

Efficient Scheduling for Energy-Delay Tradeoff

on a Time-Slotted Channel
Yanting Wu1, Rajgopal Kannan2, Bhaskar Krishnamachari1

1. Ming Hsieh Department of Electrical Engineering, University of Southern California,

 Los Angeles CA 90089, USA. Email: yantingw@usc.edu, bkrishna@usc.edu

2. Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803

Email: rkannan@bit.csc.lsu.edu

Computer Engineering Technical Report Number CENG-2015-03

Ming Hsieh Department of Electrical Engineering – Systems

University of Southern California

Los Angeles, California 90089-2562

April, 2015

Efficient Scheduling for Energy-Delay Tradeoff on
a Time-Slotted Channel

Yanting Wu∗, Rajgopal Kannan†, Bhaskar Krishnamachari∗

∗Dept. of Electrical Engineering, University of Southern California
{yantingw,bkrishna}@usc.edu

†Dept. of Computer Science, Louisiana State University
rkannan@bit.csc.lsu.edu

Abstract—We study the fundamental problem of scheduling
packets on a time-slotted channel to balance the tradeoff between
a higher energy cost incurred by packing multiple packets on the
same slot, and higher latency incurred by deferring some packets.
Our formulation is general and spans diverse scenarios, such
as single link with rate adaptation, multi-packet reception from
cooperative transmitters, as well as multiple transmit-receive
pairs utilizing tunable interference mitigation techniques. The
objective of the system is to minimize the weighted sum of delay
and energy cost from all nodes. We first analyze the offline
scheduling problem, in which the traffic arrivals are given in
advance, and prove that a greedy algorithm is optimal. We then
consider the scenario where the scheduler can only see the traffic
arrivals so far, and develop an efficient online algorithm, which
we prove is O(1)-competitive. We validate our online algorithm
by running simulations on different traffic arrival patterns and
penalty functions. While the exact competitive ratio in principle
depends on the energy function, in our simulations we find this
ratio to be always less than 2.

Keywords: greedy algorithm, online scheduling, competitive
analysis, energy-delay tradeoff

I. INTRODUCTION

During the past two decades, we have witnessed a fast
growth in wireless networks and the continuous increasing
demand of wireless services. A key tradeoff in these networks
is that between energy and delay.

In this paper, we formulate, study, and solve a fundamental
problem pertaining to the energy-delay tradeoff in the context
of transmissions on a time slotted channel. In a general form,
this problem consists of multiple independent nodes with
arbitrary packet arrivals over time. At each slot, every node
decides at the beginning of a slot whether to send one or more
of its queued as well as newly arrived packets, or to defer some
or all of them to a future slot. The more the total number
of packets sent on a given slot, the higher the energy cost
(modeled as an arbitrary strictly convex function of the total
number of simultaneously scheduled packets); on the other
hand, deferral incurs a delay cost for each deferred packet.

In this system, there is a centralized scheduler, who knows
the arrivals and schedules the various arriving packets to
different slots in order to minimize a cost function which
combines both the deferral penalty and the energy penalty.
We first assume that the centralized scheduler has a complete

Figure 1: Illustration Example

knowledge about the packet arrivals, and develop a backward
greedy algorithm, which is proved to be optimal. Then we
consider a more realistic scenario, in which the centralized
scheduler only knows about the arrivals up to the current time
slot, and develop an efficient online algorithm for this scenario,
which is proved to be O(1)-competitive of the optimal.

The paper is organized as follows: section II gives a concrete
motivating example; section III reviews some related work;
section IV introduces the problem and the model; section V in-
vestigates the optimal policy for a centralized scheduler when
all the arrivals are known in advance; section VI considers the
scenario when the centralized scheduler only knows about the
arrivals so far, we develop an efficient online algorithm and
prove that this algorithm is O(1)-competitive; section VII tests
the online algorithm by running a large number of simulations
with different traffic arrival patterns and energy functions;
finally, we conclude the paper in section VIII.

II. MOTIVATING EXAMPLE

We present one example which motivates the general prob-
lem we investigate in this work. Consider the simplest case
where there is one sender and one receiver, and there is a single
time-slotted channel between the sender and the receiver,
shown in figure 1. There are arrivals over time. The sender
can send multiple packets at a higher power cost, or defer
some of them, incurring a delay penalty for each packet for
each time-slot it spends in the queue.

For a single channel, the rate obtained can be modelled

Table I: Comparison of three scheduling scheme

Scheduling scheme Deferral Energy Total Penalty
Batch: (10,0,0,0,0) 0 32 31

Constant rate: (2,2,2,2,2) 20 5 25
Optimal: (4,3,2,1,0) 10 6.2 16.2

as R = B · log2(1 + Pr

N), where B is the bandwidth, Pr
is received power, and N is noise power. The transmission
power Pt ∝ Pr. Assume N is a constant, Pt ∝ 2ηR, where
η = 1

B . We can consider R as the number of packets sent
in a time slot. For illustration, we consider three options for
the sender: batch scheduling (sending all packets in one slot),
constant rate scheduling (sending packets with a constant rate),
and dynamic scheduling (sending different number of packets
in different slots). 10 packets arrive at once, and there are 5
slots to use. We use a linear function to represent the deferral
penalty (i.e. a packet arrives at the jth slot is transmitted in
kth(> j) slot, the deferral penalty for this packet is k − j).
We use f(x) = 20.5x− 1 to represent the transmission power,
where x is the number of packets scheduled in the same slot.

