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Abstract

To support massive parallel threads context, GPGPUs use
a huge register file. Due to their size, register file is one of
the most power hungry logic in GPGPU. However, the current
trends indicate that GPGPU register file size will continue to
get even bigger as the demand for higher single instruction
multiple thread (SIMT) parallelism increases, particularly in
high performance application domain. In order to reduce
power consumption demand, in this work, we exploit a fun-
damental observation that fairly high portion of the register
spaces are unnecessarily allocated and burn power due to the
fact that the registers are considered as private resource for
each warp. For example, even though a register’s value is
no longer used by any instruction, the register space should
be occupied by the warp during the program execution. In
GPGPU, as single register usage in a code context leads to
thousands of register space allocation, the power and space
overhead due to any wasted register is significant. Instead,
we propose to share the register file across warps. In our
proposed allocation, a register is released from its physical
register space immediately after its last use. Then, the released
register space is reassigned to another warp’s register. The
compile time register lifetime analysis information is used for
providing hint to the hardware about each register’s release
point. To enable this register reassignment, we propose a light
weight register renaming in hardware. By releasing registers
and reusing them across warps, we can reduce the demand for
register file size on average by 30% compared with the opti-
mally compiled applications. The reduced live register space
leads to an average of 23% and 26% static power saving over
a basic sub-array level and individual register level power
gating.

1. INTRODUCTION

GPGPUs provide massive register file to quickly switch be-
tween thousands of thread contexts. To run thousands of
threads concurrently, GPGPU needs to save and restore the
architecture state of the threads on each thread switch. Since
GPGPUs potentially can switch between threads every cycle,
they can ill-afford to save context to an off chip memory or
even a cache on die. Instead, GPGPUs have a register file that
is multiple times bigger than the register file on traditional
CMPs. The trend in GPGPU design indicates that with tech-
nology progression more thread contexts will be supported
in future designs. For instance, the size of the register file
per each streaming multiprocessor (SM) doubled from Fermi
to the Kepler architecture [17]. The bigger size register file

is not only expensive but also consumes significant leakage
power. In fact, a recent power breakdown of GPGPU microar-
chitectural blocks showed that register files consume 13.4%
of the total chip power [14] and 50% of that power is spent
in leakage [11]. Several recent studies address the power con-
sumption concern of GPGPU register file [9, 6, 10]. Some of
these studies focused on reducing dynamic power by adding
small register cache or multi-level register file [9, 10] thereby
minimizing the access to the large main register file. One
recent study focused on saving leakage power by forcing the
inactive registers into low power mode using drowsy voltage.

However, these studies rely on the compiler determined
register allocation. Our experimental result shows that the
compiler determined register usage is over-provisioned. The
compile time allocated registers are not fully utilized during
the program execution due to two main reasons: various regis-
ter lifetime and warp scheduling time differences. In GPGPU,
warps are scheduled in different point in time. Especially in
the state-of-the-art two level scheduler [9], as a small set of
warps are scheduled in a ready queue until they cannot proceed
due to long latency memory stalls, the execution time window
of the warps in the ready queue and those in the pending queue
is several hundred or thousand cycles away. When there is
a register that has fairly short lifetime such that the value is
not referenced across the scheduling, the register space is left
unused during the hundreds of cycles while the warp stays in
the pending queue. If a power management is not used in the
GPGPU, the register space burns significant leakage power
without contributing program correctness.

Our primary intuition is to reuse such wasted register spaces.
As the registers are considered as a private resource of each
warp, the unused register spaces cannot be reused by another
warps. To avoid any resource conflict, compiler allocates an
exclusive copy of register sets for each warp even though
not every warp is scheduled in the same execution time win-
dow. Instead, we propose to share the register space across the
warps. The registers are allocated in run time by using the com-
piler generated register lifetime information. By proactively
reallocating the wasted register spaces for the other warps’
registers, the total register usage as well as the corresponding
leakage power can be reduced.

In GPGPU kernels, simple compiler analysis can detect
when each register’s value is lastly consumed (a.k.a. dead
register). The dead register’s physical space can then be reas-
signed to hold the contents of the next register that just begins
a new life. By enabling such physical register space shar-
ing, we can significantly reduce the number of live registers
thereby decreasing power consumption and the demand for



the register file size. In the rest of this paper, we first present
the motivational data showing register lifetimes in GPGPU
kernels. We then present the necessary software and hardware
support to enable physical register sharing across warps.

To summarize, the followings are the contributions of this
paper:

(1) We show and analyze the underutilization in the com-
pile time allocated register spaces during the execution. To
our knowledge, this is the first paper that identifies the under-
utilization in the compiler reserved register space in SIMT
processors.

(2) We extend the existing compile time techniques to iden-
tify when each register is dead in the code and when the dead
register can be released by considering the warp level thread
execution. Then, we mark that information as part of the
GPGPU binary.

(3) We propose to reuse the physical space for the dead
registers across different warps. When a register is dead in
one warp, its physical space will be reassigned to any other
warp that has a need for another register space. We propose
a simple register renaming hardware that enables cross-warp
register sharing. The compile time information encoded in the
kernel binary is conveyed to the hardware to make an accurate
decision on when to release a register and reassign to another
warp.

(4) We evaluate the proposed idea and show that applica-
tions can run with average of 30% less register space even
compared to the optimally compiled workloads while sav-
ing 23% and 26% of the register leakage power consumption
compared to a sub-array level and an individual register level
power gatings with only 1% area overhead to store the register
renaming table.

