

Accurate Model for Application Failure due to Transient
Faults in Cache

Mehrtash Manoochehri and Michel Dubois

Computer Engineering Technical Report Number CENG-2014-09

Ming Hsieh Department of Electrical Engineering – Systems
University of Southern California

Los Angeles, California 90089-2562

December 2014

Accurate Model for Application Failure due to Transient Faults in Cache

Mehrtash Manoochehri Michel Dubois
Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, CA

mmanooch@usc.edu dubois@paris.usc.edu

Abstract

To select an appropriate level of error protection in caches,
the impact of various protection schemes on the cache FIT
(Failure In Time) rate must be evaluated for a target bench-
mark suite. However, while many simulation tools exist to
evaluate area, power and performance for a set of benchmark
programs, there is a dearth of such tools for reliability.

This technical report introduces an accurate and versatile
cache reliability model called PARMA+ which estimates a
cache’s FIT rate in the presence of spatial multi-bit transient
faults and for a given benchmark program. PARMA+ is an
extension of PARMA [21]. PARMA only dealt with single-bit
faults. However, PARMA+ is applicable to single-bit and any
spatial multi-bit fault pattern distribution and various error
protection schemes for caches including early write-back, bit-
interleaving and scrubbing.

We first develop the model formally, then we demonstrate its
accuracy. We have run reliability simulations with PARMA+
for 13 SPEC2000 benchmark programs and for several distri-
butions of large and small fault patterns and have compared
them with accelerated fault injection simulations. PARMA+
has high accuracy and low computational complexity.

1. Introduction

Since cache memories occupy most of a processor’s chip area
and are highly vulnerable to soft errors, they greatly impact the
reliability of a processor. In order to select an appropriate error
protection scheme, a designer must estimate and compare the
reliability levels of different protection schemes in addition to
their energy, performance and area overheads. While many
simulators exist to measure the performance of caches, and
models such as CACTI [24] can estimate cache area and en-
ergy consumption accurately, formal, versatile and accurate
models to estimate the FIT rate of caches against transient
faults are lacking. It is predicted [1] that, by 2016, 100% of
transient faults will be spatial multi-bit faults which cannot be
modeled by existing approaches. A spatial multi-bit fault is a
single fault event (called an SEU, for "Single Event Upset")
that affects more than one bit in the cache array.

Cache protection is enforced at the granularity of protection
domains. A protection domain is the set of bits protected by
the same error protection code. For example, it can be a word,
a set of words or a cache line.

Various schemes to protect caches are implemented in cur-
rent commercial processors, such as:

1- Parity [10]: Parity detects an odd number of bit faults but
an even number of bit faults goes undetected. Parity is good
for write-through caches because a back-up copy is always
present at a lower level memory and the correct copy can be
recovered from there.

2- Single Error Correction Double Error Detection
(SECDED) code: This code is common in commercial pro-
cessors with write-back caches [15]. It can detect two faults
and correct one, but a number of faults greater than two is not
detected.

3- Cache scrubbing [14]: Cache scrubbing prevents the
accumulation of correctable errors and their conversion to
unrecoverable ones by reading cache lines periodically and
activating their error codes in the process.

4- Early write-back [7]: Clean blocks have back-up copies
in the next memory level and have higher reliability when a
code’s detection capability is more than its correction capabil-
ity (such as parity and SECDED). Write-backs of dirty blocks
before they are due for replacement increase the amount of
clean data in the cache and therefore improve reliability.

5- Bit-interleaving [9]: In a bit-interleaved cache, bits of
different protection domains are placed in adjacent memory
cells. Hence, a spatial multi-bit fault may be converted to
several single-bit faults in different protection domains, which
can be corrected by SECDED.

6- Protection code interleaving: Instead of interleaving bits
from different protection domains in the data array, one can
also interleave protection codes across the bits of the array,
without changing the layout of the array. In this case, adjacent
bits are protected by different codes and are part of different
protection domains, as in bit-interleaving.

Because these approaches (or a combination thereof) in-
crease the costs of a cache implementation significantly
[13, 9, 25], it is very important to select a cost effective com-
bination of error protection schemes in caches. The first and
foremost contribution of this technical report is a formal model
to benchmark the failure rate of a cache in the presence of
any set of spatial multi-bit fault patterns and any protection
domain size and topology. The new model is called PARMA+.
Fundamentally, it follows the modeling approach in PARMA
[21], which is a tool to evaluate the resiliency of caches for
single-bit SEUs. The model is applicable to all multi-bit fault

patterns and any major protection scheme used in industry
and listed above. No model today can accurately predict the
FIT rate of a cache under spatial multi-bit faults and under
arbitrary configurations of faults patterns, protection domains,
and error correction schemes.

We have compared the predictions of the PARMA+ model
with results from accelerated fault-injection simulations for 13
SPEC2000 benchmark programs and found that the FIT rates
estimated by PARMA+ are accurate while its computational
complexity is low. Thus, PARMA+ can be easily deployed in
rapid evaluations of various reliability options in caches.

In the next section, we first review background about tran-
sient faults, reliability evaluations, FIT rate computations and
spatial multi-bit faults. We then expound the issues in model-
ing the impact of spatial multi-bit faults on cache reliability.

2. Background

One critical premise of any reliability study is the definition
of the failure model. A cache failure happens when the error
protection code of a protection domain cannot correct faults
in the domain at the time of an access. Error codes fail with
different number of bit faults, depending on their strength and
on the state of the data, dirty or clean. Table 1 shows the
number of faulty bits which fail a protection domain protected
by common error codes. Clean data can tolerate more faults
in general because a back up copy is available at the next level
and can be re-fetched.

PARMA+ computes the FIT rate of an application. Dur-
ing our computations, we assume that hardware is working
properly and we just focus on application failure. When we
compute the FIT rate of an application, we implicitly assume
that the execution of the application is repeated until it is failed.
Unlike the case of hardware failure which may be repaired, we
do not have any repair for application failure. The equations
used later in this section follow this concept.

Transient faults can cause either Detected Unrecoverable
Errors (DUEs) or Silent Data Corruption (SDCs) errors [21].
When a DUE is detected, application execution is terminated
and thus failed. SDC errors are more subtle because they may
or may not cause a failure when they propagate outside of the
cache. Whether an SDC error propagated outside the cache
will crash the application or not depends on many factors such
as the exact location of the fault and the exact time at which the
fault happened. Since PARMA+ in its current form only tracks
the propagation of faults in the cache and not in other system
components, we count an SDC as a terminating application
failure like a DUE when it is propagated outside the cache.
Therefore, in PARMA+, all errors (DUEs or SDCs) that are
propagated outside the target cache are considered terminal
failures.

The average discrete failure rate in a time interval [t1, t2] is
computed by well-known equation (1) [8, 5]. We use the same
notations as in these sources. In equation (1), R(t) denotes
the probability that the system has survived until time t. t1 is

Protection code

Number of faulty bits causing failure

Dirty block Clean block
Parity Any number of

faulty bits
Even number of
faulty bits

SECDED More than 1
faulty bit

More than 2
faulty bits

DECTED More than 2
faulty bits

More than 3
faulty bits

Table 1: Failure condition for different protection codes.

the cycle when the program starts (cycle 0) and t2 is the cycle
when it ends (t2 is provided by the simulator).

Average failure rate =
R(t1)�R(t2)

R(t1)⇥(t2 � t1)
(1)

R(0) equals 1 because cache has no data at t=0 and the
application cannot be affected by soft errors because it has
not started. Therefore, to compute equation (1), we need to
calculate R(t2). R(t2) is the probability that the cache does not
fail during the execution of the entire program. Since reads
and write-backs are the only cache operations that can result
in cache failure, R(t2) is the probability that the cache does
not fail at any read or write-back in the cache between cycles
0 and t2 (end of the program). R(t2) is computed by equation
(2). In this equation, Pj is the probability of failure at access
j and max is the total number of reads and write-backs in the
program execution.

R(t2) =
max

’
j=1

(1�Pj) (2)

The average failure rate shown in equation (1) can be con-
verted to equation (3), which computes the average failure rate
in one CPU cycle. Texe is the number of cycles of a program
execution (t2 � t1).

Average failure rate =

1�
max
’
j=1

(1�Pj)

Texe
(3)

To compute the FIT rate, we scale the failure rate of equation
(3) to one billion hours as shown in equation (4).

