
Efficient RAS support for 3D Die-Stacked DRAM

Hyeran Jeon
University of Southern California

hyeranje@usc.edu

Gabriel H. Loh
AMD Research

gabriel.loh@amd.com

Murali Annavaram
University of Southern California

annavara@usc.edu

Abstract
Die-stacked DRAM is one of the most promising memory

architectures to satisfy high bandwidth and low latency needs
of many computing systems. But, with technology scaling, all
memory devices are expected to experience significant increase
in single and multi-bit errors. 3D die-stacked DRAM will have
the added burden of protecting against single through-silicon-
via (TSV) failures, which translate into multiple bit errors in a
single cache line, as well multiple TSV failures that may lead
to an entire channel failure. To exploit wide I/O capability of
3D DRAM, large chunks of data are laid out contiguously in a
single channel and an entire cache line is sourced from a single
channel. Conventional approaches such as ECC DIMM and
chipkill-correct are inefficient since they spread data across
multiple DRAM layers to protect against failures and also
place restrictions on the number of memory layers that must
be protected together. This paper adapts several well known
error detection and correction techniques while taking into
account 3D DRAM’s unique organization. First, we decouple
error correction from detection and perform error detection
using a novel two level 8-bit interleaved parity to handle die-
stacked DRAM-specific failure modes such as TSV failures. We
then adapt RAID5-like parity, a technique developed for hard
disks which also layout large chunks of data contiguously,
for recovering from a wide range of errors from single-bit
errors to channel-level failures without the need to splice data
across multiple layers. As further optimizations, a two-step
decoupled error correction code update process is used to
improve write speed, and an error detection code cache is used
for improving read/write performance without compromising
reliability. The proposed approaches effectively reduce the
FIT rate with 15.7% area and almost negligible performance
overhead.

1. INTRODUCTION
With the shrinking feature size, reliability is a growing concern
for memory. The 2D DRAM failure modes are dominated
by single bit failures, but failures at the granularity of word,
column, row, bank, to an entire chip failure have been observed.
According to the recent field study [23], half of all the failures
are single-bit errors but multi-bit errors such as row, column
and bank level failures also happen with over 10% possibility
each. More interestingly, the study found that majority of
the DRAM failures are caused by permanent faults. In a
conventional DRAM, ECC has been widely used to defend
against errors. Typically, a DRAM module consists of multiple
4- or 8-bit-wide DRAM chips and bits from all the chips on
a single DRAM module are combined to form a single data

word along with the error correcting code (ECC) associated
with the data word. We call the data + ECC as the ECC
word as illustrated in Figure 1(a). Depending on the strength
of error correction, any N-bit error can be corrected. Most
commonly, DRAMs employ single-error correcting, double-
error detecting (SECDED) codes. Any single-bit errors can be
corrected within an ECC word.

IBM proposed chipkill-correct [5] to cover the chip level
failures. Dell PowerEdge 6400 and 6450 servers [13] imple-
ment the chipkill-correct in which all the bits of each ECC
word are scattered into multiple DRAM chips. Given such
data scattering, a single chip failure becomes a single bit er-
ror within each ECC word and thereby it is correctable by
the SECDED code. Another chipkill-correct design is imple-
mented in Sun UltraSPARC-T1/T2 and the AMD Opteron [28].
Instead of scattering every bit of each ECC word, they use
longer ECC word to provide more ECC bits so that each ECC
word can correct more than a single-bit failure. They use a
symbol based ECC that can correct a single symbol failure and
detect up to double symbol failures (SSC-DSD). In the symbol
based ECC, any bit errors of a single symbol are correctable
which means, once the bits within a symbol are all sourced
from a DRAM chip, the single chip failure can be tolerated.

Recently, DRAM designers are moving toward 3D die-
stacking. Multiple DRAM chips are vertically integrated into a
single die-stack. Die-stacked DRAM provides notable advan-
tages such as high bandwidth, low latency, and small footprint.
Die-stacked DRAM’s capacity has been increasing from hun-
dreds of megabytes initially to a few gigabytes now [1]. Due
to initial capacity limitations, the die-stacked DRAM has been
actively studied as a last level cache [30, 15, 20]. However,
with silicon interposer-based solutions [11, 18] that enable
the integration of multiple memory stacks within the same
package, die-stacked DRAM can be used as the system’s main
memory for a variety of market segments. Recently, NVIDIA
revealed their GPU roadmap which shows the planned use of
die-stacked DRAM as main memory by employing multiple
stacked DRAM layers around the GPU [24]. Similarly, in real-
time embedded devices and certain cloud servers with known
memory capacity needs, die-stacked DRAM’s high bandwidth,
low latency and small footprint make it an attractive option.
These domains also tend to have higher reliability, availability
and serviceability (RAS) requirements. When die-stacked
DRAM is placed on the same package as the CPU, the impor-
tance of the serviceability is further escalated because even
with a small number of hard faults in a DRAM chip, the entire
package of CPU+DRAM would need to be replaced, which
is going to be a lot more expensive than replacing an external

EC
C

8 8 8 8 8 8 8 8 8

64bit DATA + 8bit ECC
D

IM
M

(a)

ECC

72bit

(b)

ECC DRAM
chip

ECC DATA

(c)

Figure 1: Organization of (a) a conventional ECC memory with 9 x8 DRAM chips, (b) a possible conversion to die-stacked DRAM
with 9th layer for ECC, and (c) another possible solution to use ECC DRAM chip
DIMM in a conventional memory organization.

1.1. Why Is Reliability Support For Die-stacked DRAM
Challenging?

Die-stacked DRAM has unique memory organization to take
advantage of its superior bandwidth. The die-stacked DRAM
typically has much wider channel width, 128 bits per chip as
opposed to 4/8 bits per chip in planar DRAM. One or two
ranks form a layer in 3D DRAM and each layer is allocated
its own independent channel(s) to access data from each layer.
The upcoming JEDEC High-Bandwidth Memory(HBM) [8]
standard provides 1024 bits of data over 8 channels. The mini-
mum burst length is said to be 16B-32B. Hence, 3D DRAMs
can potentially bundle 128-256 bits of data from a wide chan-
nel every cycle. To take advantage of the wide I/O capability
large chunks of data is contiguously laid out in a single chip.
Instead of spreading cache line data across multiple chips,
as has been done in traditional DRAMs, 3D DRAMs place
an entire cache line worth of data on a single DRAM chip.
Traditional approaches for planar DRAM protection, such
as ECC-DIMM and chipkill-correct, do not lend themselves
well to protect 3D DRAMs. The details are discussed in the
following paragraphs.

Possible but Inefficient Solutions: Figure 1(b) and (c)
show two possible conversions of the conventional ECC mem-
ory to die-stacked DRAM. One approach is to add an ECC
layer within a DRAM stack as illustrated in Figure 1(b). Alter-
natively, one could stack ECC DRAM chips that have 12.5%
wider data rows as in Figure 1(c). In this approach one has
to read all the stacked layers to read a few bits (4 or 8 bits)
from each layer, including the ECC layer, to construct a single
ECC-word. Hence, when ECC-DIMM technique is directly
applied to 3D DRAMs, then contiguous allocation of data on
a single chip is not viable. Even a single word may require
activating all layers in a 3D stack. While this configuration is
a simple extension of traditional DRAMs, there is a significant
bandwidth loss because only 8-bit data is transferred through
each 128-bit-wide channel in any given cycle, which is further
exacerbated by the minimum burst length. Since the minimum
bust length is at least 16 bytes, reading just 8-bit data from a
single burst is a significant bandwidth loss. In addition to wast-
ing bandwidth, activating all layers within a stack to service
even a single cache line can lead to significant power overhead
to read a single cache line. It would be much better to exploit

the 128-bit channel width of each layer to read an entire cache
line from a single layer. Since there is one ECC layer per a
fixed number of DRAM layers, there is a scalability concern
as well. For example, the 12.5% area overhead for SECDED
code requires one ECC layer for each 8 data layers. Hence,
if DRAM manufacturers want to add just one additional data
layer above 8 data layers to provide higher density for a given
market segment, a second ECC layer must be added.