2. BACKGROUND

2.1. GPGPU Register File
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Operand buffering
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Figure 1: Baseline GPGPU register file

In this paper, we will use an NVIDIA Fermi GPGPU mi-
croarchitecture for evaluations. In this architecture, each chip
has multiple streaming multiprocessors (SMs). Each SM con-
sists of eight SIMT clusters that is comprising of four SIMT
lanes, thereby allowing 32 SIMT lanes to be executed con-
currently. Each SIMT cluster has 4 CUDA cores that can do
a variety of integer, floating point, 1d/st and special function

operations. Each cluster accesses four register banks to find
its input and output operands. Each entry of a register bank
is 128-bit wide and contains four 32-bit registers, each asso-
ciated to one SIMT lane within a cluster [9]. As each entry
of the register bank consists of 4 registers having the same
name but associated with 4 different threads, loading an en-
try from a register bank can feed all 4 SIMT lanes at once.
Most common instructions that read 2 operands, write 1 result
(2RIW), as well as the special instruction like MULADD that
read 3 operands, write 1 result (3RIW) can access the four
register banks to read their input operands and write output
data concurrently without any register port stalls most of the
time. However, if an instruction fetches operands from the
same bank, the operands cannot be fetched concurrently. To
handle bank conflicts, GPGPUs use operand collector buffer-
ing logic that hides the latency of multi-cycle register fetch.
Each register bank is shared by multiple warps by allocating
different register regions to each warp.

Due to the access latency as well as dynamic power, huge
register files are typically partitioned into several small sub-
arrays [12]. While there is no publicly available documen-
tation on GPGPU register file organization, we believe the
structure that is described in [12] is efficient for GPGPU regis-
ter file. In such an organization, a 128KB register file in Fermi
is partitioned into 32 4KB banks and then each 4KB bank uses
four 1KB sub-arrays. When a data is to be fetched, one or
more sub-arrays can be accessed. In this paper, we assume
that an entire 128-bit register entry is loaded from one of the
four sub-arrays.

2.2. Vendor’s Effort for Power Efficiency

As the power efficiency becomes as one of the top priority
design issues, vendors started to optimize the GPGPU archi-
tecture to reduce the power consumption. One major inno-
vation that is made in NVIDIA Kepler is that the scoreboard
logic becomes simpler. The researchers found that depen-
dency tracking among the instructions can be removed from
the scoreboarder by leveraging three factors: 1) instructions
are scheduled in order fashion 2) the execution latency of
the instructions are fixed in GPGPU, and 3) data dependency
can be easily detected in compile time. Instead of tracking
the data dependency in run time, Kepler uses a dependency
information that is generated by compiler [17].

NVIDIA barely reveals the details of the design but a recent
study found that a metadata instruction is added per seven
instructions when a code is compiled for Kepler GPU [13].
They found that the format and the operation of the metadata
instruction is similar to explicit-dependence lookahead that
was originally used in Tera computer system [7]. For example,
the information contained in the metadata instruction is used
for indicating the cycles that the seven following instructions
should wait until the dependencies are resolved. By using this
information, the instructions can be scheduled in time with-
out dynamically checking the dependencies. To pre-process



the metadata instruction, the pipeline of Kepler is slightly
changed from Fermi [17]. The fetch stage is partitioned into
two separate stages: Sched. info and Select. Sched. info
stage pre-processes the metadata instruction and Select stage
selects an instruction to issue according to the metadata. The
other pipeline stages are the same. In this paper, we leverage
this new architecture to support our proposed design.

3. INEFFICIENCY IN COMPILE TIME REG-
ISTER ALLOCATION IN SIMT PROCES-
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Figure 2: Utilization of the registers that are reserved by com-
piler in the first 10K cycles of execution (X-axis: cycle, Y-axis:
utilization(%))

To support highly parallelized applications, vendors over-
provision the register file size in GPGPU. In some applica-
tions, the register file is not fully utilized due to the program’s
lacking parallelism. The underutilized register space can be
easily detected by using compiler generated register usage
information. For example, if a kernel code uses N registers
and the kernel is executed by M concurrent cooperative thread
array (CTA)s that uses K warps each, the total register us-
age for the kernel per SM is N x M x K x 32 when a warp
has 32 threads. If the total available registers in a SM is 7,
the underutilized register space can be easily calculated by
T—(NxMxK x32).

However, from an experiment, we found that the allocated
registers themselves are not fully utilized during the execution.
Figure 2 shows the portion of registers that are actually used
among the registers reserved by the compiler in a 10K cycles
of the execution. X-axis and Y-axis respectively denote time
in cycle and register utilization in percentage. The utilization
trend is captured from eight representative applications of
CUDA SDK, rodinia and Parboil in their first 10K cycles. We
only counted the registers that are storing a valid value that
is referred by any of the following instructions. We excluded
the registers whose value lifetime is ended from the utilization
calculation. Except vectorAdd that reaches 100% utilization
in around 2000 cycle, the rest seven applications barely use
more than half of the allocated registers during the monitored
time frame.

This kind of underutilization is caused mainly due to the
various register lifetimes and the nature of SIMT execution.
A GPGPU application is executed by multiple warps. Warps
are scheduled in different point in time. In some state-of-the-
art scheduler that schedules the warps in two levels [9], to
effectively hide the latency of long memory operation, the
scheduling time difference between the warps that are in the
ready queue and the pending queue can reach thousands cycles
depending on the application. If there is a register that has its
value lifetime ended before the warp is scheduled out from
the ready queue to the pending queue, and then the new value
lifetime begins when the warp is scheduled back in later, the
corresponding register space is remained unused during the
period that the warp stays in the pending queue. The period
can last hundreds to thousands of cycles. Given that a warp has
32 threads and each thread uses its own register, the number
of inactive registers can easily become several hundred.

As the compiler does not know such warp scheduling in-
formation apriori, the compilers should allocate an exclusive
register storage for each warp by assuming that all the assigned
warps are concurrently executed and the corresponding regis-
ters are perfectly utilized. However, such over-provisioned reg-
ister allocation leads to unnecessary power consumption as the
registers burn power once they are allocated even though some
of them are not used any longer. Also, due to the exclusive
register allocation per warp, the parallelism and performance
that can be improved by using more registers can be limited.
In this paper, we focus on improving power efficiency by ex-
ploiting the inactive register storages. The detailed register
usage pattern in GPGPU and the novel power efficient register
allocation method are explained shortly.