FIT rate =
(1�

max
’
j=1

(1�Pj))⇥3600⇥109

Texe ⇥Cycle_Period
(4)

Cycle_Period is the cycle time in seconds.
To compute Pj, we need to know the raw FIT rate and the

distribution of fault patterns.
The raw FIT rate is the expected number of faults in one

billion hours and is given in the International Technology
Roadmap for Semiconductors (ITRS) [1]. To compute the
SEU rate per bit in one cycle, the ITRS raw FIT rate is scaled
down as shown in equation (5). In equation (5), R(SEU) is

2

Block 1
Block 2

4×2 fault pattern

Block 3
Block 4

Word 1
Word 2
Word 3
Word 4

3-bit fault pattern
Word 1
Word 2

Figure 1: A spatial multi-bit fault can flip different number of bits in

a protection domain depending on its location

Block 1
Block 2

4×2 fault pattern

Block 3
Block 4

Word 1
Word 2
Word 3
Word 4

Figure 2: Failure of four words can be dependent on each other

the SEU rate per bit per cycle, FITITRS is the ITRS FIT rate
for a 1Mbit SRAM array, and f is the processor frequency.

R(SEU) =
FIT ITRS

106 ⇥3600⇥f⇥109 (5)

Because a large number of faults are masked, the raw FIT
rate grossly overestimates the cache error rate. For example,
if a bit fault happens in a cache block and then the block is
overwritten, the fault is masked and cannot cause a failure.
Moreover, errors can be erased by error correction. The contri-
bution of PARMA+ is to estimate these masking effects on the
FIT rate for a given program and a given protection scheme.

The distribution of fault patterns can be obtained by beam
injection experiments [12, 22]. In these experiments, the oc-
currence rates of various fault patterns are observed on a real
chip and the probabilities of occurrence of every pattern in
one SEU are estimated. These probabilities depend on the
feature size, layout and other characteristics of a chip. They
can also be obtained by simulations of physical devices. The
probability that pattern i is observed when an SEU occurs is
denoted by Qi. If there are N possible fault patterns, we will
have the following equation.

N

Â
i=1

Qi = 1 (6)

Given the raw SEU rate and the distribution of fault patterns,
a model must assess the probability that the number of flipped
bits since the last access exceeds the correction capability of
the error protection code. Two challenges must be met to do
this.

First, the number of bit faults due to an SEU in a domain
varies with its fault pattern and its location, as illustrated in
Figure 1. Thus the model must take into account the shape of
the pattern and its location to evaluate the failure rate.

Second, if more than one SEU strike a domain between
two consecutive accesses, the effects of the multiple multi-bit
faults accumulate and may increase or decrease the probability
of an access failure. If multiple multi-bit faults flip bits of
different parts of a protection domain, the number of bit faults
increases, but, if two SEUs overlap, some bit faults may cancel

Block 1
Block 2

4×2 fault pattern

Block 3
Block 4

Word 1
Word 2
Word 3
Word 4

3-bit fault pattern

Word 1
Word 2

2-bit fault pattern

Word 1
Word 2

SEUs cancel each other on this bit

Figure 3: Two multi-bit fault patterns can add or subtract to each

other

out. These two cases are illustrated in Figure 3. In the top of
Figure 3, two multi-bit faults cause the total number of faults
in word 1 to become four while in the bottom, the total number
of bit fault in word 1 is two.

Additionally, there are dependencies between failures in ad-
jacent domains. One large fault may cause failures in multiple
domains. For example, Figure 2 shows a fault pattern that flips
two bits in four vertically adjacent words. If all these words
are dirty and protected by SECDED, they will all fail at the
next access to them. If words 1, 2, 3 and 4 are accessed in that
order, the probability that word 1 failed must be discounted
from the probabilities of words 2, 3 and 4 failing, because if
word 1 fails, then failing accesses to words 2, 3, and 4 will not
happen. This is the most complex part of the PARMA+ model,
addressed in Section 6 of the paper.

The rest of the technical report is organized as follows. Sec-
tion 3 covers the related work. In Section 4, we explain basic
assumptions of the model. Section 5 shows how to compute
the probability of failure in one domain, independently of the
failure of other domains. Section 6 upgrades the model to
include failure dependencies with neighboring domains. Sec-
tion 7 shows how to apply PARMA+ to different techniques
such as bit-interleaving, cache scrubbing and DVFS. Section
8 checks the accuracy of PARMA+ by comparing the result
of the model with accelerated fault-injection simulations and
a previous tool called MACAU [20]. In Section 9, we will
explain how we deal with the precision of floating-point num-
bers in PARMA+. Section 10 describes the PARMA+ tool and
Section 11 concludes the technical report.

3. Related work

In order to compute the FIT rate of a cache for a program
execution, the raw FIT rate is typically multiplied by the Ar-
chitectural Vulnerability Factor (AVF). AVF is the probability
that a bit fault is converted into a systemic failure. The AVF
of a cache for single-bit faults is computed by the following
procedure in [4]: Compute the total time between all reads
or write-backs of words and divide that time by the simu-
lation time multiplied by the number of cache words. An
upper bound for AVF is called Temporal Vulnerability Factor
(TVF)[23]. TVF is the fraction of data present and vulnerable
in the cache among all data held in the cache. Like AVF, TVF
is limited to single-bit faults and is not applicable to multi-bit
faults and caches with error correction codes. In [19, 2] the

3

reliability of a cache is computed in a way similar to [4] by
multiplying the raw FIT rate by the fraction of cache data
vulnerable during the execution of a program. All these ap-
proaches are limited to single-bit faults and caches without
error correction codes.

SoftArch [11] computes the cache Mean Time To Failure
(MTTF) as if the same program execution is repeated until the
first failure occurs. This model only applies to single-bit faults
like in [4] and cannot model the effects of error correction
codes.

Approximate analytical models [14, 18] have been proposed
to estimate the expected time for two-bit faults in a word in
order to set the cache scrubbing rate. These approximate
models are not specific to programs. Furthermore, they are
limited to two temporal single-bit faults and cannot deal with
spatial multi-bit faults. In the same vein, a compound Poisson
process is proposed in [16] to set the interleaving distance of
SECDED codes to correct spatial multi-bit errors. However,
this approach does not benchmark the failure rates for given
programs.

PARMA [21] is a model that estimates the cache FIT rate
in the presence of error codes. During a program execution,
PARMA calculates the probability that each cache access fails
and thus the application fails. PARMA tracks a block in and
out of main memory and tracks accesses into the processor,
so that SDCs and true/false DUEs are counted separately.
However, PARMA is limited to single-bit SEUs which will
not be seen in future technologies as all soft errors will come
from spatial multi-bit faults.

In MACAU [20], the interval between two accesses to a
word is modeled by a Markov chain. The Markov chain states
track the number of bit faults in a word. For example, if
a word has 32 bits, there can be 0 to 32 faults in a word
and the Markov chain has 33 states. At each access, the
probability that the cache has any number of faults can be
computed by the Markov chain. MACAU can estimate the
cache FIT rate only for a few specific spatial multi-bit fault
patterns which were observed in a 65nm technology. MACAU
only applies to protection domains of one word. It needs
large matrix multiplications, which are very time-consuming.
Another shortcoming of MACAU is that the evaluation of the
failure rate of a protection domain is done independently of its
neighbors. This omission may create large errors as we will
show in Section 8.

Fault-injection experiments, either real-life or simulated,
are the ultimate approach to estimating the MTTF or FIT rate.
However, fault-injection experiments are costly and extremely
time-consuming because of the large number of simulation
runs needed to obtain a significant estimate, especially when
events are rare. Because actual fault rates are extremely low,
fault-injection simulations cannot be applied to actual, ob-
served fault rates and can only be run for extremely high fault
rates, far from reality.

4. Basic assumptions and equations of

PARMA+

PARMA+ computes the FIT rate based on several inputs. One
of the inputs is the protection domain. A protection domain
can be a block, a word, a byte or any set of bits in a cache.
Another input is the protection code in each protection domain.
SECDED and parity are typical but stronger codes such as
DECTED (Double Error Correction Triple Error Detection)
are also possible.

The interval between two consecutive accesses to a protec-
tion domain is called a vulnerability interval because it is the
time during which a domain is exposed to faults before any
error correcting mechanism is activated. For example, if the
last access to a word was at cycle 1000 and a read happens
at cycle 2000, the vulnerability interval is [1000, 2000]. The
length of the vulnerability interval in cycles is denoted L. In
this example, L is equal to 2000-1000=1000.

We assume that at most one SEU can hit a protection domain
in any one cycle (a fraction of a nanosecond). Thus, if the
protection domain is one word, there can only be one SEU
in a word in one cycle. The model could be refined to accept
multiple SEUs in the same cycle, but, given current technology
trends in which the FIT rate per megabit of SRAM is expected
to stay around 1000 [1] for the foreseeable future, this added
complexity would be futile. SEUs that happen in the same
protection domain are referred to as "Domain SEUs" (DSEUs).
The DSEU rate is larger than the SEU rate because a domain
contains multiple bits.