An alternative solution to avoid the multiple stack or layer
approach is to increase the width of each data row by the size
of SECDED code (12.5%) such that the ECC and the data
can be read from a single layer as illustrated in Figure 1(c).
However, this design is not desirable as it requires the memory
vendors to either design two types of chips (ECC and non-
ECC), or endure the cost of 12.5% area overhead by using
ECC chips even when cost sensitive market segments do not
support ECC. Note that for DIMM-based memory, there is
no such design concern because the single-chip design can be
used in both ECC or non-ECC DIMMs by placing eight or nine
chips (for x8 chips) on a DIMM; the design and manufacturing
costs for two different DIMMs is significantly cheaper than
for two different silicon designs.

The symbol-based ECC itself has several inefficiencies that
make it particularly challenging to apply to 3D DRAMs. Due
to the algorithmic constraints, the symbol-based ECCs used in
the commodity DRAM modules restricts to use x4 or x8 mem-
ory chips even though embedding smaller number of chips of
wider interface provides better power efficiency [25, 28]. Even
if these constraints are ignored, SECDED can recover only
from a single-bit failure and is not capable of dealing with
multi-bit failures that are becoming more prominent. Actually,
a recent study showed that 2.5% and 5.5% of the DRAM fail-
ures are multi-bank and multi-rank failures, respectively [23].
Hence, we need to explore alternative approaches to deal with
multi-bit errors as well as channel-level failures in a unified
manner. 3D DRAMs have the added burden of dealing with
single through-silicon-via (TSV), and multiple TSV failures.
A single TSV failure can lead to four bits of error per 64 byte
cache line, since a single cache line is source from a single
DRAM chip over four consecutive cycles. More generally,
3D DRAM requires at least bits_in_cache_line

inter f ace_width bits of error de-
tection and correction capability. Multiple TSV failures lead
to an entire channel failure. Hence, protecting against multi-
bit errors requires providing stronger protection codes, such

2

as DECTED (double error correcting and triple error detec-
tion). But, the area overhead of ECC grows super-linearly as
the strength of the protection increases [9]. For instance, a
DECTED code has more than 20% overhead.

Summary: A new error detection/correction scheme is
needed for die-stacked DRAM with the following properties:
1) the scheme can protect against multi-bit errors as well as
protect against channel-level failure, 2) the scheme should
enable us to take advantage of wide I/O and hence should
not require data to be finely spliced across multiple layers to
provide protection 3) the scheme can scale irrespective of the
number of layers in the DRAM stack 4) the scheme should be
power efficient and hence should access as few DRAM layers
as possible for the common case of error detection which is
done on every memory access. Obviously, these features are
going to come at some expense. In our proposed scheme, the
latency for error correction will be significantly higher than
ECC, although error detection latency is not compromised.

1.2. Contributions
This paper adapts several well known error detection and cor-
rection techniques while taking into account 3D DRAM’s
unique memory organization. First, to reduce the performance
overhead for the regular error-free accesses, we decouple error
detection from error correction. The decoupled error detec-
tion and correction eliminates the computation overhead of
complex error correction code out of the critical path of the
execution. Then, we propose to extend the traditional 8-bit in-
terleaved parity to handle die-stacked DRAM-specific failure
modes such as TSV failures. While standard 8-bit interleaved
parity can detect 8 consecutive bit errors, it does not protect
against a single TSV failure. Hence, we adapt the traditional
interleaved parity to create a two-level 8-bit interleaved parity
to protect against a TSV failure.

We adapt RAID5-like parity [4], a techniques developed for
hard disks which also layout large chunks of data contiguously,
for recovering from a wide range of errors from single-bit
errors to channel-level failures without the need to splice data
across multiple layers.

We then co-locate error detection and correction codes with
the data on the same die-stack to improve scalability. Thus
error detection and correction capabilities can be incrementally
added to each layer in a die-stack without any restrictions on
the minimum number of stacked layers.

As further optimizations, a two-step decoupled error correc-
tion code update process is used to improve write speed, and
an error detection code cache is used for improving read/write
performance without compromising reliability.

The proposed approaches effectively reduce the FIT rate
with 15.7% area and almost negligible performance over-
head even assuming an aggressive bit-error rate for a sixteen-
channel 3D DRAM.

The remainder of this paper is organized as follows. Section
2 describes the proposed architecture. Section 3 shows the op-
timization techniques for the proposed architecture. Section 4

discusses the error coverage as well as area overhead. Section
5 shows our evaluation methodology and results. Section 6
discuss related work and we conclude in Section 7.

2. PROPOSED ORGANIZATION

2.1. Baseline Die-stacked DRAM Structure

Rank

128b channel

2KB row

Figure 2: Illustration of proposed memory configuration

The baseline DRAM stack has eight ranks organized as four
layers, with two ranks per layer, in a die-stack. Each rank has
eight banks and is provided with its own 128-bit channel. The
minimum burst length is assumed to be 32B. These parameters
reflect the JEDEC High-Bandwidth Memory(HBM) [8] stan-
dard that provides 1024 bits of data over eight channels. For
simplicity of discussion, we assume that the cache line size
is 64B in this paper, although the size of the cache line can
be changed with minimal changes to the description. Thus, a
64B cache line can transferred through a 128-bit channel in
four memory transfers (i.e., two memory cycles assuming a
double-data rate (DDR) interface). The width of each row in a
bank is 2KB. Row interleaving is used for the baseline address
mapping (e.g., 2KB of consecutively addressed data is placed
in Rank#0, the next 2KB in Rank#1, and so on). Because each
rank has its own channel, we sometimes use the terms rank
and channel interchangeably.

2.2. Data & ECC Co-location
As explained in the previous section, adding extra layer or
increasing row size by ECC code length is not desirable in
die-stacked DRAM. For better scalability, we propose to store
the redundant data necessary for error detection and correction
in the DRAM cells with the data as illustrated in Figure 2.

Redundant data necessary for error correction is stored in
each bank at the end of the data row. Each bank consists of
three different regions: Data, XOR correction code (XCC), and
error detection code (EDC). XCC maintains all the redundant
data necessary for correcting errors, while EDC maintains the
data necessary for quickly detecting an error both in the data
as well as in the XCC regions, and the data region contains
the normal values stored in memory. The size of EDC and
XCC regions is changeable depending on the code type. For
example, in this paper, we evaluate 2-level 8-bit interleaved
parity per 64B cache line for EDC and RAID5-like XCC for
error correction.

3

. . .

1 EDC row can maintain EDCs for 64 data rows

32B EDC per 2KB row

1B EDC

8bits

128bits

. . .
. . .

Bit line XOR

8bits

128bits

. . .
. . .

Bit line XOR

<<

128bits

<<

128bits

<< 1bit 2bits 3bits

(a)

 DATA

XCC
 EDC

0 1 2 3 4 5 6 7

 DATA

XCC
 EDC

0 1 2 3 4 5 6 7 Banks
Channel(rank) 1 Channel(rank) 4

. . .

Channel CPD (=0b’101)
Bank BPD (=0b’111)

EDC Address Calculator

(b)

Figure 3: EDC computation and placement: (a) Two level 8-bit interleaved parity calculation to scale up the detection capability
to the single TSV failure (b) Permutation based EDC placement to avoid bank and channel conflict
2.3. Error Detection Code (EDC)

Error Detection Code Selection: Even when DRAMs en-
counter increasing number of errors, error free operation will
be the common case. Combining error detection and correc-
tion as a single code typically requires complex computation
which may fall in the critical path of reading data. Recog-
nizing this concern, many prior approaches have argued for
separating error detection from error correction [16, 28, 25].
In this paper, we adopt the approach of decoupling detection
from correction.