4. LIFE-TIME AWARE REGISTER ALLOCA-
TION

4.1. Register Usage Patterns in GPGPU

Figure 3(a) shows three representative register usage patterns
seen in GPGPU applications. The pattern is actually taken
from the benchmark matrixMul of CUDA SDK used in our
experimental evaluation, which is compiled with default op-
tions. We captured the lifetime of three registers, namely 70,
r2 and r12. The X-axis represents time and Y-axis represents
three different lifetime scenarios. A dead value is represented
with a Y value of zero, a short lived register is represented as
a next step up in the Y-axis and the last step up represent the
long lived registers.

Dead register contains the value that is no longer consumed
until next write to the register. In this figure, r12 has the
shortest lifetime. It is only used for a short time scale of just
a few cycles at the beginning of the program and it is then
dead. In particular, r12 lifetime is restricted to the start of the
program execution but before the beginning of a loop. Since
the compiler is aware that this register is dead at the end of
last read, it tries to reassign the register for a different compu-
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Figure 3: (a) Register lifetime variance (CUDA SDK matrixmul example) and (b) the expected power efficiency by using register
renaming: warp1’s r12 is mapped to p5 only when it is alive and then released to reuse p5 for mapping to warp3’s r12. p5 is
released and can be completely turned off after warp3’s r12 is dead.

tational purpose after its last use. However, in this code, the
loop body uses only few registers including 0 and then the
kernel terminates shortly after the loop iterations. Even in a
single threaded application, wasting a single register is an inef-
ficient use of space. But in the GPGPU context, all the threads’
r12 registers have the same lifetime pattern. For instance, the
matrixMul kernel uses 40 warps, for a total of 1280 threads
per SM. Hence, 1280 values of register r12 are dead for very
long time. These dead registers burn leakage power without
contributing anything to the program correctness. The accu-
mulated register space for 12 across all threads is SKB which
is bigger than a register bank. As current GPGPU register
file management does not consider a register’s lifetime, r12
cannot be powered off.

On the other hand, 72 is written at the beginning of the
program and is read at the end of the program execution. As
r2’s value is read at the end of the program, the register is
alive for the entire program duration. Clearly r2 is a long lived
register.

The last register in this example, r0, is actively produced
and consumed within a loop. Each group of spikes is a loop
iteration and there are a total of five loop iterations shown in
the figure. On each entry into the loop, 70’s value is loaded
from global memory and then a series of read-write sequences
are performed. In each iteration, r0 stores a value which is
then consumed within a few cycles and then a new value is
written immediately after last read. At the start of a new
iteration, a new value is loaded from memory and the process
repeats. This is an example of a register that has multiple
lifetimes but each lifetime is relatively short. At the beginning
of each iteration, there is a long latency in accessing global
memory (typically, 400-600 cycles) to load the value of r0.
However, using the two level warp scheduler [9], after each
iteration, when a warp encounters a long latency operation
such as 1d, the scheduler schedules the warp out from the
ready queue to the pending queue. Only when the data arrives
from the memory, the warp is scheduled back in to the ready

queue. Because of such scheduling policy, in between two
iterations there is no need to hold on to the physical register
space assigned to r0.

4.2. Opportunistic Register Reuse

To effectively reduce the wasted register space and correspond-
ing power dissipation, we propose to share the register space
across the warps. As explained in the previous section, warps
are scheduled to execute the same code at different points in
time. When a register life time ends in a warp, that register
can be allocated to a different warp which is beginning a new
register life cycle. If the register value lifetime is known apri-
ori, a short lived register can then be released by one warp,
and the space that was allocated to the register can be reused
by warps that are scheduled later.

Figure 3(b) shows an example of register reuse. Warp one
and three execute the same code but scheduled in different
point in time. Therefore, a short lived register 712 is used
by warp one and warp three in different time slots. Recall
that from Figure 3(a) r12 is only needed in each warp before
the loop execution. If warp one releases r12 right after its
valid lifetime that is illustrated as white rectangle, warp three
can reuse the space for its own r12 storage. In addition, a
register that is waiting for a long latency operation, such as 0
in between two loop iterations, can also be reused during the
long stall time. Furthermore, if there are any two CTAs that
do not have their execution times overlapped (for example,
the trailing CTA begins the execution after the leading CTA
almost finishes its execution), all the registers including the
long lived registers such as 72 that are assigned to the leading
CTA can be entirely reused by the trailing CTA. Thus the
number of registers used in the system can be reduced.

Then, we can also reduce the power consumption by only
activating the decremented number of active registers and
turning off (i.e. power gating) the inactive registers. The
details on the power gating is described in Section 4.4.

To enable register sharing across warps, it is necessary



to separate architectural registers from the physical register
space they occupy. Conventional CPUs have long used reg-
ister renaming to avoid false data dependency by mapping
an architectural register’s multiple value instances to distinct
physical registers. We propose to adopt similar technique but
in a completely different way and purpose within the GPGPU
execution environment. The renaming table in our proposed
approach is used for mapping multiple architectural registers
to a physical register to reduce the unused register file space
as well as power consumption. Also, a register renaming
logic is designed to use the register lifetime information that
is provided by the compiler, while the CPU side renaming
is operated purely by hardware. In the next section, we de-
scribe how register lifetime information can be gathered by
the compiler.