The PARMA+ model can be applied to any memory array
such as L1 cache, L2 cache, or even main memory. However,
in this section, we focus on the reliability of an L2 cache, and
a failure is caused by DUEs or SDC errors that happen when
a block is read from L2 or written back by L2. In Sections
5 and 6, it is implicitly assumed that the protection domain
is one block and the granularity of cache accesses is equal to
the size of a protection domain. In Section 7, we will explain
how PARMA+ models cache accesses which read multiple
protection domains.

4.1. Illustrative example

To illustrate the equations of PARMA+, we use the following
running example in this section. In this example, the cache
contains 15 words as shown in Figure 4. Every word has 32
bits and is protected by SECDED. Moreover, all words are
dirty. Thus, any word fails with two or more faulty bits.

In this example, an SEU has one of two bit fault patterns.
The first fault pattern is a single-bit fault and the second one is
a 2⇥2 fault in which 4 bits are flipped. The probabilities of
the fault patterns in an SEU are both 0.5.

4.2. SEU rate in one protection domain (SEU rate)

The rate per bit and per cycle of each fault pattern i is equal
to R(SEU)⇥Qi, i.e., the SEU rate per bit multiplied by the

4

Word 0 Word 1 Word 2

Word 3

Word 6

Word 9

Word 12 Word 11 Word 14

Word 10

Word 7

Word 4

Word 11

Word 8

Word 5
Q1=0.5

Q2=0.5

Figure 4: The running example of the technical report

probability that the SEU has fault pattern i. We say that a
DSEU occurs in a domain when at least one bit in the domain
is flipped by the fault. To compute the DSEU rate, we first
compute the rate at which each fault pattern i occurs in the
domain. For the case of a single-bit fault pattern, the rate is
simply R(SEU)⇥Qi ⇥B, where B is the number of bits in the
protection domain. For multi-bit fault patterns, the calculation
is a bit more complex because multi-bit faults may straddle
multiple protection domains.

The footprint of a fault pattern is the smallest rectangle that
includes the pattern. For example, the footprint of fault pattern
2 of Figure 4 is a 2x2 square. We pick the North-West (N-W)
bit of the footprint of the pattern to locate the fault in the cache
array, although any other bit could be chosen. In Figure 4, the
N-W bit of fault pattern 2 is shaded.

We define Ni
DSEU as the number of bits in the cache (inside

or outside the domain) such that if the N-W bit of fault pattern
i is pinned to one of these bits, at least 1 bit is flipped inside
the domain. In order to compute Ni

DSEU, the PARMA+ tool
pins the N-W bit of pattern i to different bits inside and around
the domain and counts the number of cases when at least 1 bit
is flipped inside the domain by the fault pattern. For example,
if the protection domain is contained between rows G and F
and between columns R and S of the cache array, and if all
multi-bit fault patterns are confined to an N ⇥M footprint, the
following algorithm computes Ni

DSEU.

Ni
DSEU = 0;

For(l = G�N;l <= F; l++)

For(n = R�M;n <= S;n++)

If(fault pattern i located at bit position
(l,n) flips at least one bit in the domain)

Ni
DSEU ++;

For the example of Section 4.1, Figure 5 shows in gray the bits
of the cache array such that if the N-W bit of any fault pattern
is pinned to any of them, the fault occurs in Word 7, i.e., at
least one bit is flipped in Word 7. N1

DSEU (for fault pattern 1)
is equal to 32 because if fault pattern 1 is pinned to any one
of the 32 bits of Word 7, the fault occurs in the domain. Fault
pattern 2 occurs in Word 7 if its N-W bit is pinned to any bit
of Word 7 (32 bits total) or any bit of Word 4 (32 bits total)
or bit 31 of Word 3 or bit 31 of Word 6 (a total of 66 bits),

Q1=0.5

Word 0 Word 1 Word 2

Word 3

Word 6

Word 9

Word 12

Word 4

Word 7

Word 10

Word 13

Word 5

Word 8

Word 11

Word 14

Q2=0.5

Word 0 Word 1 Word 2

Word 3

Word 9

Word 12

Word 4

Word 7

Word 10

Word 13

Word 5

Word 8

Word 11

Word 14

Word 6

Bit 31

Figure 5: Bits contributing to Ni
DSEU for each of the two fault pat-

terns

because at least one bit inside of Word 7 is flipped in all these
cases. Consequently, N2

DSEU is equal to 66.
The mean of Ni

DSEU over all possible fault patterns is called
NDSEU and is computed by equation (7) in which N is the
number of fault patterns.

NDSEU =
N

Â
i=1

Ni
DSEU ⇥Qi (7)

For our example, NDSEU is equal to 0.5⇥66+0.5⇥32 = 49.
The DSEU rate in a protection domain is obtained by mul-

tiplying the SEU rate per bit by the average number of bit
locations in the array such that, if an energetic particle hits
that bit, a DSEU occurs.

R(DSEU) = R(SEU)⇥NDSEU (8)

5. Failure of a domain independently of other

domains

In this section, we ignore the failure dependencies that may
exist between neighboring domains in the failure rate compu-
tation. Section 6 will take into account these dependencies.

Every access to a protection domain may result in domain
failure. Accesses are reads and write-backs. The probability
of failure due to an access to a domain is given by equation (9).
The probability of access failure is the sum of probabilities of
having c DSEUs in the domain so that the c DSEUs cause a
failure in the accessed domain. In equation (9), L is the length
of the vulnerability interval between two accesses in cycles
and j is the access number. Since the model assumes at most
1 DSEU per cycle, the maximum number of DSEUs between
two accesses to the domain is L.

Pj =
L

Â
c=1

P(c DSEUs)⇥P(access j fails | c DSEUs) (9)

5

The computation of P(c DSEUs) is done in Section 5.1.
P(access j fails | 1 DSEUs) and P(access j fails | 2 DSEUs)
independently of other domains are computed in Sections
5.2 and 5.3. Extensions to several DSEUs in a vulnerability
interval are straightforward.

5.1. Probability of c DSEUs

The probability that one DSEU occurs in one cycle is denoted
PDSEU and is modeled by a Poisson process:

PDSEU = R(DSEU)⇥ e�R(DSEU) (10)

The probability of c DSEUs occurring during L cycles is mod-
eled by a Binomial distribution [21]:

P(c DSEUs) =
✓

L
c

◆
⇥ (PDSEU)

c ⇥ (1�PDSEU)
L�c (11)

5.2. Probability of access failure given a single DSEU in

the domain

A failure happens in a domain when a certain number of bits
are faulty. Table 1 shows the failure condition for several well-
known error protection codes. We define Ni

Fail as the number
of bits in the cache array such that if the N-W bit of fault
pattern i is pinned to any one of them, a failure will happen
when the domain is accessed next. Ni

Fail is always less or equal
than Ni

DSEU and is different in dirty and clean blocks.
We consider a protection domain contained between rows

G and F and between columns R and S of the cache array and
multi-bit fault patterns included in an N ⇥M footprint. Ni

Fail
is computed as follows.

Ni
Fail = 0;

For(l = G�N;l <= F; l++)

For(n = R�M;n <= S;n++)

If(Pinning N�W of fault pattern i at bit location
(l,n) causes domain failure)

Ni
Fail ++;

The mean number of fault locations that cause a failure across
all patterns is denoted NFail:

NFail =
N

Â
i=1

Qi ⇥Ni
Fail (12)

P(access j fails | 1 DSEU) is the fraction of bits counted in
NDSEU which cause a failure.

P(access j fails | 1 DSEU) =
NFail

NDSEU
(13)

In equation (13), NFail is given by equation (12) and NDSEU is
given by equation (7).

In the case of the example of Section 4.1, it takes more than
one faulty bit to cause a failure, and therefore N1

Fail is equal to

Q2=0.5

Word 0 Word 1 Word 2

Word 3

Word 9

Word 12

Word 10

Word 13

Word 5

Word 8

Word 11

Word 14

Word 6

Bit 31

Word 4

Word 7

Figure 6: Bits in N2
DSEU that cause no failure in Word 7

0 since pattern 1 is a single-bit fault and cannot cause more
than one bit fault in a word. If the N-W bit of pattern 2 is
pinned to any bit 0-30 of Words 4 or 7, there will be more than
one bit fault in the domain. Hence, N2

Fail is equal to 62. Figure
6 shows (in gray) the bits that contribute to N2

DSEU but do not
contribute to N2

Fail. These bits are bit 31 of Words 3, 4, 6 and
7. Therefore we have:

NFail

NDSEU
=

0.5⇥0+0.5⇥62
0.5⇥32+0.5⇥66

= 0.63

5.3. Probability of access failure given two or more

DSEUs in the domain

Computing the probability of domain failure given two DSEUs
in a vulnerability interval is similar to the case of one DSEU.
Let Ni,m

Fail be the number of cases in which patterns i and m
occur in the domain and their superimposition causes domain
failure. Ni,m

Fail is computed as follows:

Ni,m
Fail = 0;

For(j = 0; j < Ni
DSEU; j++)

For(l = 0; l < Nm
DSEU; l++)

If(superimposition of patterns i and m causes failure)

Ni,m
Fail ++;

Note that Ni,m
Fail is always less than Ni

DSEU ⇥Nm
DSEU as multi-bit

faults can cancel each other as shown in Figure 3. NFail for
two DSEUs is now given by equation (14).