The wide I/O 3D DRAMs that are being targeted in this
paper provide an entire cache line width (64 bytes) of data from
a single channel. We exploit this wide read capability while
exploring various error detection codes by providing an error
detection code for an entire cache line. We evaluated a wide
range of error detection codes: 8-bit interleaved parity, cyclic-
redundancy codes (CRC), Fletcher and Adler checksums, 1’s
complement addition and 2’s complement addition [10]. Each
of these approaches was aimed at generating an error detection
code for an entire cache line. For instance, we computed one
8-bit parity for an entire 64 byte cache line, or one 16-bit CRC
for 64 byte cache line.

Of all the approaches, we found that the 8-bit interleaved
parity is the most lightweight both in terms of its computa-
tional demand as well as the power consumption. However,
in terms of error detection capability, CRC is the strongest
error detection code [10]. For instance, 16-bit CRC can detect
3 random bit errors, irrespective of the bit positions of these
errors within a cache line, as well as 16-bit burst errors. On
the other hand, traditional 8-bit interleaved parity can detect
8-bit burst errors within a cache line but it cannot detect mul-
tiple errors that occur in the same bit position in every 8-bit
data unit. For example, when two bits in the same position
in every 8-bit unit of a data are flipped, these errors cannot
be detected by 8-bit interleaved parity because those bits are
XORed together when generating the parity. In 3D DRAM,
a single TSV failure will generate multiple errors in a cache
line and each error is precisely located at the same location in
each 128-bit read. This 3D DRAM-specific error is precisely
the type of error that an 8-bit interleaved parity fails to detect.

Hence, when we applied 8-bit parity to 3D DRAM, any single
TSV failure will go undetected. To take advantage of the 8-bit
interleaved parity’s performance and energy efficiency while
scaling the detection capability up to a single TSV failures
which are unique to 3D DRAM, we propose a two level 8-bit
interleaved parity calculation as shown in the Figure 3(a).

Instead of XORing entire 64B cache line in 8-bit units to-
gether as in the traditional 8-bit interleaved parity, we partition
the calculation into two levels. In the first level, we calculate
four intermediate 8-bit interleaved parities for each 128-bit
data unit, which is the minimum transfer size of wide I/O 3D
DRAM. Then, in the second level, the intermediate parities
of the first, second, third, and fourth 128-bit data are rotated
by zero, one, two, and three bits respectively. The four ro-
tated intermediate XORs are then XORed together to make
the final 8-bit interleaved parity. By doing the rotation, the
bits that might be flipped due to the TSV failure are XORed
into different bit positions in the final 8-bit interleaved parity.
Hence, we can detect any single TSV failure with this modified
two-level 8-bit interleaved parity. While this error detection
code is the preferred option, we evaluated traditional 8-bit
interleaved parity, 16-bit CRC, SECDED in our results section.
Our goal is to provide quantitative data to 3D DRAM design-
ers to evaluate performance and error capability tradeoffs of
some well known prior techniques alongside the two-level
8-bit interleaved parity.

Error Detection Code Location: One option for storing
EDC is to place the EDC at the end of each data row (i.e.,
a 2KB row consists of 31 X 64B cache lines, followed by
one 32B EDC). However, this organization creates address
decoding complexity because a non-power-of-two (POT) com-
putation is required to find the column and row indexes for
a given cache line address. To avoid the row and column
decoder logic modification, we store the EDCs in separate
region starting at the end of the XCC region. Each EDC row
of 2KB can hold the EDCs for 64 data rows when two-level
8-bit interleaved parity is used. Thus, 1.5% of the rows in
every bank are assigned as the EDC region.

While separating EDC simplifies address decoding, placing
EDC in the same bank with the data results in a bank conflict.

4

Note that after each cache line is read from the data row, the
corresponding EDC must also be read to verify the cache line
data. Therefore, we use a permutation-based EDC mapping.
Zhang et al. proposed a permutation-based page interleaving
scheme to reduce bank conflicts [29]. The idea is to spread
rows across multiple banks by XORing some partial bits of
L2 tag with bank index. Our goal is actually much simpler:
always use different banks for storing data and the correspond-
ing EDC. The banks where data and the corresponding EDC
reside can be statically determined. As such, a much simpli-
fied approach of using a fixed distance permutation is used.
While any permutation distance from 1 to #banks−1 can be
used, in this paper a permutation distance of seven is used. To
obtain the bank number where EDC will be stored, the per-
mutation distance (seven in our case) is XORed with the bank
index of the data. For example, when seven (0b’111) is used
for the permutation distance, and the data is stored in bank
two (0b’010), the corresponding EDC bank is determined to
be five (0b’101) which is the XORed result of two and seven.
With the fixed distance permutation of seven, data and the
corresponding EDC are guaranteed to be stored in different
banks.

To take further advantage of potential channel-level paral-
lelism, we also opted to store the EDC in different channels. If
data and EDC are in the same channel, then they both must be
accessed sequentially as each row is transferred through the
same channel interface. If EDC and data are placed in different
channels, then both data and EDC can be read in parallel. We
use the channel permutation distance (CPD) to XOR with the
channel number of the data to decide on the channel number
for storing the EDC. Thus, the bank and channel number of
EDC will be determined by XORing the data’s bank index
with bank permutation distance (BPD), and channel number
with channel permutation distance (CPD), respectively. The
block labeled EDC Address Calculator in Figure 3(b) illus-
trates the channel and bank number computation of an EDC
data corresponding to one cache line. Because we are only
adding an XOR operation in the memory access path without
changing the existing row and column decoder, the additional
delay is negligible compared to overall memory access latency.

Address Translation for Accessing Error Detection
Code: The path for computing the EDC bank and chan-
nel for a data address is shown in Figure 4(a). The physical
address of the data is split into Row, Bank, Channel, Col-
umn and Byte addresses. The EDC base row register stores
the first row number where the EDC region begins in any
bank. The row number of the address is first right-shifted
by log2(#data_rows_per_EDC_row). For instance, in Fig-
ure 3, one EDC row can store the EDCs for 64 data rows (32B
of EDC per each data row) when 8-bit interleaved parity is
used for EDC. Then, the data row number is right shifted by
log2(64) = 6 and added to the base register to get the EDC
row number. The EDC bank and channel numbers are simply
the bank and channel indexes XORed with BPD and CPD,
respectively. The column address computes the column within

an EDC row where the EDC of a given cache line is stored.
There are three shift, two XOR, two addition, and one logical-
AND operations. But as shown in the figure, most of these
operations are carried out in parallel.