Read A Write A
Read A
Release A Read A Read A 4
Write A
: e Read A
Write A Release A Release A
(a) (b) (e)

Figure 4: Register Release time w.r.t. Lifetime Analysis

4.3. Register Lifetime Analysis

Intra-Basic Block: In order for the register management
logic to release a register, it has to track register lifetime.
Rather than dynamically tracking the lifetime, we will rely
on compiler to statically identify the life cycle begin and life
cycle end points in the code and pass this compile time infor-
mation to the hardware. Figure 4 shows five representative
code examples that should be considered by the compiler in
register lifetime analysis. Each rectangle represents a basic
block. In the first scenario shown in Figure 4(a) an intra-basic
block analysis can be done trivially to determine lifetime.
Whenever a register is used as a destination operand of an
instruction, the previous instruction that uses the register as a
source operand can release the register after reading the value.
We add one meta data bit flag per each operand for each in-
struction to indicate each source operand’s release time. As
CUDA instructions have maximum of three operands, three
bits are used per instruction and these metadata bits are called
per-instruction release flag (pir). When a bit is 1, the cor-
responding operand storage register can be released after it
is read by the current instruction. More details about these
metadata bits and their organization are described shortly.
Diverged flows: In the presence of a branch divergence,
the register release information must be conservatively set
because registers are released in warp level. For example, if
any instruction in a diverged flow mistakenly release a register,

the value for the threads that should execute another diverged
flow will be lost. Figure 4(b) and (c) show two scenarios. The
register is defined before entering the basic block and it is used
within the two diverged flows as shown in (b). In this case,
the register can be safely released only at the reconvergence
point. The reconvergence point can easily be computed using
standard compile time immediate post dominator basic block
identification. However, the main problem is that unlike in the
intra-basic block case, here the register release is not associ-
ated with the actual last use instruction of the register. Instead,
it is associated with an instruction that happens to start at the
reconvergence point. It is also possible that multiple registers
may need to be released at the reconvergence point. Hence,
rather than adding meta data to an existing instruction, we add
a new per-branch release flag (pbr). The flag contains the list
of architectural register IDs that can be released at the start of
the reconvergence block.

Figure 4(c) shows a more complex nested diverged flow.
But the essential principle for when the register release can
occur is based again on the immediate post dominator analysis,
which is routinely carried out in many compiler optimization
passes.

Loop: Figure 4(d) shows a loop where a register produced
in one iteration is used in another iteration. In this scenario,
clearly there is no option to release the register until all iter-
ations are complete. If on the other hand, there is no loop
carried dependence on registers across loop iterations, then it
is possible to release the register after the last consumption
within the loop body as shown in Figure 4(e). Therefore, when
a register value is referenced across the iterations or outside
of the loop, it can only be released outside of the loop.

4.4. An Usecase: Power Gating

In this section, we are going to show how the proposed register
allocation can help for power efficiency. The register lifetime
analysis allows us to turn off all the dead registers. Without
the information, the dead registers burn leakage power without
contributing any program correctness. We explored two dif-
ferent types of power gatings in the evaluation: 1) individual
register level power gating and 2) sub-array level power gating.
However, in this section, we only show the conceptual illusion
that the register renaming can bring to the power efficiency.
The details are described in Section 8.3.

Figure 5 shows an example when sub-array level power gat-
ing is used. Each of the two rectangles in (a) is the register file
in a SIMT cluster. The four columns denote the four register
banks and each entry contains a 128-bit register. The white
entries are the active registers and the gray ones are unused reg-
ister entries. The four horizontal partitions separated by dotted
lines show the four sub-arrays. For simplicity, a common
power line is plugged to the two SIMT clusters’ register files
in the figure but the two register files are independent. The left
hand side register file shows the active registers distribution
when the typical register allocation is used and the right hand
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side register file shows the one when the proposed register
renaming is used. By using the register lifetime information
given by the compiler, the number of active registers can be
firstly reduced. Then, by using the architectural register to
physical register mapping, the active registers are consolidated
into one sub-array in each bank.

In (b), a sleep transistor is added to each sub-array for sub-
array level power gating. The figure is again, simplified for
the explanation so, the sleep transistors and the Vcc of the two
register files are not connected in the real design. As shown
in the right hand side register file, the sub-arrays from 1 to
3 in all four register banks can be turned off as there is no
active registers in those sub-arrays when register renaming is
used. On the other hand, without register renaming, as the
registers are scattered across the sub-arrays, each register bank
can turn off only few sub-arrays; all four sub-arrays in register
bank 0 are active. If all the active and unused registers equally
burn leakage power, the register file without register renaming
burns 8 times higher leakage power than the register file that
uses the register renaming.

5. COMPILER SUPPORT

5.1. Per-instruction Release Flag Generation

The register lifetime information is generated at compile time
and embedded in the code. As mentioned earlier, each instruc-
tion has a three bit per-instruction release flag, where each
bit indicates one of the maximum of three source operands

0x80. -pir 001000...000010000
0x88 add $r4 $r5 $r0

i);EB aov $r0 $r2

OxFO shl $r4 $r0

OxF8 mad $r3 $r5 $r2 $r1

keep release
- $r5 $r0 10-bit Per Branch

Release Flag OP code  54.hit Release Flag

X A4
[### [ 00D000 .. 000 000 110 [w] v v
Y 7'y [G#### 010010 .... 001100 000001 Jr#]

regl reg9

10-bit Per Instruction ~_54-bit Release Flag

Release Flag OP code

(a) Per instruction release flag (b) Per branch release flag

Figure 6: Two release flag instructions

that can be released. If the bit is 1, the corresponding operand
register can be released after read by the instruction. But
embedding a 3-bit pir in each instruction requires significant
modification on the instruction fetch and cache access logic.
To avoid this concern, we add a 64-bit flag set instruction that
is present at the beginning of each basic block as shown in
Figure 6(a). The selection of 64-bit flag is to accommodate the
fact that CUDA code is 64-bit aligned. The flag set instruction
consists of a 10-bit register release opcode, and 18 three-bit
flags that can cover 18 consecutive instructions within the
basic block. If a basic block is larger than 18 instructions long,
a flag set is inserted every 18 instructions. If the basic block
has fewer than 18 instructions then some of the flag bits are
simply unused. Note that the 10-bit register release opcode
is split into two sets of four and six bits to follow the Fermi
instruction encoding format, which wraps the opcode at the
MSB and LSB bits of the instruction [1, 16].