NFail =
N

Â
i=1

N

Â
m=1

Qi ⇥Qm ⇥Ni,m
Fail (14)

P(access j fails | 2 DSEU) is the fraction of combinations of
two DSEUs occurring in the domain whose superimposition
causes a domain failure:

P(access j fails | 2 DSEUs) =
NFail

(NDSEU)2 (15)

In equation (15), NFail is given by equation (14) and NDSEU is
given by equation (7).

For the cases of several DSEUs (three or more) in a vul-
nerability interval of L cycles, the procedure is conceptually

6

Word 4
Word 7

The 2×2 fault hits words 4 and 7 at cycle 500

Time (cycle)1000

Read word 4 (fails)

1500

Read word 7 (won’t happen)

500

Figure 7: Failures of domains can be dependent on each other

similar. For example, for three DSEUs, equation (14) would
have three summation signs over patterns i, m and k. How-
ever, given the state of technology now and for the foreseeable
future (until 2024) [1], it is futile to consider more than two
DSEUs during a vulnerability interval because the probability
of a single DSEU during a vulnerability interval is already
extremely small (less than 10�15).

6. Failure dependencies with neighboring do-

mains

In Section 5, the probability of failure (equation (9)) was
computed for one protection domain, independently of failures
in other domains. However, because spatial multi-bit faults
can fail more than one protection domain, the probability that
an access in a domain fails is dependent on prior failures in
other domains. To illustrate this further, Figure 7 shows an
example in which a 2⇥ 2 fault occurs in Words 4 and 7 of
Figure 4. In this example, when Word 4 is accessed at cycle
1000, the cache fails, raising a DUE and terminating execution.
Hence, the access to Word 7 which was supposed to happen at
cycle 1500 will not happen.

For the accesses of Figure 7, PARMA+ first computes Pj
for the access to Word 4 using equations from Section 5. This
probability takes into account that the N-W bit of the 2⇥ 2
fault pattern can hit any bit 0-30 of Word 4 or Word 1 (Word 1
is not part of Figure 7) before 1000. When the probability of
access failure to Word 7 is calculated at cycle 1500, the failures
caused by pinning the N-W bit of the 2⇥ 2 fault pattern to
bits 0-30 of Word 4 during [0,1000] should be ignored. This
is because if the 2⇥ 2 fault hits bits 0-30 of Word 4 during
[0,1000], it would cause the failure of Word 4 but not Word 7
and the execution would terminate at the access to Word 4.

To compute, the probability of failure in Word 7 at cycle
1500, the vulnerability interval [0,1500] is divided into two
subintervals: first, subinterval [0,1000] in which overlapping
fault patterns causing failures in both Words 4 and 7 are not
counted and, second, subinterval [1001,1500] in which all fault
patterns causing failures in Word 7 are counted. Therefore
Ni

Fail is computed differently in each of these subintervals.
For a spatial multi-bit fault to cause a failure dependency

between two accesses in different domains, all three following
conditions must be met:

1. The accesses should be either read, write-back or read-
modify-writes (or read-before-writes) triggered by write op-
erations. Writes that do not trigger a read operation cannot

LLC store miss

Is hit in a dirty
sub-page?

Yes

Proceed regularly

No

Yes

XOR the read sub-page
with the correction register
in parallel with transferring
that to the cache hierarchy

Access to LLC

Is the access
hit to a clean
block of LLC
whose copy
is memory is
dirty?

Proceed regularly

No

Yes

Read the LLC block and
XOR with the correction
register before doing the
write

0 1000 1400 1600 2000 Time

Write in word 7 Read word 4 Read word 10 Read word 7

Figure 8: Accesses to word 7 and its neighbors

cause failures.

2. The fault pattern must cause a failure in both domains.

3. One of the accesses must be made during the vulnerability
interval of the other access.

Before quantifying failure dependencies, we first define the
concept of neighboring domains. For the case of one DSEU
in a vulnerability interval, a protection domain is a neighbor
of another domain if at least one of the fault patterns can cause
a failure in both domains. In the example of Figure 4, Words
4 and 10 are neighbors of Word 7 because fault pattern 2 can
cause the failure of Word 7 and of Words 4 or 10. For the
case of two DSEUs in a vulnerability interval, a protection
domain is a neighbor of another domain if the superimposition
of any pair of fault patterns which occur in one domain can
cause the failure of both domains. For three and more DSEUs,
neighboring domains can be defined similarly. However, a
model for more than two DSEUs in a vulnerability interval is
not currently needed due to the extremely low probability of
such occurrence.

During a PARMA+ simulation, every protection domain
keeps track of accesses to its neighboring domains. In order for
a failure dependency to affect the computation of Pj at access
j, there should be a prior access to one of the neighbors of
the domain satisfying the three failure dependency conditions
listed above.

PARMA+ divides a vulnerability interval into subintervals
delimited by accesses to neighboring domains. For example,
the vulnerability interval [1000, 2000] of the last access in Fig-
ure 8 is divided into subinterval 1 [1000, 1400], subinterval 2
[1400, 1600] and subinterval 3 [1600, 2000]. Faults that cause
a failure of Word 7 and of Words 4 or 10 during subinterval 1
must be ignored at cycle 2000 because if Word 4 fails at cycle
1400 or Word 10 fails at cycle 1600, then the access to Word 7
at 2000 will not happen, as the application would have been
crashed before cycle 2000. For the same reason, all faults that
cause a failure in both Words 7 and 10 must be ignored in
subinterval 2. Finally, all faults must be counted in subinterval
3 because there is no dependency with neighbors.

DSEUs can be distributed among subintervals in different
ways. In the example, a single DSEU can occur in one of the
three subintervals, and two DSEUs can be distributed in six
ways among the three subintervals: 2-0-0, 0-2-0, 0-0-2, 1-1-0,
1-0-1, and 0-1-1. The number of ways that c DSEUs can be
distributed among U subintervals is denoted S. S is equal to
the number of ways that c balls can be distributed into U bins

7

and is computed by equation (16).

S =

✓
U + c�1

c

◆
(16)

The probability of distribution k among S possible DSEU
distributions is computed by equation (17). In this equation,
Lt is the length of subinterval t in cycles and ct is the number
of DSEUs in subinterval t in distribution k. The denominator
of equation (17) is the number of ways that c DSEUs can be
distributed in L cycles and the numerator is the number of
ways that c DSEUs can have in distribution k, given the length
of each subinterval.

P(Distribution k) =

�L1
c1

�
⇥
�L2

c2

�
⇥⇥

�LU
cU

�
�L

c
� (17)

c = c1 + c2 + c3 + ...+ cU and L = L1 +L2 + ...+LU .
In order to account for failures in neighboring domains,

P(access j fails | c DSEUs) in equation (9) must be computed
by equation (18).

P(access j fails | c DSEUs) =
S

Â
k=1

P(Distribution k | c DSEUs)⇥

P(Domain failure with no failure in neighbors
| c DSEUs and Distribution k)

(18)

P(Distribution k | c DSEUs) is computed by equation (17).
Thus, we need to compute the second term on the right side
of equation (18). We first explain how to compute P(Domain
failure with no failure in neighbors | 1 DSEU and Distribution
k).

(c=1) We define Ni
SubFail k in a way similar to Ni

Fail. Ni
SubFail k

is the number of bits in the cache array such that if the N-W
bit of fault pattern i is pinned to any of them, the domain fails
but none of its neighbors fail given distribution k. The mean
of Ni

SubFail k over all patterns is:

NSubFail k =
N

Â
i=1

Ni
SubFail k ⇥Qi (19)

Then:

P(Domain failure with no failure in neighbors

| 1 DSEU and Distribution k) =
NSubFail k

NDSEU

(20)

In the example of Figure 8 (the access at cycle 2000) with
patterns of Figure 4, fault pattern 1 (single-bit fault) cannot
fail any domain. Thus, N1

Fail and N1
SubFail k are both equal to

0. N2
Fail is 62. Among the 62 locations counted in N2

Fail, 31 of
them cause a failure in Word 4 and 31 of them cause a failure
in Word 10. In subinterval 1, which ends with the access to
Word 4, faults in Word 7 that cause a failure in Word 4 or

Word 10 must be ignored; thus all faults must be ignored in
subinterval 1 and N2

SubFail 1 is equal to zero. In subinterval 2,
which ends with the access to Word 10, any fault in Word 7
that causes a failure in Word 10 must be ignored because the
application must have survived the access to Word 10 at cycle
1600. Hence, N2

SubFail 2 is 31. Finally, in subinterval 3, after
cycle 1600, there is no failure dependency with neighbors and
no failure of Word 7 can be ignored. N2

SubFail 3 is equal to 62.
Thus, we have:

NSubFail 1

NDSEU
=

0⇥0.5+0⇥0.5
49

= 0

NSubFail 2

NDSEU
=

0⇥0.5+31⇥0.5
49

= 0.31

NSubFail 3

NDSEU
=

0⇥0.5+62⇥0.5
49

= 0.63

The DSEU can happen in any one of the three subintervals.
Using equation (17), the probabilities of distributions 1, 2, and
3 are 0.4, 0.2 and 0.4, respectively. Hence, the probability of
access failure computed by equation (18) is 0.4⇥ 0+ 0.2⇥
0.31+0.4⇥0.63 = 0.31.