Let (S1, S2 S3, S4 S5) denote the number of packets sched-
uled in 5 slots. The scheduling for the three illustrative
schemes and the corresponding cost is as shown in Table I.

From Table I, we can see that the batch scheduling has small
deferral penalty but high energy cost, while the constant rate
scheduling has small energy cost but high deferral penalty.
These two scheduling are more costly than the optimal. Intu-
itively, we should schedule more packets in earlier slots than
later slots to balance the tradeoff between the deferral penalty
and the energy cost. However, in a real system, in which
the arrivals can happen at any slot, the optimal scheduling
is not obvious. In this paper, we investigate this problem, and
try to find the optimal or close-to-optimal scheduling for any
random arrivals. The problem is particularly challenging when
considering the online case, where scheduling and deferring
decision must be made without knowledge of future arrivals.

Other examples that fit the general formulation we introduce
and solve in this paper include multi-packet reception from
cooperative transmitters (in which it is assumed that higher
numbers of packets spent at the same slot incur a higher
energy cost), as well as multiple sender-receiver pairs em-
ploying interference mitigation strategies (such as successive
interference cancellation) where too there is a higher energy
cost for allowing multiple interfering packets in a given slot.
Though in wireless network, the transmission power grows
exponentially with the rate (the number of packets scheduled
in a slot), our model is in fact even more general, as the only
requirement we impose on the energy cost is that it be strictly
convex and increasing.

III. RELATED WORK

We briefly review some papers in the literature that have
treated similar problems. One related work is the energy
efficient packet transmission in wireless network. For a wire-
less fading channel, to achieve optimal power allocation, a

commonly used approach is water-filling over time [1]–[3].
Since power affects the rate, the optimal adaptive technique
should use variable rate based on channel conditions. With
high power, the transmission time is shorter, however, the
energy consumed is higher. In these previous works, the
objective is mainly on minimizing the total transmission power
either without considering the delay, or considering the delay
only has some deadline constraint [4]. Our work takes into ac-
count both side of the tradeoff: transmission time (reflected in
deferral penalty) and energy consumption. Another difference
is that the previous works assume that the channel conditions
changes over time, but we do not have such an assumption
in our problem. In future work, we also plan to consider the
variation of the channel condition, which could be modeled
by having a time-varying energy cost.

Another highly related work is dynamic speed scaling [10]–
[15]. In a speed scaling problem, the objective is to minimize a
combination of total (possibly weighted) flow (i.e. the number
of unfinished job) and total energy used. Speeding up can
reduce the flow processing time. However, it will consumes
more energy. This indicates a flow versus energy trade-off.
In [15], Bansal et al. study a problem which minimizes the
integral of a linear combination of total flow plus energy.
The authors propose an online algorithm which schedules the
unfinished job with the least remaining unfinished work, and
runs at speed of the inverse of the energy function. By using
the amortized competitive analysis [12], the authors prove that
this online algorithm is 3-competitive. Andrew et al. improve
the results to be 2-competitive in [13] by using a different
potential function in the amortized competitive analysis. The
online algorithm proposed in this paper is based on [15].
However, due to the discrete feature of our problem (i.e. the
number of packets scheduled in each slot has to be an integer,
and cost updates happen at the integer time point), the analysis
of the performance of our online algorithm is more challenging
and needs additional steps compared to [15].

Packet scheduling in an energy harvesting communication
system is also related. To efficiently use the harvested energy,
it requires the scheduler to dynamically adapt the transmission
rate. [5]–[8] study the optimal offline policy when the energy
arrivals are assumed to be known in advance. In [9], Vaze
removes such an assumption, and develops an 2-competitive
online algorithm which dynamically adapts the transmission
rate to minimize the total transmission time under the energy
constraint. Our work also dynamically changes transmission
rate, however, unlike energy harvesting, where the transmis-
sions are constrained by the total energy arrived so far, in our
problem, we do not have such an energy constraint. However,
we still want to efficiently use the energy, and this is reflected
in the energy function in our problem.

Load Balancing in data centers is also related [16]–[18].
Wierman et al. model an Internet-scale system as a collection
of geographically diverse data centers and consider two types
of costs: operation costs (energy costs plus delay costs) and
switching costs. The offline problem in which the scheduler
has all future workload information is modeled as convex

optimization problem and the optimal is achieved by solving
the convex problems backwards in time [17]. Based on the
structure of the offline optimal, the authors develop efficient
online algorithms for dynamic right-sizing in data centers.
Similarly, our problem also has energy costs and delay costs,
however, we do not have a switching cost. The way we get the
offline optimal is also schedule backward in time, however,
our algorithm for this problem is greedy, much simpler in
calculation. Another difference is that Wierman et al.’s work
are in continuous domain, while ours is discrete.

IV. PROBLEM FORMULATION

Consider a wireless network in which every node interferes
with each other. The channel in this network is time slotted.
Packets arrive at the beginning of a time slot, and are sched-
uled by a centralized scheduler. A packet can be transmitted
immediately at the same slot as its arrival, in which case the
transmission deferral is 0, or in a latter slot, in which case
the transmission deferral is a positive number. We consider
that the deferral penalty is linear. A packet transmitted in a
slot is affected by the "interference" from all packets which
are transmitted at the same time slot. This is modeled as an
energy cost that is purely determined by the number of packets
transmitted in the same slot.