In the example of Figure 6(a), the pir's first three bit is
the release information for the first add instruction. Each of
the three bit, 001, denotes the release point of corresponding
operands. Let us assume that $10 is determined to be dead at
the add instruction according to the register lifetime analysis.
Since r0 is the first input operand, the corresponding pir flag
bit is set to one. The second r5 is still alive and hence the
corresponding flag is set to zero. There is no third input
operand for the add instruction and hence the corresponding
bit in the pir is a don’t care. The decoding process of the flag
instruction is explained shortly.

5.2. Per-branch Release Flag Generation

At the diverged flows, we do a conservative release. The regis-
ters that are referenced across multiple flows or loop iterations
are only released when the diverged flows are converged. At
the reconvergence point, a pbr is added. As shown in Fig-
ure 6(b), the format is similar to pir. The only difference is
that every six bits present a register number to release. Note
that each thread in Fermi can use up to 63 registers which can
be identified by six bits. Total of nine registers can be covered
by a pbr. If more than nine registers are to be released, more
pbrs are added. However, according to our evaluation, the
average number of registers that are released by pbr is less
than 2.
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Figure 7: An example of the proposed register allocation: 1) physical register availability flag is looked up to find an available
physical register, 2) renaming table is updated, and then 3) the reserved physical register is written

6. ARCHITECTURE SUPPORT
6.1. Renaming Table

To enable register reallocation, we use the concept of register
renaming. Each architectural register is mapped to a physical
register whenever it is written. When the architectural register
value is no longer used, the mapping is released. The release
point is provided either as a part of the pir or pbr. Once a
physical register is released, the physical register is marked as
available which can then be remapped to another architectural
register in the future. The physical availability marking is
explained shortly.

To maintain the mapping information, a register renaming
table is added to each SM. Since registers are allocated and
released per warp, the renaming table is operated per warp.
Each renaming table is indexed by a combined id of warp id
and architectural register id and contains the corresponding
physical register id. The total renaming table size per SM is
calculated like below:

Renaming Table Size = # warps per SM X # regs per kernel

xlogy(max physical register count) bits

ey

Each SM has a 128KB register file in the Fermi architecture
and each register width is 32 X 32-bit registers each providing

data to one SIMT lane. Hence, there are a total of 1024
physical registers. Therefore, each entry of the renaming table
is 10 bits long. In Fermi, that uses maximum of 48 warps
and 63 registers per thread, the renaming table size is 3.69KB
which is 2.8% among 128KB register file.

To find an available physical register when mapping a new
register, a 1024-bit physical register availability flag is also
used. Each bit indicates whether the corresponding physical
register is occupied or not. To summary, the total area over-
head for register renaming is 3.8KB which is 2.9% among
128KB register file. However, this overhead is significantly
reduced with an optimization that will be described Section 7.

The renaming table consists of four banks so that the
operands can lookup the physical register id concurrently.
When there is a bank conflict, the name lookup can be se-
rialized. The pipeline modification to access renaming table is
illustrated in Figure 8. According to our simulation, the access
latency of the optimized renaming table ( will be described
in the following section) is 0.22ns which is 17.6% of a typi-
cal cycle period (1.25ns) of GPGPU of 40nm technology [2].
Therefore, the renaming table lookup can be done during the
operand collector stage that typically takes two to three cycles.

Figure 7 shows an example sequence of the proposed regis-
ter allocation. A SM has a renaming table, eight register files
(one per SIMT cluster), and a physical register availability



flag. Each register file consists of four banks. Assume that
warp5 tries to store a value to $r0 and the source register $r2
is not released at this instruction. In @, the physical register
availability flag is looked up to find a free physical register
for $r0. There can be various architectural to physical register
mapping policies depending on the purpose but we assume
that the sub-array level power gating is purposed in this case.
To power gate as many sub-arrays as possible, the active reg-
isters should be consolidated. Therefore, $PO that is close to
many active registers is selected. The various mapping poli-
cies are discussed in Section 7. In @, the physical register
availability flag is modified so that the bit for $PO is set. Then,
the renaming table needs to be modified so that the warp5
can find $r0’s value from $PO in the following instructions.
The renaming table entry is found by using combined warp
Id and register Id as illustrated in @. Finally, in ©, the $r0’s
new value is written to $PO at the writeback stage. Note that
all the $POs in the eight SIMT clusters are written together as
the register renaming is done in a warp unit.

The new register allocation occurs only when the archi-
tectural register does not have a mapping information. The
registers can have no mapping in two cases: 1) at the first
access to the architectural register and 2) at the next access
after the register release. Therefore, if the illustrated example
is done in a diverged flow, the following control flow does
not allocate new physical register as the leading control flow
already allocated a physical register for $r0. Therefore, an
architectural register for a warp only has one entry in the
renaming table.