We now consider the case of two DSEUs in a vulnerability
interval.

(c=2) For two DSEUs in a vulnerability interval, the process
is similar to the case of one DSEU. We define Ni,m

SubFail k as the
number of bits in the cache array such that if fault patterns i
and m occur in the domain and their superimposition causes
domain failure, but none of its neighboring domains fail given
distribution k. The following algorithm computes Ni,m

SubFail k.

Ni,m
SubFail k = 0;

For(l = 0; l < Ni
DSEU; l++)

For(n = 0;n < Nm
DSEU;n++)

If(superimposition of patterns i and m causes failure of
domain but no neighboring domain fails given distribution k)

Ni,m
SubFail k ++;

NSubFail k is the mean of Ni,m
SubFail k over all couples of patterns

i and m.
Then:

P(Domain failure with no failures in neighbors |

2 DSEUs and Distribution k) =
NSubFail k

(NDSEU)2
(21)

This procedure can be generalized to compute equation (18)
for more than two DSEUs.

7. Model extensions

So far, the model has been developed in the context of a stan-
dard cache array under nominal voltage and an error code
protecting a contiguous domain. However, the model is appli-
cable to other environments such as:

8

Bit-interleaving: PARMA+ is applicable to bit-interleaved
cache arrays or arrays with interleaved protection codes. In
both cases the only difference is that the protection domain
is not made of contiguous bits in the array, and Ni

DSEU, Ni
Fail

and other such variables are computed in an interleaved array.
No equation of PARMA+ is changed. We will evaluate the
accuracy of PARMA+ in bit-interleaved caches in Section 8.

Early write-back and cache scrubbing: PARMA+ is also
applicable to caches with early write-back or/and scrubbing.
In these cases, the model simulates the additional accesses. In
the case of early write-backs this means extra write-backs. In
the case of scrubbing this means extra reads at periodic times.

Different sizes of protection domain and access granu-

larity: If the protection domain is smaller than the cache
access granularity such as word-level protection in L2, each
L2 write-back or read accesses several protection domains. To
model this, Ni

Fail is counted as the number of bits in the cache
array such that if the N-W bit of fault pattern i is pinned to any
one of them, at least one of the protection domains fails. Ni,m

Fail
and other such variables (like Ni

SubFail k) are also computed
similarly while other equations do not change. If the protec-
tion domain is larger than the granularity of a cache access,
the entire domain will be accessed and the protection code
will be checked. Hence, if the access granularity is smaller
than the protection domain size, the tool always accesses the
entire domain like the case in which the access granularity is
equal to the protection domain size.

Dynamic Voltage and Frequency Scaling (DVFS): To re-
duce energy consumption, modern processors change their
voltage and frequency dynamically. At lower voltages, the soft
error rate increases because a smaller charge is stored in each
SRAM cell [6]. This application of the model is more chal-
lenging. For each voltage level of the DVFS scheme, different
inputs must be provided to the tool. First, the ITRS FIT rate
in equation (5) must be replaced by the raw FIT rate for the
various non-nominal voltages employed by the DVFS scheme.
Second, the fault patterns and their probabilities (Qi of equa-
tion (6)) must be determined for the non-nominal voltages as
well.

8. Simulations

In this section, we compare the PARMA+ model with fault-
injection simulations. Since the actual SEU rate is ex-
tremely small, fault-injection rates must be raised drastically
so that fault-injection simulations can complete in a reasonable
amount of time, especially given that a large number of them
must be done for each design point. This is one of the reasons
why formal models such as PARMA+ are useful in order to
feasibly estimate FIT rates at actual SEU rates.

The system configuration in all the simulations reported
here is shown in Table 2. We simulate 13 SPEC 2000
benchmarks with SimpleScalar [3]. Each benchmark is fast-
forwarded for 100 million instructions and is run in detail for
an additional 100 million instructions. We could use Simpoint

Parameter Value

Functional Units 4 integer ALUs, 1 integer
multiplier/divider, 4 FP
ALUs, 1 FP
multiplier/divider

LSQ Size / RUU Size 16 Instructions / 64
Instructions

Issue Width 4 instructions / cycle
Frequency 3 GHZ
L1 data cache 64KB, 4-way, 32 byte lines,

2 cycles latency
L2 cache 1MB unified, 8-way, 32 byte

lines, 8 cycles latency
L1 instruction cache 16KB, 1-way, 32 byte lines,

1 cycle latency
Feature Size 32nm

Table 2: Evaluation parameters.

and run 100 million instructions after fast forwarding a certain
number of instructions but we did not do that for two reasons.
First, we would need to fast forward tens of billions of instruc-
tions which increases the simulation time significantly and
we would not be able to run many fault injection experiments.
Second, Simpoint is important in performance evaluations as
it tries to reproduce the same CPI and cache miss rate as the
entire benchmark. However, for our reliability evaluation, the
CPI or cache miss rate do not matter.

We perform reliability simulation experiments on an L2
cache protected by SECDED and we call an error a failure
when the error is propagated outside the L2 cache by either a
read or write-back operation. PARMA+’s results depend on
the layout of the cache because it considers the failure depen-
dencies between neighboring domains and the dependencies
vary in different layouts. We assume a typical layout for the
cache and implement all dependency equations accordingly.
In our simulations, the size of a cache row is equal to the size
of cache line.

In our simulations, the probability of failure at access j is
computed as

Pj = P(1 DSEU)⇥P(access j fails | 1 DSEU)

+P(2 DSEUs)⇥P(access j fails | 2 DSEUs)

This is equation (9) where we neglect the probability of having
more than 2 DSEUs because the probability of having several
DSEUs in a vulnerability interval is extremely small.

In PARMA+, the failure rate is computed in a single sim-
ulation run for each benchmark by equation (3). Since fault
patterns used in this section causes failure of the cache with 1
DSEU, the probability of failure due to 2 DSEUs will not im-
pact the FIT rate. Thus, in order to make the simulation faster,
we do not consider failure dependencies for the case of two
DSEUs. This is because the number of combinations which
is computed by equation (16) is very large and this would

9

Q1=0.89 Q2=0.01 Q3=0.06 Q4=0.015 Q5=0.015 Q6=0.01

Figure 9: Small fault patterns (black squares show faulty bits)

greatly increase the simulation time. In PARMA+ simulations,
P (access j fails | 1 DSEU) is computed by equations (18),
(19) and (20) and P (access j fails | 2 DSEUs) is computed by
equations (14) and (15).

Fault-injection simulations are run at least 10,000 times for
each benchmark and the failure rate is estimated as the number
of simulation runs in which the application fails because of
transient faults in the L2 cache, divided by the total number
of simulations. For some benchmarks with very low rate of
significant faults events we had to increase the number of
fault-injection simulations up to 30,000.

In order to understand the importance of cross-domain fail-
ure dependencies, we also compare the results of fault in-
jections with a version of PARMA+ that does not take into
account failure dependencies across domains. Another rea-
son to have this comparison is because the running times of
the simulations with or without dependencies are different.
The PARMA+ model without failure dependencies of Section
5 runs at about the same speed as performance simulations
on SimpleScalar. By contrast, the simulations including the
failure dependencies of Section 6 for 1 DSEU run 10 times
slower. We refer to the model of Section 5 (PARMA+ with-
out cross-domain failure dependencies) as PARMA+light. For
PARMA+light, P (access j fails | 1 DSEU) is computed by
equations (12) and (13) and P (access j fails | 2 DSEUs) is
computed by equations (14) and (15). Note that in simulations
of this section, PARMA+ and PARMA+light have the same
equations for two faults but the contribution of two DSEUs on
the FIT rates on the results shown in this section is negligible.

We also compare PARMA+ with MACAU [20]. To the best
of our knowledge, MACAU is the only existing model which
can compute failure rates in presence of spatial multi-bit faults.
However, it is only applicable to faults shown in Figure 9,
it is limited to protection domain sizes of one word, and it
cannot be applied to bit-interleaved caches or caches with in-
terleaved error code. Moreover the computational complexity
of MACAU is very high.