We use f(X) to represent the energy cost in a slot, where
X is the number of the packets sent at the same time slot.
f(X) is assumed to be any function that is strictly convex
and increasing with X .

We define the total penalty J(A) as weighted sum of the
deferral penalty and the energy cost, as shown in the Eq. 1.

J(A) = w1

N∑
i=1

di + w2

M∑
j=1

f(Xj), (1)

where w1, w2 are the weights, and M is the number of slots
(M can be ∞), N is the total number of packets arrived. The
objective of the centralized scheduler is to minimize J(A).

Let w = w2

w1
, maximizing J(A) is equivalent to minimizing

the total cost of C(A), as shown in the Eq.2

C(A) =

N∑
i=1

di + w

M∑
j=1

f(Xj). (2)

Please note that in this model, what really matters is the
number of packets scheduled in each slot and the aggregate
number of deferrals for each packet; the model is not con-
cerned with where the packets are from, and which particular
nodes or packets should be scheduled at which slot.

V. OFFLINE

A. Greedy Algorithm for A Single Arrival

In this subsection, we consider the scenario that there is
a single arrival. We can start our timing t = 1 at the slot
of the first arrival. We assume that the number of packets in
this single arrival is N , and it can be scheduled to any slot

Algorithm 1 Greedy Algorithm for A Single Arrival

Initialization:
• N packets arrive at the 1th time slot; we number them as
packet 1, 2, · · · , N .
• The number of packets scheduled in each slot: Xj = 0
for j = 1, 2, · · · .
• Total cost C = 0.

Greedy Schedule:
for Packet index i = 1, 2, · · · , N do

Put packet i in the slot which minimizes the marginal
cost

Update the number of packets in the selected slot
Update the total cost

end for

t ≥ 1. The Greedy algorithm, denoted as G(N), is as shown
in algorithm 1.

If there is a tie in minimizing the marginal cost, the slot
with the smallest index is selected, which ensures that Greedy
algorithm is unique since the slot selected at each step is
uniquely determined.

Let mc(i)j denote the marginal cost to put the ith packet
in the jth slot. We can get the following lemmas from the
Greedy algorithm.

Lemma 1. The least marginal cost for Greedy algorithm keeps
increasing.

Proof: Let us compare the marginal cost to schedule the
ith packet and the (i+ 1)th packet. When scheduling the (i+
1)thpacket, the number of packets in each slot is exactly the
same as scheduling the ith packet, except one slot, in which
the ith packet is put. We assume that the ith packet is put in
the kth slot. mc(i)j ≥ mc

(i)
k for j 6= k. If the (i+ 1)th packet

is scheduled in a slot j 6= k, we know mc
(i+1)
j ≥ mc(i)k .

If the (i + 1)th packet is scheduled in slot k, let us now
compare the marginal cost of putting the (i + 1)th packet in
kth slot with the marginal cost of putting the ith packet in
kth slot. Since the energy cost function f(X) is convex and
increasing, we have

mc
(i+1)
k −mc(i)k = w(f(Xk + 1)− 2f(Xk) + f(Xk − 1)) ≥ 0,

where Xk is the number of packets in slot k after scheduling
the ith packet in the kth slot. mc(i+1)

k ≥ mc(i)k .
Thus, minj=1,2...(mc

(i)
j)≤ minj=1,2...(mc

(i+1)
j), the least

marginal cost for Greedy algorithm keeps increasing.

Lemma 2. Assume that (..., g1, g2, ...gk, ...) is a schedule
got from Greedy algorithm, and (..., g

′

1, g
′

2...g
′

k, ...) is also a
schedule got from Greedy algorithm, if

∑k
t=1 gt ≤

∑k
t=1 g

′

t,
we can conclude that gi ≤ g

′

i for i = 1, ..., k.

Proof: When a greedy algorithm selects a slot in [t+1, t+
2, ..., t+k], it selects the one with the least marginal cost, and

the index is the smallest if there is a tie. Since such a slot
is unique, the schedule order of applying Greedy algorithm
in [t + 1, ..., t + k] is uniquely determined. Since

∑k
t=1 gt ≤∑k

t=1 g
′

t, the schedule has to reach (..., g1, g2, ...gk...) first,
which indicates gi ≤ g

′

i for i = 1, ..., k.

Define Separate Greedy (denoted as SG) algorithm as
follows: to schedule N packets on M slots. Here, we borrow
the notation M for simplicity of the following discussions, M
is large enough, for example, the maximum energy cost in a
slot is bounded by f(N), when M > wf(N), this indicates
that there will be no packet scheduled in slot M in the optimal
scheduling. We separate the N packets to be two parts: N−k,
k; we also separate the slots to be two parts: the first m, the
last (M −m). The (N − k) packets are scheduled in the first
m slots, while the k packets are scheduled in the last (M−m)
slots. The problem becomes (N − k,m) and (k,M −m). We
apply Greedy algorithm separately on each part. Please note,
when we apply Greedy algorithm on (k,M−m), we construct
a fictitious arrival which assumes that the k packets arrives at
the (m+ 1)th slot, denoted as Fictitious arrival.