6.2. Flag Instruction Decoding and Release Flag Cache

Release Flag Cache
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Figure 8: Modified pipeline and release flag cache

To provide the register lifetime information, compiler adds
two new release flag instructions. As noted in Section 2.2, a
state-of-the-art GPGPU architecture supports similar flag in-
structions. We assume that there exists a pipeline stage that can
recognize the flag instructions before decoding the actual pro-
gram instructions as described in [17]. The other stages are the
same with Fermi. Figure 8 shows the modified pipeine. Fetch

stage is partitioned into two: Sched. Info and Select. Sched.
Info checks the flag instructions and Select stage chooses one
of the program instructions and pushes it to Decoder stage. In
the state-of-the-art GPGPU, a metadata instruction is added
at every seven instructions. To use the information for the
following seven instructions, we believe there should be some
sort of buffer to keep the information while fetching the seven
instructions. We also use a Release Flag Cache that contains
the release flags of pir. Note that a pir keeps the release in-
formation for the following 18 instructions. The release flag
cache is a shared logic across the warps. As the warps that
are scheduled back-to-back are likely to execute the same in-
struction, they do not need to maintain an exclusive copy of
the same pir. Instead of fetching a pir whenever the program
counter reaches to pir position, we add a checker logic that
selectively fetches the instructions from the instruction cache
only when the program counter of the new instruction is not
found from the release flag cache. If the pir is hit in release
flag cache, the instruction is not fetched from the instruction
cache and the program counter is incremented to fetch the next
instruction. When an instruction is selected in Select stage,
the corresponding three bit flag is fetched from the release flag
cache by using the instruction’s program counter. When the
release flag is full, the flag that has greater than 18 instructions
worth backward distance from any of the instructions in the
instruction buffer is replaced with new flag.

The number of entries in a release flag cache can be less
than the maximum number of warps allowed in a SM as a
flag is shared by multiple warps. However, to support the case
when all the warps execute different program flows, we add as
many entries as the maximum number of warps per SM. Each
release flag is 54 bits long. As Fermi can have maximum of
48 warps per SM, the total cache size is 324B.

The pbr does not need to be stored in the cache as it can
simply release the specified registers. When pbr is fetched,
the register mapping table is looked up and the mapping infor-
mation is removed and the corresponding bit of the physical
register availability flag is cleared.

7. OPTIMIZATIONS

7.1. Renaming Constraints

In our baseline architecture, the renaming table should be
3.69KB to afford all the registers. However, we found from
the evaluation that many applications can be serviced by more
or less 1KB renaming table. To reduce the renaming table size
to 1KB, we set a constraint for register renaming.

The renaming table size can be easily estimated by using
the total number of warps and the registers used for the kernel
as explained in Equation 1. If the estimated renaming table
size is bigger than 1KB, we set a constraint for that work-
load based on our two observations. First of all, we found
that renaming a long lived register is not beneficial since that
register cannot be released and reused anyway. Second, if



any two registers have the similar lifetime length, the register
that has higher write frequency tends to produce less register
reuse opportunity since it consumes a physical register more
frequently. Therefore, we only allow the registers that are not
classified in these two cases.

To do that, we firstly calculate the estimated register value
lifetime. The value lifetime can be calculated by the number
of instructions in between the value write point and the next
release point in the code. Then, the registers are sorted by
the lifetime length order. Then, we remove a register from
the top in the sorted list and recalculate the renaming table
size by assuming that we can rename only the registers re-
mained in the sorted list. This process is repeated until the
estimated renaming table size becomes less than 1KB. If there
are registers that tie in the lifetime length, we sorted those
registers by using their write frequency in the code. According
to our second observation, the register that has higher write
frequency is removed from the sorted list first. If the renaming
table size becomes less than 1KB, the registers remained in
the sorted list are considered to be renamed. For the registers
removed from the sorted list are assigned a reserved space in
the register file and never renamed.

The registers that are exempted from renaming are given
different architectural register name in compile time to be
distinguished from the renamable registers. Such registers
information is encoded to the kernel binary. When the kernel is
launched to a SM, the number of renaming exempted registers
is decoded from the kernel code binary and a physical register
per a renaming exempted register is reserved before starting
the program execution. Then, the physical register id for such
registers is calculated by using the warp id and the architectural
register id at the pipeline decode stage. The bits in the physical
register availability flag for the reserved physical registers are
set to *1” so that the regular register renaming only happens
on the other physical registers.

7.2. Mapping Policy

In the example of Figure 7, $P0 is selected among the avail-
able registers because it is in the same sub-array with the
other active registers such as $P2, $P3, $P4, and $P5. That
way, the number of sub-arrays that can be turned off is maxi-
mized. Therefore, for better power efficiency, $PO0 is selected.
However, the mapping policy can also be tuned for different
purposes. For example, the register consolidation policy can
cause a wear-out issue as the sub-arrays in which the registers
are consolidated tend to be worn out faster. If the reliability
is a critical issue, we can make the registers worn out evenly
by selecting physical registers from different sub-arrays ev-
erytime. The mapping can be easily tuned by remembering
the lastly allocated physical register id and then looking up
the bits that have a sub-array worth distance with the lastly
allocated register id from the physical register availability flag.

[ Parameter | Value |
Simulator GPGPU-Sim v3.2.1
Execution Width | 32-wide SIMT

# Threads/Core 1024

Register Size 128 KB/SM

# Register Banks | 32

# Scheduler/SM | 2

Scheduler two_level_active:6:0:1

Table 1: Simulation Parameters

Parameter | Renaming table | Register bank |
Size 1IKB 4KB

# Banks 4 1

Vdd 0.96V 0.96V
Per-access energy 1.14 pJ 4.68 pJ
Per-bank leakage power | 0.27 mW 2.8 mW

Table 2: Register renaming table and register bank energy in
40nm technology

8. EVALUATION

8.1. Settings and Workloads

We used GPGPU-Sim v3.2.1 [3] to evaluate the proposed
register renaming. We assumed a SM has 128KB register
file which is partitioned to 32 banks as in Fermi. The two-
level-active scheduler is used and the ready queue size is set
to six warps. For the compiler, nvcc v4.0 and gcc v4.4.5
is used. Details of the simulation parameters are listed in
Table 1. The renaming table and the register bank power
parameters are calculated by using CACTI v5.3 by assuming
40nm technology. As described, the renaming table has four
banks.