The deviation between estimates given by formal models
such as PARMA+, PARMA+light and MACAU, and fault in-
jection simulations is computed as:

Deviation = |1� Model failure rate
Fault injection failure rate

|⇥100

We report on five sets of simulations. First we compare
PARMA+ and MACAU with fault-injection simulations with
fault patterns shown in Figure 9 observed in previous physical
beam injection experiments in a 65nm technology [22]. In
Figure 9, faulty bits are shown in a 2⇥3 fault footprint (black

Benchmark PARMA+ MACAU

gcc 0.6 3.9
mesa 6.6 89.1
gzip 4.3 10.5
applu 0.4 2.2
twolf 6.9 23.2
mcf 0.7 9.9
crafty 1.1 15.3
equake 2.6 11.2
lucas 0.1 9.1
galgel 0.9 6.4
ammp 0.2 5.5
mgrid 1.3 8.5
swim 0.6 3.2
Average 2.0 15.1

Table 3: PARMA+ and MACAU deviations under fault patterns of Fig-

ure 9 (accelerated SEU rate).

Benchmark Fault

injection

results

95% confidence

interval

gcc 0.874 [0.871, 0.876]
mesa 0.002 [0.0011, 0.0028]
gzip 0.557 [0.550, 0.563]
applu 0.9892 [0.9889, 0.9894]
twolf 0.021 [0.0193, 0.0226]
mcf 0.8125 [0.809, 0.815]
crafty 0.449 [0.441, 0.456]
equake 0.0034 [0.0027, 0.0040]
lucas 0.781 [0.777, 0.784]
galgel 0.076 [0.071, 0.080]
ammp 0.9932 [0.9930, 0.9933]
mgrid 0.93 [0.928, 0.931]
swim 0.882 [0.879, 0.884]

Table 4: Fault injection results of Table 3 and their 95% confidence

interval

bits are faulty). In this set of experiments, the raw SEU rate
is 8.04⇥1014 FIT/Mbit and SECDED is applied at the word
level since MACAU is only applicable to word-level protection
domains.

Table 3 shows that the deviation of PARMA+ is on average
2.0% while the deviation of MACAU is 15.1%. Hence, the
accuracy of PARMA+ is better than MACAU for the fault
patterns that are applicable to MACAU. Table 4 shows the fault
injection results (their absolute values which is teh fraction of
experiments in which the L2 cache fails) used in Table 3 and
their 95% confidence interval.

Second, we compare PARMA+ and PARMA+light to fault-
injection simulations with fault patterns of Figure 9. In this
set of experiments, the raw SEU error rate is 8.04 ⇥ 1014

FIT/Mbit and each cache block is protected by SECDED. We

10

Bench.

Figure 9 Patterns Figure 10 Patterns

PARMA+ PARMA+light PARMA+ PARMA+light

gcc 1.8 5.5 2.9 268.1
mesa 5.0 19.2 9.3 69 .0
gzip 2.5 15.8 4.9 325.7
applu 0.03 0.5 3.8 166.4
twolf 1.7 14.8 2.8 82.2
mcf 0.7 7.3 0.9 235.9
crafty 4.0 12.7 4.2 103.5
equake 3.0 9.8 8.7 65.0
lucas 2.3 10.7 4.5 364.4
galgel 1.6 4.9 4.0 22.7
ammp 0.08 0.3 2.4 50.1
mgrid 1.4 3.9 3.9 133.9
swim 1.1 5.5 5.1 178.2
Average 1.9 8.4 4.3 164.2

Table 5: PARMA+ and PARMA+light deviations under fault patterns

of Figures 9 and 10 (accelerated SEU rate).

Benchmark Fault injection

results

95%

confidence

interval

gcc 0.882111 [0.879, 0.884]
mesa 0.0021 [00158, 00262]
gzip 0.5727 [0.566, 0.579]
applu 0.9922 [0.9920, 0.9923]
twolf 0.0242 [0.021, 0.027]
mcf 0.8165 [0.813, 0.819]
crafty 0.4583 [0.451, 0.465]
equake 0.00356 [0.0028, 0.0042]
lucas 0.7846 [0.780, 0.788]
galgel 0.0792 [0.074, 0.084]
ammp 0.9942 [0.9940, 0.9943]
mgrid 0.927 [0.926, 0.928]
swim 0.897 [0.895, 0.898]

Table 6: Fault injcetion results and their 95% confidence intervals on

fault patterns of Figure 9 used in Table 5

ran 30,000 fault-injection simulations for mesa and equake to
obtain statistically acceptable results. For this set of patterns,
the PARMA+ model is highly accurate and its deviation from
fault-injection simulations is on average 1.9%. By comparison,
PARMA+light is less accurate with an average deviation of
8.4%.

In this case, since a fault pattern can flip bits in up to two
domains, PARMA+light may count a fault twice in two neigh-
boring domains and overestimate the failure rate.

In the third set of simulations, we compare PARMA+ and
PARMA+light with fault-injection simulations for a set of large
fault patterns in order to stress the models. Note that MACAU
is not applicable to those large fault patterns. Figure 10 shows
the fault patterns with their probability of occurrence. In Fig-

Benchmark Fault injection

results

95% confidence

interval

gcc 0.253 [0.245, 0.262]
mesa 0.0013 [0.00089, 0.00171]
gzip 0.083 [0.077, 0.088]
applu 0.34 [0.33, 0.35]
twolf 0.0104 [0.008, 0.012]
mcf 0.167 [0.160, 0.174]
crafty 0.165 [0.157, 0.172]
equake 0.0023 [0.00176, 0.00274]
lucas 0.1186 [0.112, 0.124]
galgel 0.0187 [0.0160, 0.0213]
ammp 0.611 [0.605, 0.616]
mgrid 0.332 [0.324, 0.339]
swim 0.1816 [0.174, 0.188]

Table 7: Fault injection results and their 95% confidence intervals on

fault patterns of Figure 10 used in Table 5

Q1=0.2 Q2=0.1 Q3=0.15 Q4=0.05

Q5=0.15 Q6=0.11 Q7=0.1 Q8=0.14

Figure 10: Large fault patterns (black squares show faulty bits)

ure 10, black squares show faulty bits in fault patterns with
up to an 8⇥ 8 fault footprint. Bit faults are in adjacent or
non-adjacent bits and fault patterns are much more complex
than the faults in Figure 9. These fault patterns were gen-
erated randomly with the goal to increase the complexity of
the faults as much as possible. In this set of experiments, the
raw error rate is 8.04⇥ 1012 FIT/Mb and each cache block
is protected by SECDED. Table 5 shows that the deviations
of PARMA+ and PARMA+light with respect to fault-injection
simulations are 4.3% and 164.2%, respectively. While the
accuracy of PARMA+ is very good in both sets of experiment.
PARMA+light grossly overestimates the failure rate with the
fault patterns of Figure 10 because fault patterns flip bits of
up to eight consecutive rows and the model may count the
same fault eight times. The 95% confidence intervals for fault
injection experiments of Table 5 are shown in Tables 6 and 7.

In our fourth set of simulations, the bits in the L2 cache array
are 2-way or 4-way interleaved. 64-bit words are protected
by SECDED in blocks of 256 bits. In the case of the 2-way
interleaved array, bits of the first 64-bit word are placed in
bits 0, 2, 4,....126 and the third word is stored in bit locations

11

Bench.

2-way Interleaved 4-way Interleaved

PARMA+ PARMA+light PARMA+ PARMA+light

gcc 2.6 126.8 7.3 88.9
mesa 3.4 23.3 0.001 0.002
gzip 5.2 272.5 10.3 280.2
applu 4.3 147.9 0.8 106.3
twolf 8.7 44.0 1.5 25.0
mcf 6.5 205.1 1.9 125.3
crafty 1.6 49.3 0.7 19.9
equake 6.4 14.5 0.00005 0.00007
lucas 7.3 289.2 7.8 185.6
galgel 3.3 37.7 4.0 22.4
ammp 2.8 46.4 4.1 39.8
mgrid 7.2 116.2 5.2 90.0
swim 3.7 217.1 1.0 137.5
Average 4.8 121.4 3.4 85.6

Table 8: PARMA+ and PARMA+light deviations in bit-interleaved

caches (accelerated SEU rate).