Let G(M,N) = (g1, g2, ...gm, gm+1, ..., gM) denote the
schedule result of applying Greedy algorithm to schedule
N packets in M slots. Let SG(m,N − k; M − m, k) =
(g
′

1, g
′

2, ...g
′

m; g
′

m+1, g
′

m+2, ...g
′

M) denote the schedule result
of applying Separate Greedy algorithm. The cost of SG is
defined as C(SG(m,N−k; M−m, k)) = C(G(m,N−k))+
C(G(M −m, k)) + km.

Lemma 3. C(G(M,N)) ≤ C(SG(m,N − k; M −m, k)).

Proof: Since the delay is linear, compare the original
marginal cost when the arrival happens at the 1st slot with
the Fictitious arrival, the difference is a constant m. Thus,
the order of selections of Greedy algorithm on the Fictitious
arrival will be the same as applying Greedy algorithm on the
original problem.

Assume k′ =
∑M
t=m+1 gt. If k′ = k, then those two

algorithms give the same solution since the Greedy algorithm
result is unique. If k′ < k, compare SG algorithm with G,
the first m slot lacks (k − k′) steps and the cost reduction
is no more than (k − k′)mc∗, where mc∗ is the largest least
marginal cost, i.e. the N th step marginal cost in G; the last
(N−m) slots obtain (k−k′) more steps and the cost increase
is no less than (k− k′)mc∗. Since G stops at the kth step for
the second part and the marginal cost always increases.

Therefore, the total cost of SG is no less than G for k′ < k.
Similarly, we can prove k′ > k.

In other words, considering that we sort the two parts
schedule steps of SG based on the increasing of the marginal
cost. There will be no swap after the sorting, i.e. in SG, step
k is before step m, after sorting, this still hods. We compare
the cost of each step using SG with G one by one. The
step cost of SG is no less than G. Thus, C(G(M,N)) ≤
C(SG(m,N − k; M −m, k)).

Theorem 4. Greedy algorithm is optimal.

Proof: Let OPT (M,N) =(o1, o2, ...om) = OPT (m,N)
be the optimal, where m ≤ M , om > 0, and

∑m
t=t1

ot =
N . Once the om is fixed, the total cost is determined by the
schedule of the remaining (m−1) slots. To minimize the total
cost of the scheduling N packets in M slots is equivalent to
minimizing the total cost of scheduling the remaining (N −
om) packets in the first (m− 1) slots. Thus, OPT (m,N) =
(OPT (m− 1, N − om), om).

Let G(m,N) = (g1, g2,...gm) be the Greedy schedule for
schedule N packets in m slots,

∑m
t=t1

gt = N .
We use the induction to prove the theorem.
Basis step: N = 1, OPT (M, 1) = (1); G(M, 1) = (1).
Inductive step: Assume that for k packets, 0 < k < N ,

the Greedy algorithm can find an optimal solution, then we
consider the optimal schedule for k = N .

Since om > 0, NOPT\m =
∑m−1
t=1 ot < N , the

Greedy algorithm can give an optimal solution. OPT (M,N)
=(g

′

1, g
′

2, ...g
′

m−1, om), where the schedule of the first m − 1
slots is got from Greedy algorithm. OPT (M,N) = SG(m−
1, NOPT\m; 1, om). According to lemma 3, C(G(m,N)) ≤
C(OPT (M,N)). C(G(M,N)) = C(SG(m,N ;M −m, 0)).
Apply lemma 3 again, C(G(M,N)) ≤ C(G(m,N)). Thus,
the Greedy algorithm is optimal.

B. Backward Greedy Algorithm

In this subsection, we consider the general scenario in
which packets arrive at different slots. We assume that there
are K arrivals, and let Ni (i = 1, ..K) be the number of
packets arrive at each arrival. The Backward Greedy algorithm
(denoted BG) is as shown in Algorithm 2.

Algorithm 2 Backward Greedy Algorithm

Initialization:
• The time slot index for new arrivals: t1, t2, · · · , tK
• The number of packets for each new arrival:
N1, N2, · · · , NK
• The number of packets scheduled in each slot: Xj = 0
for j = 1, 2, · · · .
• Total cost C = 0.

Backward Greedy Schedule:
for Arrival index a = K,K − 1, · · · , 1 do

for Each packet from the ath arrival do
Put the packet in a slot from ta to ∞ which

minimizes the marginal cost.
Update the number of packets in the selected slot
Update the total cost

end for
end for

We first schedule the last arrival’s (the Kth arrival) packets
by greedily selecting the slot from tK to ∞ which minimizes
the marginal cost, this is equivalent to the case of single arrival.
Then we consider the second last arrival’s packets (the (K −
1)th arrival), and schedule them one by one by selecting the

Figure 2: Backward Greedy Algorithm Illustration Example

slot from tK−1 to ∞ which minimize the marginal cost. Such
a process keeps going until all packets are scheduled.

The figure 2 is a demonstration of how backward greedy
works. We consider two arrivals, and compare the scheduling
when there is only the first arrival. From the figure 2, we can
see due to the second arrival, the packets from the first arrival
are pushed to earlier slots. Please note that fairness is not the
concern of this paper, so some of the earlier packets could
be scheduled later than the later arrived packets. However, as
the backward greedy algorithm determines only the number of
packets scheduled in each slot, it is still possible to readjust
the order of packet transmissions (e.g., to a FIFO order) to
enable fairness.