For the workloads, we used several applications from
NVIDIA CUDA SDK [4], Parboil Benchmark Suite [5], and
rodinia [8]. The number of CTAs, threads per CTA, registers
used per kernel, and the number of warps used for the work-
load are listed in Table 3. The values in the parenthesis of
# Regs/Kernel field is the minimum general purpose register
count that can avoid register spill. These values are collected
by using —maxregisters compile option. The values that are
outside of the parenthesis in the same field are the register
counts that include the address register and condition register.
We used PTXPlus for more realistic register analysis.

We modified the ptx parser code in GPGPU-Sim for an-
alyzing the register lifetime and inserting the two new flag
instructions. GPGPU-sim provides a very detailed ptx parsing
code that includes basic block recognition and control flow
analysis. We traced the source and destination operands of
each instruction to figure out the release point. While parsing
each instruction of the code, we collected the source operands.
Whenever encountering an instruction that uses one of the
collected source operands as a destination register, we set the
flag bit in the last read instruction. All the bit flags are again
collected in 18 instructions or basic block unit to make a pir
instruction. When encountering a control branch or loop, we
analyzed the register access patterns in each diverged flow to



[ Name | #CTAs [ # Thrds/CTA [ # Regs/Kernel | # Warps || Name | #CTAs [ # Thrds/CTA [ # Regs/Kernel | #Warps |
matrixMul 50 256 14(7) 32 hotspot 1849 256 28(20) 24
Blackscholes | 480 128 18(16) 32 kmeans 1936 256 13(9) 48
dct8x8 4096 64 22(20) 16 NN 168 169 14(8) 42
nbody 60 256 41(40) 32 pathfinder | 463 256 16(8) 48
reduction 64 256 14(8) 40 lud 15 32 19(12) 48
vectorAdd 196 256 4(3) 48 gaussian 2 512 8(6) 16
backprop 4096 256 17(12) 48 LIB 64 64 24(17) 8
bfs 1954 512 9(6) 48 LPS 100 128 17(10) 28
heartwall 51 512 29(23) 32 CP 256 128 17(17) 32

Table 3: Workloads

find the proper release point. If any registers are categorized
in any of the cases listed in Section 4.3, the release is delayed
to the safest merge point.

8.2. Register Savings
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Figure 9: Total number of registers allocated per SM with and
without register renaming

Figure 9 shows the total number of registers allocated per
SM while executing the workloads with and without register
renaming. The bar charts named Physical Registers denote the
number of registers that are ever allocated by the workloads
when register renaming is used. Those named Architecture
Registers show the number of registers allocated when the
normal register allocation is used. In most workloads, smaller
number of physical registers are used than the compiler re-
served architecture registers when register renaming is used,
which leads to average of 30% register savings. The reduced
register space leads to a static power efficiency. The power
efficiency will be explored in the following section.

Only Dct8x8 shows a very small register savings. This is
because, in one of the Dct8x8 kernels, many of the instructions
consume a register and produce the register value within an
instruction or by the next instruction. In this register access
pattern that has frequent but extremely short lifespan, the
register renaming is not beneficial because the released register
keeps consumed by the warp itself. However, as results plotted
in Figure 9 is the total number of registers ever allocated to
the register file, much of the allocated spaces are turned off
during the execution. Therefore, the workloads like Dct8x8
can still save much power which will be explained in the next
section.
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8.3. Power Savings over Baseline Power Gating
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Figure 10: Normalized static power compared to the baseline
power gating and dynamic power increase (%) due to renam-
ing table accesses over the register file access power. The red
line indicates the expected static power level of the baseline
power gating when voltage scaling is used.

We also explored the expected power savings by applying
two power gating methods: 1) individual register level power
gating and 2) sub-array level power gating. The individual
register level power gating shuts down the transistors of a 128-
bit register whenever the register is released. To do that, each
register should have its own sleep transistor. The sub-array
level power gating shuts down whole sub-array when there is
no active register in the sub-array. This power gating controls
the power in coarser level such that a sleep transistor is used
for turning on and off the entire sub-array worth transistors.
We follow the power gating models of [6] and [15] for the
two power gating methods, respectively. A difference with
the models from our model is the number of supply voltage
levels. As we know which register is dead every cycle, the
registers can be completely shut down. Therefore, we do not
assume to use sleep mode that runs by the retention voltage.
We do not propose any of the power gating logic itself. There-
fore, the sleep mode can be used for more aggressive power
efficiency. However, as this paper’s purpose is evaluating the
power efficiency due to the register renaming, we use simpler
assumption that only uses two voltage levels: full Vcc and
shut down. The wakeup delay is assumed to be one cycle as in
[6, 15]. As the register accesses can be known in the operand
collector stage that typically takes two to three cycles to fetch
all the registers, the one cycle wakeup delay can be hidden.

Figure 10(a) shows the static power reduction when using
register renaming compared to a basic power gating that does



[ Technology(nm) | Veemin(V) | Vee(V) ]

65 0.7 1.1
45 0.65 1.0
32 0.6 0.9
22 0.55 0.8

Table 4: Retention voltage of SRAM cells from 65nm to 22nm
technology nodes [15]

not know the register lifetime apriori. The basic power gating
that we compared does not use voltage scaling but it turns on a
sub-array or a register only when the sub-array and the register
is firstly accessed. As it does not know the register lifetime,
once a register is turned on, it cannot be turned off. Note that
this is still a valuable comparison because the power savings
by using retention voltage level (sleep mode) is getting lower
as technology scales as depicted in Table 4. Instead, we put a
red line on the plot to show that the expected static power level
when falling all the active register cells to retention voltage.

In the applications that use the same number of sub-arrays
when with or without register renaming during most of the exe-
cution time, such as gaussian, Nbody, and LIB, do not achieve
significant power efficiency over the baseline power gating.
However, all the other applications effectively reduce the static
power by consolidating the active registers into smaller num-
ber of sub-arrays. Overall, the average power saving of the
register renaming compared to the baseline power gating is
23% in sub-array level power gating and 26% in register level
power gating.