128, 130, 132,...254. In the case of 4-way interleaving, bits of
the first 64-bit word are placed in bits 0, 4, 8, ...,252 and the
third 64-bit word is placed in bits 2, 4, 8, ..., 254. In this set of
simulations, the raw error rate is 8.04⇥1012 FIT/Mb. We use
the patterns of Figure 10. Table 8 shows that the deviations
of PARMA+ and PARMA+light compared to fault-injection
simulations in the 2-way interleaved cache array are on average
4.8% and 121.4%, respectively. In the 4-way interleaved cache
array the deviations are 3.4% and 85.6% on average. Tables
9 and 10 show the 95% confidence intervals for the fault
injection experiments used in Table 8. Hence, PARMA+ is
also very accurate in the case of bit-interleaving. These results
demonstrate once more that cross-domain dependencies must
be accounted for in general.

In our last set of simulations, we compare the FIT rate
predictions of PARMA+ and PARMA+light at the fault rate
of 1150 FIT/Mb, which is the raw soft error rate accord-
ing to ITRS. At this error rate, fault injection simulations
are not feasible. So we cannot compare to them. Table 11
compares the FIT rate of PARMA+ and PARMA+light under
fault patterns of Figures 9 and 10. Each cache block is pro-
tected by SECDED. The differences between PARMA+ and
PARMA+light are much larger with the large fault patterns of
Figure 10 because a fault pattern affects more domains.

The simulation time of PARMA+ is reasonable. Each bench-
mark simulation finished in up to three hours on our server.
The most time-consuming part of PARMA+ simulations is
the equations of Section 6. The simulation time of PARMA+
increases when fault patterns affect more rows as in Figure 10.
In our simulations, PARMA+ increases the simulation time
on average by around one order of magnitude (10 times) as
compared to native Simplescalar.

The simulation time of PARMA+light is almost the same
as performance simulations without PARMA+light because all

Benchmark Fault

injection

results

95% confidence

interval

gcc 0.238 [0.230, 0.245]
mesa 0.0009 [0.00056, 0.00124]
gzip 0.0728 [0.067, 0.077]
applu 0.3348 [0.327, 0.342]
twolf 0.0056 [0.0041, 0.0070]
mcf 0.149 [0.142, 0.155]
crafty 0.1267 [0.120, 0.132]
equake 0.0013 [0.00089, 0.00171]
lucas 0.1145 [0.108, 0.120]
galgel 0.0181 [0.015, 0.020]
ammp 0.5727 [0.566, 0.579]
mgrid 0.2862 [0.278, 0.293]
swim 0.1809 [0.174, 0.187]

Table 9: Fault injection experiments and their 95% confidence inter-

vals for fault injection experiments of Table 8 on the 2-way

bit-interleaved cache

Benchmark Fault

injection

results

95% confidence

interval

gcc 0.1895 [0.182, 0.196]
mesa 0 [0, 0]
gzip 0.0619 [0.055, 0.066]
applu 0.3193 [0.311, 0.326]
twolf 0.0018 [0.0009, 0.0026]
mcf 0.1368 [0.130, 0.143]
crafty 0.0666 [0.061, 0.071]
equake 0 [0, 0]
lucas 0.1057 [0.100, 0.111]
galgel 0.0123 [0.010, 0.014]
ammp 0.4755 [0.468, 0.482]
mgrid 0.2123 [0.205, 0.219]
swim 0.1709 [0.164, 0.177]

Table 10: Fault injection results and their 95% confidence intervals

for fault injection experiments of Table 8 on the 4-way bit-

interleaved cache

equations except equations (9), (11) and (4) are independent
from the benchmark program and can be computed at the
beginning of the simulation. Equations (9), (11) and (4) are
also very simple to compute.

9. Floating point precision of PARMA+

The mathematical model of PARMA+ is fairly simple. How-
ever, we may need to modify equation (2) in order to imple-
ment it on a practical machine.

In C and C++, the longest floating-point type is “long dou-
ble” which has 80 bits in some implementations and 128 bits
in others [17]. The number of decimal digits in the mantissa of

12

Bench.

Figure 9 Patterns Figure 10 Patterns

PARMA+ PARMA+light PARMA+ PARMA+light

gcc 497.9 582.8 6606.6 24902.5
mesa 0.6 0.8 31.7 70.6
gzip 24.82 305.5 2450.0 12250.1
applu 822.5 1018.1 7320.2 40556.3
twolf 8.4 9.8 376.6 691.1
mcf 561.3 679.5 5900.1 26492.5
crafty 131.8 147.9 3856.2 8321.6
equake 1.0 1.2 60.9 108.8
lucas 680.1 849.9 5558.8 33601.6
galgel 34.9 37.0 991.0 1468.8
ammp 165.1 188.1 2958.6 7562.1
mgrid 244.9 288.6 7239.4 13031.1
swim 790.9 977.1 7061.0 38641.9
Average 299.15 363.3 3600.8 14867.8

Table 11: PARMA+ and PARMA+light FIT rates under fault patterns of

Figure 9 and 10 (actual SEU rate).

these two representations is 19 and 31, respectively. Because
of rounding of the mantissa, 1�Pj in equation (2) will be
equal to 1 if Pj is less than 10�19 (80-bit representation) or
10�31 (128-bit representation). If all Pjs of a program exe-
cution cause this rounding error, R(t2) in equation (2) will
become equal to 1 and the FIT rate estimate in equation (4)
will become zero.

The criticality of the rounding problem depends on two
factors.

1- Value of Pj.

2- Precision of the floating-point library.

One can determine at the beginning of the simulation
whether there will be a rounding problem given a particular
C compiler. Pj depends on several parameters: the protection
domain size, the length of the vulnerability interval, the pro-
tection code, the fault patterns and the raw error rate per bit
per cycle. For a specific configuration, all of these parameters
are constant except for the length of the vulnerability interval,
which is variable during a benchmark execution. For simple
approximate computations of this section we do not consider
domain failure dependences between domains. Let P be an
approximation for the average of Pjs. P can be approximated
for example by considering the average vulnerability interval
lengths in several benchmarks. If P is much greater than 10�19

or 10�31 (depending on the floating-point library), the FIT rate
obtained by PARMA+ simulations is reliable. Otherwise, it
may not be reliable because the probability of failure in many
accesses may be ignored due to rounding errors.

If the floating-point library does not provide enough preci-
sion for a given configuration, we change 1�’max

j=1(1�Pj) in

equation (4) as follows to get rid of 1�Pj.

1�
max

’
j=1

(1�Pj) =
max

Â
j=1

Pj �
max

Â
j=1

max

Â
i= j+1

PjPi

+
max

Â
j=1

max

Â
i= j+1

max

Â
k= j+1

PjPiPk �

(22)

Equation (22) is also difficult to implement as we need to
save all Pjs from the beginning of the program. If a program
is large, saving all failure probabilities can fill the entire mem-
ory space. One simple alternative is to approximate the right
side of equation (22) by its first term, Âmax

j=1 Pj. If the value of
Âmax

j=1 Pj is much larger than other terms on the right side of
equation (22), this approximation is valid. If P is 10�19 (for 80-
bit long double implementation) and the program executes 1
trillion reads and write-backs in the simulated cache (arguably
a number way beyond the reach of simulators in the foresee-
able future), the value of Âmax

j=1 Pj is around 10�10, while the
value of Âmax

j=1 Âmax
i= j+1 PjPi is around 10�20. Therefore, Âmax

j=1 Pj
is much larger than all other terms and is a reliable approxi-
mation to equation (22). Note that if P is less than 10�19, the
approximation would be more accurate.

10. PARMA+ tool

This section explains the structure of the PARMA+ tool. The
tool is implemented on top of SimpleScalar and it measures the
FIT rate of the L2 cache. In the PARMA+ tool, it is assumed
that the size of a cache row is equal to the size of a cache line.

The tool has an interface which receives several inputs as
follows.

1- Raw FIT rate (FIT/Mbit): This is the rate at which cache
bits are flipped by energetic particles.

2- Processor frequency (GHZ): The frequency of the pro-
cessor is fed into the tool.

3- Access granularity (bit): The number of bits read in each
cache access.

4- Domain size (bit): Number of bits protected by an error
protection code.

5- Protection code: There are three options in the tool. 2
refers to SECDED, 1 is parity and 0 is no protection.

6- Mode: The PARMA+ tool has 4 operating modes. Mode
1 refers to the case in which up to two DSEUs are considered
in each vulnerability interval and the failure dependencies are
considered for both 1 DSEU and 2 DSEUs. In mode 1, Pj is

13

computed as:

Pj = P(1 DSEU)⇥
S

Â
k=1

P(Distribution k | 1 DSEU)⇥

P(Domain failure with no failure in neighbors | 1 DSEU and

Distribution k)+P(2 DSEUs)⇥
S

Â
k=1

P(Distribution k | 2

DSEUs)⇥P(Domain failure with no failure in neighbors | 2
DSEUs and Distribution k)

Mode 2 refers to the case in which there is at most one DSEU
in a vulnerability interval and the failure dependencies are
computed. In mode 2, Pj is computed as:

Pj = P(1 DSEU)⇥
S

Â
k=1

P(Distribution k | 1 DSEU)⇥

P(Domain failure with no failure in neighbors | 1 DSEU and
Distribution k)

Mode 3 refers to the case in which one DSEU is considered
and failure dependencies are ignored. In mode 3, Pj is equal
to:

Pj = P(1 DSEU)⇥ NFail

NDSEU

Mode 4 refers to the case in which up to 2 DSEUs are consid-
ered but failure dependencies are ignored for both the case of
1 DSEU and 2 DSEUs. In this mode, Pj is:

Pj = P(1 DSEU)⇥ NFail

NDSEU
+P(2 DSEUs)⇥ NFail

(NDSEU)2

7- Interleaving degree: This determines the degree of bit-
interleaving.