Lemma 5. In BG, considering the packets at the ith arrival,
the marginal cost when scheduling these packets keeps in-
creasing.

Proof: For the ith arrival, the marginal cost for scheduling
a packet in [tj , tj+1] (j ≥ i) keeps increasing based on
lemma 1. We can sort the marginal cost without swapping
the schedule steps, i.e. step k happens before step m in some
[tj , tj+1] (j ≥ i), in the sorted steps, this relationship still
holds. The selection order of BG is exactly the same as based
on the sorted marginal cost.

Theorem 6. The Backward Greedy Algorithm is optimal.

Proof: The total cost is composed of two parts: the total
cost of deferral, and the total cost of energy.

We first consider the total cost of deferral, denoted as Cd.
Since the deferral cost is a linear function, Cd =

∑M
t=1 ri,

where ri is the number of packets which are not sent at the
ith slots. Whether the packets left are from new arrival or
from some old arrival does not affect Cd. Because of this,
without considering the fairness, we can freely schedule the
new arrival packets first. The energy cost, denoted as Ci,
purely depends on the number of packets scheduled in each
slot. Thus, backward does not affect the total cost.

We next consider the simplest multiple arrival case, in which
there are two arrivals: N1 packets arrive at t1, and N2 packets
arrive at t2, t1 < t2 ≤M (M can be ∞).

We assume that the optimal schedule is to put (N1 − r)
packets from slot t1 to (t2−1), and (N2+r) packets from slot
t2 to M. If r = 0, the problem is decoupled to be two single
arrival problem. According to Theorem 4, the BG algorithm
is optimal.

If r > 0, the deferral cost for these r packets is r(t2−t1) at
the beginning of slot t2. Assume that these r packets arrive at
slot t2 (denoted as Fictitious arrival), the total cost is r(t2−t1)
less than the original problem. To minimize the total cost of the
original problem is equivalent to minimizing the total cost of
the Fictitious arrival. This Fictitious arrival can be decoupled
as two single arrival problem, and according to Theorem 4, we
can apply Greedy algorithm on both single arrival problems
to get an optimal solution.

Let GL(N1 − r, t2 − t1) = (g
′

l1, g
′

l2, ..., g
′

lk) denote the
schedule of the (N1 − r) packets, where k = t2 − t1; and
GR(N2 + r,M − t2) = (g

′

r1, g
′

r2, ..., g
′

rm) denote the schedule
of (N2+r) packets, where m = M−t2, in GR(N2+r,M−t2),
we can still consider the N2 packets are scheduled first.
(GL,GR) is an optimal schedule. Assume the BG algorithm
gives a schedule which (N1 − r′) packets is scheduled from
slot t1 to (t2 − 1), and (N2 + r′) packets from slot t2 to M.

If r′ = r, when scheduling the r packets in slots t2 to M ,
the marginal cost got from BG algorithm is the marginal cost
got from GR(N2 + r,M − t2) in the Fictitious arrival plus a
constant r(t2 − t1). Since both BG and GR in the Fictitious
arrival select the slots based on the increasing marginal cost,
The BG and (GL,GR) give the same schedule result.

If r′ < r, considering the schedule of the first arrival packets
N1, compare (GL,GR) with BG algorithm, the first (t2 − t1)
slot lacks (r−r′) steps and the cost reduction is no more than
(r−r′)mc∗, where mc∗ is the largest least marginal cost, i.e.,
N th

1 step marginal cost for schedule the first arrival packets in
BG ; the last (M− t2 +1) slots obtain (r′−r) more steps and
the cost increase is no less than (r′ − r)mc∗ since BG stops
at the r′th step for the second part (schedule packets from t1
to t2) and the marginal cost always increases. Thus, the total
cost BG is no less than (GL,GR). BG is optimal in this case.

Similarly, we can prove for r′ > r, BG is optimal.
We finally consider there are N arrivals.

BG(N1,BG(N2, ...BG(Nk−1, Nk)).
BG(Nk−1, Nk) is a two arrival case, as we proved,

BG gives an optimal scheduler. Assume that OPTk−1 =
BG(Nk−1, Nk).

Then we consider schedule of BG(Nk−2, OPTk−1),
OPTk−1 can be considered as a “single” arrival, then the
problem becomes a two arrival case.

Similarly, we can recursively prove that BG is optimal.
Please note:
1. The optimal scheduling changes with the set of arrivals.

For example, we assume that there are K arrivals, with
different K, the optimal scheduling is different, but given a
K, we can find the optimal by scheduling backward in time.

2. It is crucial that the energy cost function is convex. It is
not difficult to construct a counter-example of a non-convex
energy cost function for which the optimality does not hold.