(a)

Row Bank Channel Column Byte

CPD

BPD

EDC base row

register
+

Row Bank Channel Column 000

>>
Log(# Data rows

per EDC row) &
Data rows per

EDC row -1

<<
Log(# Cache

lines per row)

>> Log(# Bytes

per cache line)

+

Physical Address

EDC Address

(b)

Row Bank Channel Column Byte

BPD

XCC base row

register
+

Row Bank Channel Column Byte

∕ # channels-1

Physical Address

XCC Address

% # channels-1 =?

channels -1

YES NO

Figure 4: Address translation for (a) EDC and (b) XCC

2.4. XOR Correction Code (XCC)
Error Correction Code Selection: The majority of error-
free requests can be handled by EDC as mentioned in the
previous section. When an error is detected, we use an XOR-
based correcting code (XCC) to correct the error. For this
purpose, we rely on RAID5-like parity [4], which was orig-
inally proposed to protect data from catastrophic hard disk
failures. In 3D DRAM, there is a strong correspondence to
disk failures when multiple TSVs fail thereby leading to an
entire channel failure. In a DRAM having N channels, 1

N−1
of the rows in every bank is assigned for storing XCC. To aid
the description of how XCC is computed, Figure 5 shows the
proposed XCC computation framework when there are eight
data channels. Among all the rows in each bank, 1

7 of the rows
are allocated for the XCC region. In each ith row across the
eight channels, the rows from seven channels having the same
color are XORed together to make a XCC row of the same
color. The XORed data is stored in the XCC region in the
channel whose data is not XORed. For instance, the data in
channel 1-row 0 (labeled as 1-0 in the figure), channel 2-row 0
(labeled 2-0), ..., channel 7-row 0 (labeled 7-0) are XORed
and the data is stored in XCC region of channel 0. Similarly,
channel 1 stores the XORed data from 0-1, 2-1, ..., 7-1 which
excludes 1-1. After iterating through seven data rows, there
will be data left in one channel per each row that is not XORed
anywhere. These un-XORed rows (which are colored black in
the figure) from seven diagonal data rows across seven chan-
nels will be separately XORed to be stored to the 8th channel
in the XCC region.

Error Correction Code Location: Our proposed ap-
proach for computing XCC is similar to the RAID5 [4] parity
computation. The difference is that the XCC data is stored in
the channels alongside data but in a distinct XCC region. In
a die-stacked DRAM having N channels, 1

N−1 of the rows in
every bank is reserved for XCC region. In an eight-channel
3D DRAM, each XCC row covers seven rows of data and

5

0 1 2 3 4 5 6 7

1-0

2-0

3-0

4-0

5-0

6-0

7-0

0-1

2-1

3-1

4-1

5-1

6-1

7-1

0-2

1-2

3-2

4-2

5-2

6-2

7-2

0-3

1-3

2-3

4-3

5-3

6-3

7-3

0-4

1-4

2-4

3-4

5-4

6-4

7-4

0-5

1-5

2-5

3-5

4-5

6-5

7-5

0-6

1-6

2-6

3-6

4-6

5-6

7-6

0-0

1-1

2-2

3-3

4-4

5-5

6-6

. . . DATA

XCC

 EDC

0 1 2 3 4 5 6 7

0 0-0 1-0 2-0 3-0 4-0 5-0 6-0 7-0

1 0-1 1-1 2-1 3-1 4-1 5-1 6-1 7-1

2 0-2 1-2 2-2 3-2 4-2 5-2 6-2 7-2

3 0-3 1-3 2-3 3-3 4-3 5-3 6-3 7-3

4 0-4 1-4 2-4 3-4 4-4 5-4 6-4 7-4

5 0-5 1-5 2-5 3-5 4-5 5-5 6-5 7-5

6 0-6 1-6 2-6 3-6 4-6 5-6 6-6 7-6

D
at

a
R

o
w

s A
n

 X
C

C
 R

o
w

Channels Channels

A Stack

 DATA

XCC

 EDC

 DATA

XCC

 EDC

Figure 5: XCC: In a system with N channels, each XCC row covers N −1 data rows
hence, the area overhead for XCC is 14.2%. Together with the
EDC overhead, which as mentioned earlier, occupies 1.5% of
the data rows, the overall overhead due to error detection and
correction code in an eight-channel 3D DRAM is 15.7%.

Address Translation for Accessing Error Correction
Code: The address translation logic to identify the loca-
tion of XCC is shown in Figure 4(b). As shown in Figure 5,
the XCC data for every seven data rows are placed in a single
XCC row. Hence, the row number of the XCC data is the
quotient of row_number_o f _data_address

7 . The XCC row number
is then added to an XCC base row register. Then the bank
index of the XCC is computed by XORing BPD with bank
index of the data, just as in the EDC address computation. The
unmodified column and byte addresses of the data are used
in the XCC address computation. The only complexity is in
identifying the proper XCC channel index. For this purpose,
if the channel number is equal to the row number of the data,
then the XCC is placed in channel #7. Otherwise, the channel
number of the XCC is same as row_number modulo 7.

The XCC address computation requires a non-POT com-
putation (modulo 7 for an eight-channel DRAM design). We
explored alternate designs that use a POT calculation, but we
decided to trade off POT computation for improved area and
power efficiency of the design shown above. Note that the
XCC address do not need to be calculated for read requests. It
is only needed when there is a write operation (off the critical
path) or during error recovery (rare). On the other hand, the
EDC address is needed for every read and write and hence we
optimized EDC address mapping for faster implementation
but, compromised with a slightly slower modulo 7 operation
for XCC.

3. OPTIMIZING THE COMMON CASE

3.1. Decoupled XCC Update
One potential disadvantage of our proposed design is the write
overhead. Whenever a cache line is modified, the old value
of the cache line must be XORed out from the corresponding
XCC and then the new data should be XORed into the XCC.
Therefore, whenever a write request on a cache line arrives,
the following steps must be performed sequentially: (1) the
old value of the cache line is read from the memory, (2) the
corresponding XCC value is read, (3) the old value is XORed
out of the XCC, (4) then the new data is XORed into the XCC,
(5) the XCC is then written back to memory. Thus, every write

incurs an additional two XOR operations, two reads, and one
write.

Stacked DRAM

Parity Region

Data Region

LLC

❶ First WB from
 Upper level Cache

❷ Cache line state
 becomes Modified

❸ Clear From Parity

MC
❹ Read the Parity
 and XOR with
❺ Write updated Parity

(a)

LLC

Stacked DRAM

❶ Selected to be evicted

❷ WB

Parity Region

MC

Data Region

❸ Write

❹ Read the Parity
 and XOR with
❺ Write updated Parity

After Couple more Modifications
on the Cache line…

(b)

Figure 6: Decoupled XCC update : (a) Step 1 clears old data
from XCC during the first modification of last level cache line
and (b) Step 2 updates the XCC when the dirty cache line is
written back to memory. Step 1 and 2 can be decoupled.

The long sequential chain of operations can be divided
into two sequences: 1) clearing the old data from the XCC
and 2) adding the new data to the XCC. Figure 6(a) and (b),
respectively, show the detailed steps of these two sequences.
New data can be XORed only when the data is written back
to memory from cache. However, the process of clearing the
old data from the XCC can be initiated earlier. The most
opportune earliest time to clear the old data from the XCC
is when the associated cache line is firstly modified in the
last level cache. When the cache line in the last level cache
becomes dirty for the first time, the original clean copy of the
data can be read from the cache and then forwarded to the
memory controller to initiate the clearing of old data from
the XCC. This approach works well because cache lines are
typically written multiple times before being written back to
memory. Hence, there is usually plenty of time between when
the first write to a cache line occurs and when the dirty cache
line is finally evicted to main memory. Thus, the two processes
can be handled at different points in time. When a dirty cache
line is eventually evicted, as the old data is already cleared out
from the XCC, the new data can be XORed into the XCC faster
than before. We call this approach decoupled XCC update.
It is also possible to schedule the clearing of old data from
XCC when memory is not busy with critical read operations.

6

In our implementation, the clearing of old values are given
the lowest priority in the memory controller scheduler. Thus,
the decoupled update reduces performance overhead without
impacting critical reads.

The error-correction logic must also be aware of the de-
coupled update process. If an error is encountered after the
old data is cleared, but before the new data have been written
back, then the recovered data will be incorrect. Rather than
burdening the memory controller with tracking exactly which
cache lines are actually included in XCC and which lines are
already cleared out but still have modified data in the on-chip
caches, prior to using an XCC to reconstruct a cache line, we
probe the last level cache to force-writeback any remaining
modified lines covered by this XCC to memory. At most seven
such probes are needed (because the XCC only covers seven
cache lines); once the memory updates are complete, then the
error correction can continue.