8- Fault patterns and their probability: Currently, the tool
receives up to 10 fault patterns which are contained in an 8⇥8
square.

To compute FIT rates, the tool first runs an initialization
function which is run only once at the beginning of the pro-
gram. The initialization function first reads the input file
and saves the inputs in some variables. Then it computes
Ni

DSEU, Ni
Fail and Ni,m

Fail (in modes 1 or 4). Furthermore, the
initialization function decides how the tool deals with the
approximation problem based on the input parameters.

At the time of each read or write-back, the probability that
an access fails is computed. This probability is computed
based on the operating mode. When failure dependencies are
considered, Ni

SubFail k and/or Ni,m
SubFail k are computed for each

access. This step is time-consuming and greatly increases
the simulation time. When an access happens to a protection

domain, the neighbors of that protection domain save the time
and the type of the access as they would need this information
later when they consider dependencies.

After computing the probability of an access failure, we
use that either in Âmax

j=1 Pj or in equation (2). At the end of
the program, PARMA+ prints the average failure rate and FIT
rate.

11. Conclusions

Reliability is a critical concern in today’s computer systems.
Since caches have a great impact on system reliability, the
accurate modeling of cache FIT rates is important. Without an
accurate cache FIT rate model, designers cannot configure reli-
ability features in caches in an optimum way. This may cause
them to provide higher or lower reliability than is required,
with either higher overheads or higher vulnerability.

Since all fault patterns will be multi-bit from the year 2016,
there is an urgent need to model cache FIT rates in pres-
ence of multi-bit faults. This technical report introduces the
PARMA+ model capable of estimating FIT rates under all
possible sequences of multi-bit faults with very high accuracy
and low simulation times. Our evaluations and comparisons
with fault-injection simulations demonstrate that it is critical
to include failure dependencies across domains, especially for
large spatial faults. PARMA+ can model the FIT rate of a
cache equipped with major existing reliability features such as
bit-interleaving, early write-back, scrubbing and various com-
mon error protection schemes. Furthermore, it is able to model
faults with any set of patterns and any cache configurations
including low power techniques such as DVFS.

In our future work, we will extend PARMA+ to models
which are proposed in academic papers (not implemented in
commercial processors) such as [13, 9]. We will also simulate
more sets of fault patterns with the tool.

References

[1] “International Technology Roadmap for Semiconductors (ITRS), 2011
Edition.”

[2] H. Asadi, V. Sridharan, M. Tahoori, and D. Kaeli, “Vulnerability anal-
ysis of L2 cache elements to single event upsets,” in Proc. of Design
Automation and Test conference in Europe (DATE), 2006, pp. 1276–
1281.

[3] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An Infrastructure
for Computer System Modeling,” Computer, vol. 35, no. 2, pp. 59–67,
2002.

[4] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukherjee,
and R. Rangan, “Computing Architectural Vulnerability Factors for
Address-based Structures,” in Proc. of International Symposium on
Computer Architecture (ISCA), 2005, pp. 532–543.

[5] M. Finkelstein, Failure Rate Modeling for Reliability and Risk.
Springer, 2008.

[6] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
caches: simple techniques for reducing leakage power,” in Proc. of
International Symposium on Computer Architecture (ISCA), 2002, pp.
148–157.

[7] P. Genua, “Error Correction and Error Handling on PowerQUICCTM

III Processors,” DOI=http://www.freescale.com/files/32bit/doc/app_
note/AN3532.pdf.

[8] P. Hoang, Handbook of Engineering Statistics. Springer, 2006.
[9] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe, “Multi-

bit Error Tolerant Caches Using Two Dimensional Error Coding,” in

14

Proc. of International Symposium on MicroArchitecture (MICRO),
2007, pp. 197–2009.

[10] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way
multithreaded sparc processor,” IEEE Micro, vol. 25, pp. 21–29, 2005.

[11] X. D. Li, S. V. Adve, P. Bose, and J. A. Rivers, “SoftArch:An Architec-
ture Level Tool for Modeling and Analyzing SoftErrors,” in Proc. of
International Conference on Dependable Systems and Networks (DSN),
2005, pp. 496–505.

[12] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization
of Multi-bit Soft Error Events in Advanced SRAMs,” in Proc. of IEEE
International Electron Devices Meeting, 2003, pp. 21.4.1–21.4.4.

[13] M. Manoochehri, M. Annavaram, and M. Dubois, “CPPC: Correctable
Parity Protected Cache,” in Proc. of International Symposium on Com-
puter Architecture (ISCA), 2011, pp. 223–234.

[14] S. S. Mukherjee, J. Emer, T. Fossum, and S. K. Reinhardt, “Cache
Scrubbing in Microprocessors: Myth or Necessity?” in Proc. of IEEE
Pacific Rim Symposium on Dependable Computing (PRDC), 2004, pp.
37–42.

[15] N. Quach, “High availability and reliability in the Itanium processor,”
IEEE Micro, vol. 20, no. 5, pp. 61–69, 2000.

[16] R. W. S. Baeg, S. Wen, “Sram Interleaving Distance Selection with
a Soft Error Failure Model,” IEEE Transactions on Nuclear Science,
vol. 56, no. 4, pp. 2111–2118, 2009.

[17] G. M. Saeed, An Introduction to Object-Oriented Programming in
C++. Morgan Kaufmann Publishers Inc., 2001.

[18] A. Saleh, J. Serrano, and J. H. Patel, “Reliability of Scrubbing Recovery
Techniques for Memory Systems,” IEEE Transactions on Reliability,
vol. 39, no. 1, pp. 114–122, 1990.

[19] V. Sridharan, H. Asadi, M. B. Tahoori, and D. Kaeli, “Reducing Data
Cache Susceptibility to Soft Errors,” IEEE Transactions on Dependable
and Secure Computing, vol. 3, no. 4, pp. 353–364, 2006.

[20] J. Suh, M. Annavaram, and M. Dubois, “MACAU: A Markov model for
reliability evaluations of caches under single-bit and multi-bit upsets,”
in Proc. of International Symposium on High Performance Computer
Architecture (HPCA), 2012, pp. 3–14.

[21] J. Suh, M. Manoochehri, M. Annavaram, and M. Dubois, “Soft error
benchmarking of L2 caches with PARMA,” in Proc. of International
Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS), 2011, pp. 85–96.

[22] A. D. Tipton, J. A. Pellish, J. M. Hutson, R. Baumann, X. Deng,
A. Marshal, M. A. Xapsos, H. S. Kim, M. R. Friendlich, M. J. Campola,
C. M. Seidleck, K. A. LaBel, M. H. Mendenhall, R. Reed, R. Schrimpf,
R. Weller, and J. D. Black, “Device-Orientation Effects on Multiple-
Bit Upset in 65 nm SRAMs,” IEEE Transactions on Nuclear Science,
vol. 55, no. 6, pp. 2880–2885, 2008.

[23] S. Wang, J. Hu, and S. Ziavras, “On the characterization and optimiza-
tion of on-chip cache reliability against soft errors,” IEEE Transaction
on Computers (TC), vol. 58, no. 9, pp. 1171–1184, 2009.

[24] S. J. E. Wilton and N. P. Jouppi, “CACTI: An Enhanced Cache Access
and Cycle Time Model,” IEEE Journal of Solid-State Circuits, vol. 31,
no. 5, pp. 677–688, 1996.

[25] D. H. Yoon and M. Erez, “Memory Mapped ECC: Low-Cost Error
Protection for Last Level Caches,” in Proc. of International Symposium
on Computer Architecture (ISCA), 2009, pp. 83–93.

15

	Introduction
	Background
	Related work
	Basic assumptions and equations of PARMA+
	Illustrative example
	SEU rate in one protection domain (SEU rate)

	Failure of a domain independently of other domains
	Probability of c DSEUs
	Probability of access failure given a single DSEU in the domain
	Probability of access failure given two or more DSEUs in the domain

	Failure dependencies with neighboring domains
	Model extensions
	Simulations
	Floating point precision of PARMA+
	PARMA+ tool
	Conclusions