VI. ONLINE

In this section, we propose an efficient online algorithm
which is O(1)-competitive. Our online algorithm is based on
[15]; before we introduce our algorithm, let us briefly review
the scheduling mechanism in [15]. In [15], the author develops
an online dynamic speed scaling algorithm for the objective
of minimizing a linear combination of energy and response
time. An instance consists of n jobs, where job i has a release
time ri, and a positive work yi. An online scheduler is not
aware of job i until time ri, and, at time ri, it learns yi. For
each time, a scheduler specifies a job to be run and a speed
at which the processor is run. They assume that preemption
is allowed, that is, a job may be suspended and later restarted
from the point of suspension. A job i completes once yi units
of work have been performed on i. The speed is the rate at
which work is completed; a job with work y run at a constant
speed s completes in y

s seconds. The objective of the online
scheduler is to minimize

´
I
G(t)dt, where G(t) = P (st)+nt,

st is the speed at time t, nt is the number of unfinished jobs,
and I is the time interval. P also needs to satisfy the following
conditions: P is defined, continuous and differentiable at all
speeds in [0, ∞); P (0) = 0; P is strictly increasing; P is
strictly convex; P is unbounded.

The authors propose an algorithm as follows: The scheduler
schedules the unfinished job with the least remaining unfin-
ished work, and runs at speed st where

st =

{
P−1 (nt + 1) if nt ≥ 1

0 if nt = 0
. (3)

Every time when a new job is released or a job is finished,
st is updated. Please note that in the dynamic speed scaling
problem, the job can be released and finished at any time t,
where t is a real number. We call this algorithm continuous
online algorithm, denoted as AOnC .

In our problem, each packet can be considered as a job with
unit work, P (x) = wf(x) in our case, since f(x) satisfies all
the conditions for P , so is P (x) = wf(x); nt is the number
of unscheduled packets at time t. We develop our online
algorithm, denoted as AOnD (D means discrete), as Algorithm
3 shown.

In AOnD , the number of packets scheduled at each slot
is calculated based on the number of packets scheduled by
AOnC . In algorithm AOnC , a transmission of a packet does not
necessarily finish at the integer time point. At the end of a slot,
if a packet is scheduled across two slots in AOnC , we push the
packet in the earlier slot in AOnD , as shown in figure 3.

Though AOnD is based on AOnC , they are quite different in
several aspects:

1. The speed in AOnC varies in a slot while in AOnD , the
speed in a slot can be considered as a constant.

2. The number of packets scheduled in a slot in AOnC is a
real number, while in AOnD , it has to be an integer.

Algorithm 3 Online Algorithm

Initialization:
• The total number of packets scheduled so far based on
algorithm AOnC : ns = 0 (ns can be fractional later)
• The number of packets arrived so far: nt = 0
• The number of packets scheduled in each slot: Xt = 0
for t = 1, 2, · · · .
• Total cost: C = 0.

Online Schedule:
for t = 1, 2, · · · , do

Update nt if there are new arrivals
Let n be the number of packets waiting to be scheduled

at the start of interval t, excluding the fractional packet
possibly leftover by AOnC but already scheduled by AOnD
in the previous interval. During the interval [t, t + ∆t1],
AOnC schedules this leftover packet. AOnD tracks AOnC ’s
schedule from (t+ ∆t1) onwards using Eq. 3 starting with
n remaining packets.

Update ns based on the number of packets (can be
fractional) scheduled in a slot using AOnC .

Update Xt = dnt+1
s e − dntse

Update C based on the schedule of Xt

end for

Figure 3: Example of Scheduling in AOnC and AOnD

3. In AOnC , cost update happens every time when some new
packets are coming or a packet is leaving. In other words, the
cost is calculated in a continuous way with respect to time.
However, in AOnD , the cost is updated at the end of a slot (i.e.
the integer time point), which is discrete with respect to time.

Due to these difference, the competitive analysis in this
problem is challenging and the idea of amortized competitive
analysis used in [12], [15] can not be directly applied to our
problem. Thus, we take a different path, which uses AOnC as
a bridge to do the competitive analysis.

Lemma 7. There exists a constant c such that C(AOn
D)

C(AOn
C)
≤ c.

Proof: First, the packets scheduled by AOnD and AOnC is
roughly the same, the difference is less than 1 for each slot,
and up to any time T , the difference of the total number of
packets scheduled by AOnD and AOnC is less than 1, so we
compare the cost of AOnD and AOnC slot by slot.

Let C(A)t represent the cost at slot t. Assuming that
during slot t, AOnD schedules k packets, the cost of AOnD is
C(AOnD)t = P (k) + n− k.

For algorithm AOnC , besides the possible packet leftover at
the beginning of a slot (scheduled in [t, t + ∆t1]), it is also
possible that there is a packet being processed partially at the
end of a slot, let ∆t2 be the time interval to process this packet
in slot t. Let us assume that there are k − 1 packets between
these two fractional packets if ∆t2 > 0; k packets if ∆t2 = 0.

Case 1: We first consider ∆t2 > 0

∆t1+∆t2+
1

P−1(n+ 1)
+

1

P−1(n)
+···+ 1

P−1(n+ 3− k)
= 1

Since P is increasing, 1
P−1 is decreasing, we have{

k−1
P−1(n+1) ≤ 1

k+1
P−1(n+2−k) ≥ 1

=⇒

{
P (k − 1) ≤ n+ 1

P (k + 1) +k ≥ n+ 2

As to the cost of the the AOnC , the cost processing the
packet when there are n unscheduled packet is 1

P−1(n+1) ×
(P (P−1(n+ 1)) + n) = (2n+ 1) /P−1(n+ 1)

C(AOnC)t ≥ 2n+ 1

P−1(n+ 1)
+ · · ·+ 2(n+ 2− k) + 1

P−1(n+ 3− k)

≥ 1

P−1(n+ 1)
(2n+ 1 + · · ·+ 2(n+ 2− k) + 1)

=
k − 1

P−1(n+ 1)
(2n− k + 3)

The first inequality is by ignoring the cost of the fractional
packets at the beginning and the end of a slot. The second
equality is by scaling the time interval to process each packet
based on the smallest whole packet processing time.