A similar approach was used in the phase change memory
(PCM) [17] domain to improve performance by decoupling
SET and RESET operations of a write request. They pointed
out that the SET operation takes much longer than RESET.
By eagerly performing the SET operation whenever the cor-
responding cache line is modified, when the actual memory
write back happens, they only need to conduct the fast RESET
operations. Another study used early write back [12] to en-
hance the performance especially for streaming applications
that have enormous amounts of input data. By writing back
dirty cache lines from the cache prior to the actual eviction
time, the memory traffic becomes more balanced and thereby
the overall performance is enhanced. Decoupled XCC update
is inspired by these prior approaches although the purpose and
the details differ due to its application to RAID5-like parity
update and enforcing the correctness of the XCC calculation.

3.2. Caching Error Detection Code

EDC$

tag data

32B

Row# Bank# Channel# Offset

Figure 7: EDC Cache

The proposed approach to place EDC and data in different
channels allows the requests to be parallelized. However, this
design requires accessing at least two channels for each mem-
ory request, thereby halving the effective bandwidth of the
memory system and increasing power consumption. Further-
more, the extra EDC access to a bank may conflict with other
data accesses leading to more bank conflicts. To alleviate the
bandwidth, power, and bank-conflict issues, we propose to
use an EDC cache. Several studies showed that it is feasible
to implement the cache on the logic layer of the die-stacked

DRAM [14]. By using the similar technology, an EDC cache
is implemented on the logic layer per channel. The EDC cache
entry size is 32B such that one entry can cover all the cache
lines in a single DRAM data row. Recall that each 2KB data
row (32 cache lines in the proposed implementation) needs
only 32B of EDC. Thus, on a first memory access request to
any one cache line within the 2KB data row, the correspond-
ing EDC is accessed and the entire 32B EDC data is fetched
into the EDC cache. Subsequent memory access requests to
other cache lines within the 2KB data row search the EDC
cache before initiating an access to fetch EDC from memory.
The EDC cache is indexed by using the LSBs of the data row
number. The remaining bits in the row index field and the
bank index field are used for tag. For fast lookup as well as
the power efficiency, we configure the EDC cache to be direct
mapped.

We also explored caching XCC. However, XCC cache is
accessed during write operations only. A single 32B EDC
cache line can store the error detection code of at least 64
cache lines, whereas an XCC cache entry must be a minimum
of 64B wide (cache line width) and each XCC cache entry
only covers 7 data cache entry when there are 8 channels in a
stack. Hence, the coverage provided by each XCC cache entry
is significantly lower than EDC cache entry. These limitations
reduce the value of caching XCC. We also explored caching
EDC and XCC together. Thus this cache can be configured
as unified cache such that EDC and XCC are stored together.
In the unified cache, the cache entry size is changed to 64B
because an XCC is 64B wide. Therefore, an unified cache
entry can store EDC for 128 cache lines data or XCC for 7
cache lines. As the cache is indexed by the data address, one
bit indicator for distinguishing EDC from XCC is also needed.

3.3. Putting It All Together

As a summary, an example micro-architectural event sequence
for a read transaction are as follows.Whenever the memory
controller handles a read memory request, the EDC cache for
the channel that the data resides in is looked up. If there is a
EDC cache hit, the corresponding 1 byte EDC is read from
the cache. Otherwise, the EDC address that corresponds to
the memory access request is generated. Then, the EDC is
read from the memory and then the EDC cache is replaced. In
the meantime, the data is read from memory in parallel. Note
that the data and the EDC are always in different channel. The
error detection code for the data that is just read from memory
is calculated. In the final step, the EDC read from the EDC
cache and EDC calculated from the memory data read are
compared. If there is no error, the memory controller returns
the data to the last level cache. If there is an error, the XCC
process is triggered. The data is rebuilt by XORing the XCC
parity and the cache lines that are in the same row position of
all the other channels except the channel that the XCC parity
is stored.

7

4. COVERAGE AND OVERHEAD
In summary, we use error detection code that can detect multi-
bit errors including a single TSV failure per 64B cache line.
XCC can correct multi-bit errors and its coverage scales up to
channel-level failure. The area overhead due to the redundant
code is 15.7% in an eight channel die-stacked DRAM. The
overhead can be further reduced when more channels are used.
For example, in a 16 channel die-stacked DRAM, the area
overhead is only 8.1% (but the error recovery cost increases).
We also proposed an EDC cache per channel for better power
efficiency. The tag size changes depending on the DRAM
configuration. When a bank is 64MB, the number of banks in
a channel is 8, and the row size is 2KB, 9 bits from MSB of
data row index plus 3 bits from bank index are used for the tag.
As a result, the area overhead due to EDC cache tag is 96B.

5. EVALUATION

5.1. FIT Analysis
To measure the error detection and correction capabilities of
various coding schemes we relied on Monte Carlo simulations.
We first generated various fault types using the probability
distribution of fault types collected from real system observa-
tions [23]. The overall FIT rate of each fault type we used in
our simulations are shown in the second column in Table 2.
We also consider TSV-level failure. Because there is not a
known FIT rate for the die-stacked DRAM specific failure
mode, we assume that this new failure mode occurs with the
lowest probability of all failure modes; we used 35 FIT per
device. Clearly, single bit failure mode dominates the overall
failures. However, all other failure modes cumulatively ac-
count for nearly as many failures as single bit failures. We
conducted one million Monte Carlo simulations. For each
simulation we essentially pick one of the various fault modes
adhering to the probability distribution shown in Table 2. If a
single-bit failure is selected for that simulation then only one
bit picked randomly from an entire cache line is flipped. If
a single-row or a single-bank failure is selected, since we do
not know exactly how many bits within a row or bank may
have been flipped, we select every bit in a cache line and then
randomly flip that bit with a 50% probability. Note that this
approach aggressively flips multiple bits with a probability
that is higher than what would be seen in practice. Similarly,
if a single-TSV failure is selected then we select one bit ran-
domly from the first 128 bits of a cache line and then flip the
same numbered bit in all the remaining three 128 bit chunks
in the cache line.

Table 1 shows the percentage of faults that are detected
and corrected using various error detection and correction
scheme combinations. As SECDED code has not only the
error detection capability but also the correction capability, we
evaluated the SECDED coding in two different combinations:
SECDED for both detection and correction, and SECDED
for detection only + XCC for correction. For the other error
detection codes, XCC is used for error correction. We also

Failure Mode EDC ECC Detection Correction

Single Bit

8-bit interleaved XCC 100 100
two level 8-bit interleaved XCC 100 100
16-bit CRC XCC 100 100

SECDED SECDED 100 100
XCC – 100

Single Column

8-bit interleaved XCC 99.50 99.50
two level 8-bit interleaved XCC 99.50 99.50
16-bit CRC XCC 100 100

SECDED SECDED 99.27 16.81
XCC – 99.27

Single Row

8-bit interleaved XCC 95.48 95.48
two level 8-bit interleaved XCC 98.72 98.72
16-bit CRC XCC 99.99 99.99

SECDED SECDED 49.99 0
XCC – 49.99

Single TSV

8-bit interleaved XCC 0 0
two level 8-bit interleaved XCC 100 100
16-bit CRC XCC 99.99 99.99

SECDED SECDED 99.99 0
XCC – 99.99

Table 1: Error Detection and Correction Capability (%)

Failure Mode Injected FIT Result FIT
two level 8-bit inter. + XCC 16-bit CRC + XCC

Single-bit 320 0 0
Single-column 70 3.3E-04 6.6E-05
Single-row 80 1.0136E-03 7.918E-05
Single-bank 100 1.352E-03 1.06E-04
Single-TSV 35 0 3.3E-05

Table 2: FIT rate per device used in the evaluation. 10x higher
FIT than the actual FIT rate collected from field test [23] is
used. A die-stacked DRAM specific failure mode, TSV failure,
is added in this paper

evaluated the single bank failure mode but omitted the result
from Table 1 because the result is similar to the single row
failure mode.