We also measured the static and dynamic power overhead
of the renaming table as shown in Table 2. A four banked
1KB renaming table consumes 38% of a 4KB register bank
static power. Therefore, the total static power overhead due
to renaming table is 1.2% as we use one renaming table per
SM while there are 32 register banks. The dynamic power
overhead of the renaming table is shown in Figure 10(b). The
dynamic power of the renaming table and the register file is
calculated by accumulating the total accesses to the renaming
table and then applying the power parameter. The dynamic
power overhead due to the renaming table over the register file
is average of 0.02%.

8.4. Renaming Table Size
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Figure 11: Per SM renaming table size without constraints and
normalized register saving when constraint is applied to fit
1KB renaming table
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Figure 11(a) shows the renaming table size demanded by the
workloads when renaming constraints are not applied. Almost
all the workloads used in the evaluation can rename the regis-
ters by using 1KB renaming table except the three workloads:
Nbody, HeartWall, and Lud. To fit the renaming information
into 1KB renaming table, some of the long lived registers of
the three workloads are exempted from the renaming by using
the value lifetime ranking as described in Section 7. The total
number of exempted registers for each workload is 16 among
41 in Nbody, 4 among 29 in HeartWall, and 2 among 19 in
Lud. These registers are assigned a reserved physical register
and never renamed.

Figure 11(b) shows the register saving reduction over when
the renaming constraints are not applied for the three work-
loads. As expected, Nbody’s register saving is reduced the
most among them because it can not use renaming for 39% of
total registers. However, the reduction scale is less than 1%.

8.5. Static and Dynamic Instruction Increase
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Figure 12: Normalized static and dynamic instruction count
and the total execution cycle

The left hand side plot in Figure 12 shows the dynamic
and static instruction increase when using register renaming.
For the dynamic instruction increase, we compared the total
decoded instruction count. As pbr and pir do not issue any
instruction to the execution units, the only overhead that is
caused by the two added instructions occurs in decoder logic.
However, as pir is shared across multiple warps, and pir is
fetched from instruction cache only when it is not in the release
flag cache, the dynamic instruction increase is much less than
the static instruction increase. Overall, the dynamic code
increase is less than 2% while the code size is increased by
average of 11%.

We also compared the execution time with and without reg-
ister renaming as shown in the right hand side plot in Figure 12.
The Y-axis value is the same with the left hand side plot. In
the workloads that have relatively short kernel such as BEFS,
the execution time is increased the most which is 8%. Overall,
the timing overhead due to register renaming is average of 1%.

8.6. Scheduler Sensitivity

Figure 13 shows the register saving variance when different
warp scheduler is used. Two level scheduler deschedules
the warps that have dependency with long latency instructions
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Figure 13: Normalized register savings w.r.t. scheduler

such as /d and push the warps to the pending queue. Otherwise,
the scheduler takes an instruction from one of the warps in
the ready queue. We configured to use six warps per ready
queue. Greedy than round-robin scheduler schedules one warp
as far as the warp can issue any instruction then move to
next warp. The round robin scheduler schedules all the warps
interleavingly every cycle.

The register saving is different within 3% range across the
schedulers. However, among them, the round robin scheduler
derived the worst performance. This is because registers are
not likely dead every cycle but as the scheduler moves the
warp every cycle, there is less opportunity to reuse any register
space released by another warp. For example, there is not
an opportunity like Figure 3(b) in the round-robin scheduling
because the ’last write’ instruction on the $r12 of all the warps
is executed prior to the ’last read’ instruction of any warp.

On the other hand, two level and greedy scheduler allocates
the registers for a small set of warps then moves to the other
warps when the warp cannot proceed any more. According to
our experiment, the scheduling period of each warp is from
hundreds cycles to thousands cycles depending on the appli-
cations. Within the long scheduling period, the register file
can maintain only the registers for the small set of warps. And
then, another warp can start running after much of the short
lived register’s space of the descheduled warp is released.

9. RELATED WORK

There have been several studies that address the power con-
sumption concern of GPGPU register file. To reduce the
dynamic power, [9] proposed to use small register file cache.
They store any newly written register values to a small register
cache so that the registers can be read from the cache rather
than the huge register file.

In [10], adding to the register cache, two small register files
are added. By determining the register location among the
two small and one large register files according to the register
lifetime, the dynamic power for accessing short lived registers
is reduced.

[6] proposed a tri-modal register file structure. By exploit-
ing the fact that register access interval is normally hundreds
of cycles, they push the registers to the drowsy mode right
after being accessed so that the registers do not burn power for
hundreds of cycles before actually accessed again. However,
as they do not know each register’s lifetime apriori, the SRAM
cells for the dead registers should burn power even though it

12

is low power mode. Our work can easily solve this problem
by turning off the registers that are dead by using the compile
time analysis.

10. CONCLUSION

This paper, we propose a register lifetime aware allocation
method. So far, as the register file is accessed in warp unit
and regarded as each warp’s private resource. Because of
that, fairly high portion of register file is unused for a signif-
icant amount of time mainly due to the registers that have
short lifetime. To reduce the overall live registers thereby
decreasing the power consumption as well as the demand for
the register file size, we propose to share register file across
warps. The compile time register lifetime analysis information
is used to release registers from the physical register space
immediately after their last use. The released register space is
then reassigned to another warp which is just about to start a
new register usage. To enable this register reassignment we
propose a light weight register renaming in hardware. By re-
leasing registers and reusing them across warps we can reduce
the number of concurrently live registers on average by 30%.
The reduced live register space leads to an average of 23% and
26% power saving over a basic sub-array level and individual
register level power gating.
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