Since k ≤ P−1(n+ 1), the cost of AOnD is

C(AOnD)t = P (k)+n−k ≤ P (P−1(n+1))+n−k = 2n−k+1.

Since the energy cost function P (x) is strictly convex and
increasing, the least expensive function (the function with
the slowest growing speed) satisfying such a condition is
polynomial function f(x) = xα, where α > 1.
P (x) = wf(x) = wxα, let P (c1x) = w(c1x)α ≥ wcα1x, as

long as wcα1 ≥ 1, P (c1x) ≥ x for ∀x ≥ 1.
Similarly, x + P (x + 2) ≤ P (c1x) + P (3x) ≤

2max{P (c1x), P (3x)} = 2P (c2x)|c2=max{c1,3}, since P (x)
is strictly convex and increasing, there exists a constant
c ≥ 2c2, such that P (cx) ≥ x+ P (x+ 2) for ∀x ≥ 1.

Plug x = k − 1 in, we get

P (c(k − 1)) > P (k + 1) + k − 1 ≥ n+ 1

Thus k−1
P−1(n+1) ≥

1
c .

For other strictly convex and increasing functions which are
growing faster than f(x) = xα, similar approach can apply to
prove that there exists such a constant c.

C(AOnD)t

C(AOnC)t
≤ c2n− k + 1

2n− k + 3
≤ c.

C(AOnD)

C(AOnC)
=

∑
C(AOnD)t∑
C(AOnC)t

≤ c.

Case 2: ∆t2 = 0, there are two possibilities to make ∆t2 =
0: either AOnC finishes processing all the packets before a slot
ends or it just finishes processing a whole packet. In both
cases, the number of whole packets scheduled by AOnC and
AOnD are k. We can use the same approach to prove that there
exists a constant c, such that C(AOn

D)

C(AOn
C)
≤ c.

Here, we give an example on c using the motivating example
in section II, where P (k) = 20.5k− 1. P (cx) ≥ x+P (x+ 2)
for ∀x ≥ 1 when c ≥ 3.88.

We also use the following lemma which is implied by the
results in [15].

Lemma 8. Assume that the optimal cost for the continuous
online scheduling which minimize

´
I
G(t)dt is C(AOptC),

C(AOn
C)

C(AOpt
C)
≤ 3 .

Lemma 9. Let AOptD denote the optimal scheduling (BG) of
our original problem (discrete version), there exists a constant
c′ such that C(AOpt

C)

C(Aopt
D)
≤ c′.

Proof: To measure the gap between the cost of our
algorithm C(AOptD) and the cost of AOptC , we introduce an
inter-medium scheduling mechanism, which the speed is only
updated at the integer point of time, but cost is calculated in
an integral fashion. We call such an inter-medium scheduling
mechanism fictitious continuous algorithm, denoted as AOptFC .
AOptFC works as follows: according to algorithm BG, we know
the number of packets sent at each slot: Xt, t = 1, 2, AOptFC

uses the same speed Xt at slot t. Similar to AOnC , the cost is´ T
t=0

(P (st) + nt)dt up to time T .
Considering slot t, the cost of optimal scheduling is to

schedule k = Xt packets in slot t,

C(AOptD)t = P (k) + n− k,

the cost of AOptFC is

C(AOptFC)t =
1

k
(P (k) + n) + · · ·+ 1

k
(P (k) + n− k + 1)

= P (k) +
2n− k + 1

2
= P (k) + n− k +

k + 1

2
.

Similar to the proof in lemma 7, there exists a constant c′,
such that

(c′ − 1)(P (k) + n− k) ≥ (c′ − 1)(P (k)) ≥ k + 1

2

Table II: Competitive Ratio in Simulation

Energy cost function Average Worst

f(x) = 0.5x2 1.3157 1.6076
f(x) = x1.1 1.2971 1.5924

f(x) = 0.25x3 1.2957 1.8169
f(x) = 0.25(2x − 1) 1.1803 1.8375
f(x) = 20.5x − 1 1.1663 1.8547

Thus,
C(AOptFC)

C(AOptD)
=

∑
C(AOptFC)t∑
C(AOptD)t

≤ c′

Since the cost of both AOptFC and AOptC are calculated in the
same way,

C(AOptC)

C(AOptFC)
≤ 1.

Thus,
C(AOptC)

C(AOptD)
=
C(AOptC)

C(AOptFC)

C(AOptFC)

C(AOptD)
≤ c′.

Here, we give an example on c′ using P (k) = 20.5k − 1.
Since n ≥ k, (c′ − 1)(P (k) + n− k) ≥ k+1

2 when c′ ≥ 3.42.

Theorem 10. AOnD is O(1)-competitive.