Among the evaluated coding schemes, SECDED provides
lowest error detection and correction capability. For instance,
in single-column failure mode multiple bits may be flipped
within a single cache line and hence SECDED detects an error
99.27% of the time, but it can only correct those scenarios
where only one bit has flipped, which is 16.81% in our Monte
Carlo simulations.

Two-level 8-bit interleaved parity performs slightly worse
than 16-bit CRC when dealing with multi-bit failures, as ex-
plained earlier in the introduction. However, single-TSV fail-
ures are handled 100% by our proposed two-level 8-bit inter-
leaved parity while 16-bit CRC provides 99.99% detection
capability.

The injected FIT and the modified FIT after running the
error detection and correction codes are shown in Table 2.
Combined with XCC as a corrector, when two-level 8-bit
interleaved parity is used as a detector, the single-bit and TSV
failures are perfectly eliminated. In all other cases 16-bit
CRC + XCC reduces the overall FIT rate by about 10 times
more compared to two-level 8-bit interleave parity . However,
due to the long distance (128bit) between the faulty bits as
well as the number of faulty bits that is greater than the 16-
bit CRC’s hamming distance, when it comes to the single
TSV failure mode, 16-bit CRC+XCC combination could not

8

Processors
Core 4 cores, 3.2 GHz out-of-order, 4 issue width
L1 cache 4-way, 32KB I-Cache + 32KB D-Cache (2-cycle)
L2 cache 8-way, 256KB (4-cycle)

Stacked DRAM
Size 8GB
Bus frequency 800 MHz (DDR 1.6GHz), 128 bits per channel
Channels/Ranks/Banks 16/1/8, 2048 bytes row buffer
tCAS-tRCD-tRP 25-17-8
tRAS-tRC 25-29

DRAM Energy Parameter (nJ)
Activation 2.77 Read 4.74
Write 4.74 Precharge 2.43
TSV per access 1.04

Table 3: Simulation Parameters

Name LLC MKPI IPC Name LLC MKPI IPC
leslie3d 13.41 0.75 bzip2 0.19 0.63
soplex 20.27 1.20 gcc 3.88 0.76
libquantum 15.93 0.20 milc 9.93 1.17
lbm 28.99 0.44 namd 0.16 0.59
mcf 17.70 0.12 gromacs 0.12 1.28

Table 4: Characteristics of SPEC2006 benchmarks

perfectly remove the errors. We conclude that either two-
level 8-bit interleaved parity or 16-bit CRC can be used for
error detection and XCC can be used for error correction in a
die-stacked DRAM. If TSV failures are major concern, then
two-level 8-bit interleaved parity is better option. In the rest of
the results section we use two-level 8-bit interleaved parity to
evaluate the performance and energy overheads of using error
protection in die-stacked DRAMs.

5.2. Performance and Energy Overhead Evaluation
5.2.1. Settings and Workloads

For evaluating the performance and energy overheads of
our proposed scheme, macsim, a cycle-level X86 simulator [6]
and SPEC2006 benchmark suite are used. We assume a 8GB
die-stacked DRAM having 8 layers. Each layer has two ranks
of 512MB each. As described in prior section, each rank
is given its own channel. The timing components such as
RCD, RAS, RC, and CAS are calculated by using CACTI-
3DD [3]. The detailed simulation parameters are described
in Table 3. In the prior sections, we described the idea based
on a stacked DRAM that has 4 layers and 8 ranks assuming
a 4GB DRAM stack. Since we are simulating a larger 8GB
die-stacked DRAM a few minor modifications are made to
XCC. Instead of XOR data from 7 channels as described in
our previous section, we XOR data from 15 channels to create
one XCC row.

Workload Memory Intensive Memory Non-instensive
H1 lbm, leslie3d, soplex, libquantum x
H2 lbm, leslie3d, libquantum, mcf x
H3 milc, soplex, libquntum, mcf x
H4 mcf × 2, soplex, lbm x
M1 lbm, leslie3d bzip2, milc
M2 soplex, libquantum namd, gromacs
M3 mcf, leslie3d bzip2, gromacs
L1 x milc, namd, gcc, bzip2
L2 x gromacs, milc, bzip2, gcc

Table 5: Mix of workloads for multiprogramming simulation

One can also use two 4GB stacks with each stack config-
ured as described in the prior section. However, as all the
16 channels operate concurrently in both configurations, we
believe the evaluation results should be similar or worse than
two 4-layer stacked DRAM configuration.

We implemented a new DRAM power measurement module
to macsim by referring to DRAMSim [27]. The burst read and
write access energy parameters are calculated by using CACTI-
3DD [3]. The TSV energy overhead that is also calculated by
CACTI-3DD is added to each access energy calculation. For
the idle energy calculation, the parameters obtained from the
Micron DRAM power calculator [7] are used. We assume that
the die-stacked DRAM’s idle power of each layer is similar to
the same size 2D DRAM. As each layer of our configuration
has 1GB memory, we borrowed the parameters of 1GB DDR2
DRAM and multiplied by the number of layers.

For the performance simulation, we used a representative
500 million instructions slice of each benchmark generated by
using PinPoints [19]. Each benchmark’s characteristics that
are of interest to this study are described in Table 4. Each
benchmark has a MPKI metric that measures the misses per
kilo instructions (MPKI) of the last level cache. These misses
are serviced by the die-stacked DRAM. We then made clus-
ters of four benchmarks to simulate the multi-programming
environment as shown in Table 5. Among

(10
4

)
= 210 different

clusters that grouped out of 10 benchmarks, we chose 9 clus-
ters based on their memory intensity: 4 high, 3 medium, and 2
low memory intensive workloads. Weighted speed-up [22] is
used for the performance metric, which is computed as:

Weighted Speedup = ∑
i

IPCshared
i

IPCsingle
i

(1)

To evaluate the performance impact of the proposed
EDC/XCC schemes, faults are injected by assuming that each
bit has 10−4 error probability every cycle. Since the actual
FIT rate is extremely small (only 66 failures in a billion de-
vice hour [23]), we accelerated failure rates for measuring the
performance impact of our proposed design.
5.2.2. Local EDC vs. Remote EDC

Before evaluating the proposed methods, we firstly inves-
tigate the performance overhead of placing EDC rows in a
separate region from the data rows (labeled as remote in Fig-
ure 8(a)). We compare remote EDC with a configuration
where EDC is embedded immediately next to the data (labeled
as local). In this experiment, we disabled XCC since we are
interested in measuring only error detection overhead. When
the EDC and data are in the same row, then a single row buffer
access is sufficient to get the data and perform error detection.
Local EDC requires non-POT address decoding. However, in
our experiment, we assume that there is no additional delay for
non-POT computation. Because the error correction capability
in both scenarios is the same, we assume BER (bit error rate)
is zero for this evaluation experiment. Figure 8 shows the
weighted speedup and the energy dissipation when local EDC
and remote EDC are used. The weighted speedup and the

9

energy consumption are normalized to scenario that uses no
reliability support. These results simply measure the overhead
of EDC computation and EDC checks on each memory access.
Clearly, providing error protection reduces performance since
in all cases both local and remote EDC approaches achieve a
normalized performance that is less than one, compared to a
no error protection baseline. However, enabling EDC degrades
performance by up to 5% in the worst case.

