respectively. Using a method similar
to the one for the previous case (i.e., when the C-stat limit is
C2), the power estimation equation can be written as follows:

 (40)
𝑃𝐶3
𝑐𝑜𝑟𝑒 denotes the total power dissipation by cores when the

C-state limit is C3. In this case, the deepest core C-state is CC6;
therefore, 𝑃𝐶3_

𝑐𝑜𝑟𝑒 can be re-written:

()1 3 6

3 3 6 6

3 1

core core core
C active active CC active CC CC

core core
CC CC CC CC

P P T P T T T

P T P T

= + − − −

+ +
 (41)

Likewise, the deepest process C-state is 𝑃𝐶6, so the total power
dissipation by uncore (𝑃𝐶3_

𝑢𝑛𝑐𝑜𝑟𝑒) is:

 ()1 3 6 3 3 6 63 1uncore uncore uncore uncore
C PC PC PC PC PC PC PCP P T T P T P T= − − + + (42)

Hence, the power estimation equation becomes:

1 2 3 4 5 6 7 8 9
135

140

145

150

155

160

165

active CPU count

sy
st

em
 p

ow
er

 (W
)

y=2.81x+139.74
R2=0.9982

y=3.53x+133.83
R2=0.9998

y=3.53x+133.83
R2=0.9998

C-state limit: C1
C-state limit: C2
C-state limit: C3

0 20 40 60 80 100
110

120

130

140

150

160

utilization (%)

sy
st

em
 p

ow
er

 (W
)

Powermeasured

Powerestimated

3 38total core uncore other
C CP P P P= + +

 17

() ()
() ()

() ()

1 1 3 3

1 6 6 1 3 3

1 6 6 1 1

. 8 8

 8

 8

total core core core core
est active CC active CC CC CC

core core uncore uncore
CC CC CC PC PC PC

uncore uncore core uncore other
PC PC PC CC PC

P P P T P P T

P P T P P T

P P T P P P

= − − −

− − − −

− − + + +

(43)

Nearly all necessary parameters are already known: 𝑃𝑎𝑐𝑡𝑖𝑣𝑒𝑐𝑜𝑟𝑒 −
𝑃𝐶𝐶1_
𝑐𝑜𝑟𝑒 = 2.81, 𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶3
𝑐𝑜𝑟𝑒 = 0.72,𝑃𝐶𝐶1

𝑐𝑜𝑟𝑒 − 𝑃𝐶𝐶6
𝑐𝑜𝑟𝑒 =

1.07, 𝑃𝑃𝐶1
𝑢𝑛𝑐𝑜𝑟𝑒 − 𝑃𝑃𝐶3_

𝑢𝑛𝑐𝑜𝑟𝑒 = 31.16 , and 8𝑃𝐶𝐶1
𝑐𝑜𝑟𝑒 + 𝑃𝑃𝐶1

𝑢𝑛𝑐𝑜𝑟𝑒 +
𝑃𝑜𝑡ℎ𝑒𝑟 = 140.07 . Therefore, there is only one parameter
(𝑃𝑃𝐶1 − 𝑃𝑃𝐶6) is unknown. This parameter can be found using
a similar method to that used for the previous case that C-state
limit is C2. More precisely, the difference in power dissipation
between cases of C-state limits being C1 and C3 is:

 () ()
() ()

1 3 3 1 6 6

1 3 3 1 6 6

8

 8 8

total core uncore

core core core core
CC CC CC CC CC CC

uncore uncore uncore uncore
PC PC PC PC PC PC

P P P

P P T P P T

P P T P P T

∆ = ∆ + ∆

= − + −

+ − + −

(44)

The percentage time spent in core/processor C-states when the
system is idle is shown in TABLE VII. Hence, the idle power
difference is:

 () ()1 6 1 60
8 1 0.8

 140.7 - 98.1 42.6

total core core uncore uncore
CC CC PC PCutil

P P P P P

W
=

∆ = − × + − ×

= =
(45)

The parameter (𝑃𝑃𝐶1 − 𝑃𝑃𝐶6) is a function of (𝑃𝐶𝐶1 − 𝑃𝐶𝐶6),
and its value is calculated as follows:

 ()1 61 6
53.25 8 1.25 42.55core core

CC CC
uncore uncore

PC PC P PP P W− ×− = − = (46)

Thus, the final power estimation equation is:

 3 6

3 6

. 22.48 5.76 8.56

 31.16 42.55 140.7

total
est active CC CC

PC PC

P T T T

T T

= − −

− − +
 (47)

The estimated power dissipation using the above equation
is very close to the measurement as shown in Fig. 26. This
result again demonstrates that the estimation equation is
quite accurate. Therefore, if we know the percentage of time
spent in a specific C-state (both processor and core C-states),
we can accurately estimate the power dissipation.

Fig. 26 Power estimation equation vs. measurement

0 20 40 60 80 100
100

120

140

160

utilization (%)

sy
st

em
 p

ow
er

 (W
)

Powermeasured

Powerestimated

	I. Introduction
	II. Background – power management technologies
	A. Processor power states (C-States)
	B. Processor performance state (P-States)
	C. Core-level power gating

	III. Power and Latency Models
	A. Power model
	B. Latency (delay) model

	IV. Experimental Setup
	A. Hardware test-bed and Xen
	B. Benchmarks
	C. Performance metrics of interest

	V. Experimental Results and Discussions
	A. Consolidation overhead
	B. Selecting CPUs for consolidation
	C. Power model derivation and verification
	D. Core and processor C-states vs. workload level
	E. Latency model verification
	F. E/task and ED/task improvement of perlbmk / mcf
	G. CPU consolidation for SPECWeb2009
	H. Online CPU consolidation algorithms

	(a) perlbmk
	/(b) mcf
	VI. Conclusion
	Acknowledgment
	References
	Appendix