(a)

0.98 0.97 0.97 0.95
0.99 0.98 0.97 0.99 0.99

0.8

0.9

1

1.1

H1 H2 H3 H4 M1 M2 M3 L1 L2

W
e

ig
h

te
d

S

p
e

e
d

u
p

local remote

(b)

0
0.5

1
1.5

2
2.5

3

H1 H2 H3 H4 M1 M2 M3 L1 L2

N
o

rm
a

li
z
e

d

D
R

A
M

 E
n

e
rg

y

C
o

n
s

u
m

p
ti

o
n

Remote EDC
Local EDC

Remote EDC + EDC Cache

Figure 8: (a) Performance and (b) energy comparison of local
and remote EDC

Since remote EDC approach accesses two separate channels
to access data and EDC concurrently it performs better than
local EDC. However, the worst case energy consumption is
2.4 times higher than no error protection support, when remote
EDC is used since two channels are accessed for each read.
Local EDC opens only one data row for serving both data and
the EDC. But when remote EDC is augmented with the EDC
cache we can effectively reduce the energy overhead. As can
be seen in Figure 8(b), the Remote EDC + EDC Cache reduces
the energy consumption significantly and the overall energy
consumption is lower than local EDC’s energy consumption.
5.2.3. Impact of EDC and XCC

We also evaluate the performance impact of EDC and XCC.
We measured the weighted speedup under four different scenar-
ios: 1) no reliability support (labeled as No RAS in Figure 9),
2) EDC only without fault injection (labeled as EDC@No
Error), 3) both EDC and XCC are activated without fault in-
jection (marked as EDC+XCC@No Error), and 4) 3) with
fault injection (marked as EDC+XCC@BER=10−4). All the
measurements are normalized by No RAS.

0.8

0.9

1

1.1

H1 H2 H3 H4 M1 M2 M3 L1 L2

W
e

ig
h

te
d

S

p
e

e
d

u
p

 No RAS

EDC@No Error

EDC+XCC@No Error

EDC+XCC@BER=10^4

Figure 9: Impact of EDC and XCC on performance

EDC degrades the performance by about 5% as can
be seen in the bars named EDC@No Error in Figure 9.
EDC+XCC@No Error shows that the XCC update overhead

is negligible since this bar is almost identical to EDC@No
Error. When we inject errors at a significantly accelerated
rate the XCC error correction overhead adds an additional
3% overhead on top of error detection overhead as shown by
EDC+XCC@BER=10−4. Clearly error correction overhead
under realistic scenarios, where error rate is significantly lower
than BER=10−4, will disappear. Overall, the performance
overhead of the EDC check that is operated in the majority of
error free cases is the most significant. However, it is still less
than 5% .
5.2.4. Impact of Optimizations

The performance impact of the two proposed optimizations
is plotted in Figure 10(a). Recall that there are two optimiza-
tions that were proposed. One optimization is a decoupled
XCC update approach and the second optimization is to cache
EDC/XCC. Simulations are conducted by applying one of the
proposed optimization techniques. No Opt is the case when
the EDC and XCC are used for detecting and correcting the
injected fault without any optimizations. Decoupled XCC
and EDC Cache are the cases when the proposed decoupled
XCC update and EDC cache optimization are applied one at
a time, respectively. When evaluating cache optimizations a
2KB EDC cache is used per channel. The last bar is labeled
as Unified Cache, where both EDC and XCC are stored in a
unified cache with 2KB unified cache per channel. All the
simulations are conducted by assuming that each bit has BER
of 10−4 except for No RAS, which is the baseline. Figure 10(b)
shows the corresponding energy overhead of all these schemes
compared to No RAS baseline.

The error detection and correction overhead without any
optimization techniques is 8%. Most of the protection over-
head is suffered primarily by benchmarks with higher MPKI,
as expected. For other benchmarks error protection does not
impact performance. The overall performance gain due to the
decoupled XCC update (indicated as Decoupled XCC) does
not look significant. However, the write latency is significantly
reduced as can be seen in Figure 10(c). Figure 10(c) shows
the average write speedup of Decoupled XCC over No Opt.
The decoupled XCC update can speedup write operations on
average by 32% and up to 50% with no additional storage
demands. However, write latencies are typically well masked
by current architectures and hence the write speedup does not
translate into corresponding speedup in the overall execution
time in our benchmarks. Hence, the reduction in write latency
may improve performance impact for other workloads that
exhibit burst write activity.

The EDC cache, on the other hand, works well and re-
cuperates almost all the performance loss due to protection
overhead. As we already mentioned, the energy overhead of
accessing EDC can also be significantly reduced with EDC
cache. The unified cache, that caches both EDC and XCC,
does not perform as well as EDC cache alone. The reason
why EDC cache is more effective is the fact that a single byte
of EDC can hold the parity associated with an entire cache
line. Hence, a 2KB EDC cache can hold the error detection

10

(a)

0.8

0.9

1

1.1

H1 H2 H3 H4 M1 M2 M3 L1 L2

W
e

ig
h

te
d

S

p
e

e
d

u
p

 No RAS

No Opt

Decoupled XCC

EDC Cache

Unified Cache

(b)

0
0.5

1
1.5

2
2.5

3

H1 H2 H3 H4 M1 M2 M3 L1 L2

N
o

rm
a
li
z
e
d

D

R
A

M
 E

n
e

rg
y

C
o

n
s
u

m
p

ti
o

n

No Opt
Decoupled XCC

EDC Cache

(c)
1.24

1.32
1.50

1.28
1.36

1.16

1.48

1.30 1.31

0.8

1

1.2

1.4

1.6

H1 H2 H3 H4 M1 M2 M3 L1 L2

W
ri

te

S
p

e
e

d
u

p

Figure 10: (a) Weighted speedup and (b) energy dissipation of
various optimizations and (c) write speedup due to decoupled
XCC update

parity for 2048 cache lines, which is 128KB of data. However,
an XCC can cover only the number o f channels − 1 rows
and also XCC is accessed only when either the corresponding
data is updated or when an error is encountered. Therefore, in
many cases, the XCCs loaded to the EDC cache are replaced
by the frequently accessed EDCs before it is accessed again.
As a result, the unified cache perturbs the EDC cache hit ratio
and hence it is better to not cache XCC entries.

6. Related Work

There have been several studies to mitigate the negative im-
pacts of conventional ECC for protecting DRAMs. Virtual-
ECC [28] and LOT-ECC [25] brought up the inefficiency issue
of the conventional ECC DRAM and proposed approaches that
can reduce the performance and power dissipation overhead.
They mainly decouple the error detection and correction and
have the majority of error-free accesses handled with locally
stored error detection code. Virtual-ECC [28] stores the correc-
tion code in an arbitrary memory rows with help of operating
system. On the other hand, in LOT-ECC paper [25], error cor-
rection code is located in the same memory chips with the data
but in the different region (one of the several bottom rows).
They both successfully reduced the performance overhead for
the normal accesses. LOT-ECC especially enhanced the rank
level parallelism by squeezing the redundant code into a single
rank. However, LOT-ECC still assumes ECC-DRAM-like
configuration that uses 9 DRAM chips within a rank, which is
impractical to apply to a die-stacked DRAM, and has a fairly
high area overhead (26.5%). Virtual-ECC requires operating
system support as well.

Udipi et al. propose to use RAID5 approach for the error
correction [26]. They stripe the parity across the 9 DRAM
chips in each rank. The local checksums are used to detect er-

rors and the correction is conducted by XORing the parity and
the corresponding data from the rest 8 chips. This approach is
not directly applicable to die-stacked DRAM designs: employ-
ing additional DRAM chips just for ECC reduces the flexibility
to add DRAM layers in die-stack. We lean on RAID5-like
parity in our approach but we do not need additional ranks to
support error protection. We further resolved the long write
latency problem of RAID system by using decoupled parity
update and EDC$.

There have not been many studies on reliability support for
die-stacked DRAM. A study [21] proposed several approaches
for efficient reliability support for 3D DRAM as a last level
cache. However, the protection domain of cache and main
memory is different as caches only care about modified data
protection. Therefore, many techniques proposed in [21]
cannot be used for 3D DRAM as a main memory. Another
study [2] proposed to use different length ECCs for different
layers. This proposal is motivated by the fact that different lay-
ers in a die-stacked DRAM have different levels of shielding
effect. The outermost (the top) layer is likely to be impacted
by more soft error attacks than the inner(lower) layers. But
this approach is entirely orthogonal to our proposed approach.

7. CONCLUSION
Die-stacked DRAMs are actively being pursued as main mem-
ory replacements for many critical computing systems. But
with technology scaling, all memory devices are expected to
experience significant increase in single and multi-bit errors.
3D die-stacked DRAM will have the added burden of protect-
ing against through-silicon-via (TSV) failures, which translate
into multiple bit errors in a single cache line, as well as chan-
nel level failures. To take advantage of the wide I/O capability
of 3D DRAM, large chunks of data is contiguously laid out
in a single chip; 3D DRAMs place an entire cache line worth
of data on a single DRAM chip. Traditional approaches for
planar DRAM protection, such as ECC-DIMM and chipkill-
correct, do not lend themselves well to protect 3D DRAMs. To
address these concerns, this paper adapts several well known
error detection and correction techniques while taking into
account 3D DRAM’s unique memory organization. We first
adapt an 8-bit interleaved parity to handle die-stacked DRAM-
specific failure modes such as TSV failures. We then, use
RAID5 parity, a techniques developed for hard disks which
also layout large chunks of data contiguously, for recovering
from a wide range of errors from single-bit errors to channel-
level failures without the need to splice data across multiple
layers. We co-locate error detection and correction codes with
the data on the same die-stack to improve scalability. As
further optimizations, a two-step decoupled error correction
code update process is used to improve write speed, and an
error detection code cache is used for improving read/write
performance without compromising reliability. The proposed
approaches effectively reduce the FIT rate with 15.7% area
and almost negligible performance overhead even assuming
an aggressive bit-error rate for a sixteen-channel 3D DRAM.

11

References
[1] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H.

Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed,
J. Rupley, S. Shankar, J. Shen, and C. Webb, “Die Stacking (3D)
Microarchitecture,” in MICRO, 2006, pp. 469–479.

[2] L.-J. Chang, Y.-J. Huang, and J.-F. Li, “Area and Reliability Efficient
ECC Scheme for 3D RAMs,” in VLSI-DAT, 2012, pp. 1–4.

[3] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked
dram main memory,” in DATE, 2012, pp. 33–38.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patter-
son, “RAID: High-Performance, Reliable Secondary Storage,” ACM
Computing Surveys, vol. 26, pp. 145–185, 1994.

[5] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for
PC server main memory,” in IBM Technical Report, 1997.

[6] HPArch, “Macsim simulator.” Available: http://code.google.com/p/
macsim/

[7] M. T. Inc., “DDR3 Power Calculator.” Available: http://www.micron.
com/products/support/power-calc

[8] JEDEC, “3D-ICs.” Available: http://www.jedec.org/category/
technology-focus-area/3d-ics-0

[9] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit Error
Tolerant Caches Using Two-Dimensional Error Coding,” in MICRO,
2007, pp. 197–209.

[10] P. Koopman and T. Chakravarty, “Cyclic redundancy code (crc) poly-
nomial selection for embedded networks,” in DSN, 2004, pp. 145–.

[11] G. Kumar, T. Bandyopadhyay, V. Sukumaran, V. Sundaram, S. K.
Lim, and R. Tummala, “Ultra-high I/O density glass/silicon interposers
for high bandwidth smart mobile applications,” in ECTC, 2011, pp.
217–223.

[12] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager writeback - a
technique for improving bandwidth utilization,” in MICRO, 2000, pp.
11–21.

[13] D. Locklear, “Chipkill correct memory architecture,” in Dell Technical
Report, 2000.

[14] G. H. Loh, “A register-file approach for row buffer caches in die-
stacked drams,” in MICRO, 2011, pp. 351–361.

[15] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches,” in MICRO, 2011, pp.
454–464.

[16] M. Manoochehri, M. Annavaram, and M. Dubois, “Cppc: correctable
parity protected cache,” in ISCA, 2011, pp. 223–234.

[17] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and L. A. Las-
tras, “PreSET: improving performance of phase change memories by
exploiting asymmetry in write times,” in ISCA, 2012, pp. 380–391.

[18] M. Santarini, “Stacked & Loaded Xilinx SSI, 28-Gbps I/O Yield
Amazing FPGAs,” Xcell Journal, pp. 8–13, 2011.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS, 2002, pp.
45–57.

[20] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi, “A
Mostly-Clean DRAM Cache for Effective Hit Speculation and Self-
Balancing Dispatch,” in MICRO, 2012, pp. 247–257.

[21] J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor, “Resilient die-
stacked dram caches,” in ISCA, 2013, pp. 416–427.

[22] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simulta-
neous multithreaded processor,” in ASPLOS, 2000, pp. 234–244.

[23] V. Sridharan and D. Liberty, “A study of DRAM failures in the field,”
in SC, 2012, pp. 76:1–76:11.

[24] TechSpot, “Future Nvidia ’Volta’ GPU has stacked DRAM, offers
1TB/s bandwidth.” Available: http://www.techspot.com/news/
52003-future-nvidia-volta-gpu-has-stacked-dram-offers-1tb-s-bandwidth.
html

[25] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and
N. P. Jouppi, “LOT-ECC: localized and tiered reliability mechanisms
for commodity memory systems,” in ISCA, 2012, pp. 285–296.

[26] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, “Rethinking DRAM design and organiza-
tion for energy-constrained multi-cores,” in ISCA, 2010, pp. 175–186.

[27] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Ja-
cob, “DRAMsim: a memory system simulator,” SIGARCH Comput.
Archit. News, pp. 100–107, Nov. 2005.

[28] D. H. Yoon and M. Erez, “Virtualized and flexible ECC for main
memory,” in ASPLOS, 2010, pp. 397–408.

[29] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleav-
ing scheme to reduce row-buffer conflicts and exploit data locality,” in
MICRO, 2000, pp. 32–41.

[30] L. Zhao, R. Iyer, R. Illikkal, and D. Newell, “Exploring DRAM cache
architectures for CMP server platforms,” in ICCD, 2007, pp. 55–62.

12

http://code.google.com/p/macsim/
http://code.google.com/p/macsim/
http://www.micron.com/products/support/power-calc
http://www.micron.com/products/support/power-calc
http://www.jedec.org/category/technology-focus-area/3d-ics-0
http://www.jedec.org/category/technology-focus-area/3d-ics-0
http://www.techspot.com/news/52003-future-nvidia-volta-gpu-has-stacked-dram-offers-1tb-s-bandwidth.html
http://www.techspot.com/news/52003-future-nvidia-volta-gpu-has-stacked-dram-offers-1tb-s-bandwidth.html
http://www.techspot.com/news/52003-future-nvidia-volta-gpu-has-stacked-dram-offers-1tb-s-bandwidth.html

	INTRODUCTION
	Why Is Reliability Support For Die-stacked DRAM Challenging?
	Contributions

	PROPOSED ORGANIZATION
	Baseline Die-stacked DRAM Structure
	Data & ECC Co-location
	Error Detection Code (EDC)
	XOR Correction Code (XCC)

	OPTIMIZING THE COMMON CASE
	Decoupled XCC Update
	Caching Error Detection Code
	Putting It All Together

	COVERAGE AND OVERHEAD
	EVALUATION
	FIT Analysis
	Performance and Energy Overhead Evaluation
	Settings and Workloads
	Local EDC vs. Remote EDC
	Impact of EDC and XCC
	Impact of Optimizations

	Related Work
	CONCLUSION