Proof: From the above lemmas, we get that

C(AOnD)

C(AOptD)
=
C(AOnD)

C(AOnC)

C(AOnC)

C(AOptC)

C(AOptC)

C(AoptD)
< 3cc′,

which is O(1)− competitive.

VII. SIMULATIONS

In this section, we run simulations to test the performance of
online algorithm. We mainly use two sets of energy functions:
polynomial and exponential and three arrival patterns: burst
arrival, constant arrival and random arrival. In these simula-
tions, we change the coefficient of the interference function to
represent different weight w.
• f(x) = 0.5x2. • f(x) = e0.5x− 1. The simulation results

are as shown in Figure 4.
From Figure 4, we can see that with different energy

function, the scheduling is different. Although in some slot, the
number of packets scheduled by the online algorithm and the
optimal can be large, the increased cost is amortized among
other slots. Thus, the competitive ratio is small, indicating that
the online algorithm’s performance is close to the optimal.

We also run the tests more intensively by selecting different
energy cost functions and run the simulation over 1000 times
for each function. We randomly generate traffic arrival patterns
for each run, and record the average and the largest competitive
ratio for each function, as shown in Table II. Although the
competitive ratio in principle depends on the cost function, in
our simulation, we find this ratio is always less than 2.

VIII. CONCLUSION

In this paper we have studied the optimal centralized
scheduling of packets in a time slotted channel to effect
desired energy-delay tradeoffs. Under a very general energy
cost model that is assumed to be any strictly convex increasing
function with respect to the number of packets transmitted in
a given slot, and a deferral penalty that is linear in the number
of slots each packet is deferred by, we aim to minimize the
weighted linear combination of deferral penalties and energy
penalties.

We have proved that given the full knowledge of the arrivals,
the centralized scheduler can optimally schedule the packets in
each slot using a simple greedy algorithm. We also considered
the more realistic scenario which the centralized scheduler
only knows the arrivals so far, and we have developed an
efficient online algorithm which is O(1)-competitive.

For future work, we plan to consider distributed scheduling,
in which different nodes make independent decisions. This
could be potentially modelled in a game-theoretic framework.
Another promising direction is to consider a time-slotted
channel where the channel conditions varies over time. This
could be modeled by a time-varying energy penalty.

IX. ACKNOWLEDGMENT

The first author would like to thank Zheng Li and Li Han
for their helpful suggestions and comments.

REFERENCES

[1] A. J. Goldsmith and P. Varaiya, “Capacity of fading channels with
channel side information,” IEEE Trans. Inf. Theory, vol. 43, no. 6,
pp.1986 -1992 1997.

[2] J. Tang and X. Zhang, “Quality-of-service driven power and rate
adaptation over wireless links,” IEEE Trans. Wireless Commun., vol.
8, no. 8, Aug. 2007.

[3] E. Uysal-Biyikoglu, A. El Gamal, B. Prabhakar, “Adaptive transmission
of variable-rate data over a fading channel for energy-efficiency,” Pro-
ceedings of the IEEE Global Telecommunications Conference, GLOBE-
COM, 21(1):98-102, November 2002.

[4] E. Uysal-Biyikoglu, B. Prabhakar, A. El Gamal, “Energy-efficient packet
transmission over a wireless link,” IEEE/ACM Transactions on Network-
ing, 10(4):487-499, August 2002.

[5] J. Yang and S. Ulukus, “Transmission completion time minimization in
an energy harvesting system,” in Proc. 2010 Conf. Information Sciences
Systems, Mar. 2010.

[6] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy
harvesting communication system,” IEEE Trans. Commun., vol. 60, no.
1, pp. 220–230, Jan. 2012.

[7] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmis-
sion with energy harvesting nodes in fading wireless channels: optimal
policies,” IEEE J. Sel. Areas Commun., vol. 29, pp. 1732–1743, Sep.
2011.

[8] K. Tutuncuoglu and A. Yener, “Optimum transmission policies for bat-
tery limited energy harvesting nodes,” IEEE Trans. Wireless Commun.,
vol. 11, no. 3, pp. 1180–1189, Mar. 2012.

[9] R. Vaze, “Competitive Ratio Analysis of Online Algorithms to Minimize
Data Transmission Time in Energy Harvesting Communication System,”
in Proc. INFOCOM, April, 2013.

[10] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed scaling to manage energy
and temperature,” Journal of the ACM, 54(1):1–39, Mar. 2007.

[11] Nikhil Bansal, Kirk Pruhs, and Cliff Stein, “Speed scaling for weighted
flow time,” in SODA ’07: Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 805–813, 2007.

[12] Kirk Pruhs, “Competitive online scheduling for server systems,” SIG-
METRICS Perform. Eval. Rev., 34(4):52–58, 2007.

Figure 4: Simulation Results

[13] L.L.H. Andrew, A. Wierman, A. Tang, “Optimal speed scaling under
arbitrary power functions”, SIGMETRICS Perform. Eval. Rev., 37(2),
39–41, 2009.

[14] A. Wierman, L. L. H. Andrew, and A. Tang, “Power-aware speed scaling
in processor sharing systems,” in Proc. INFOCOM, 2009, pp. 2007–2015

[15] N. Bansal, H.-L. Chan, and K. Pruhs. “Speed scaling with an arbitrary
power function”, in SODA ’09: Proc. Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms, 2009.

[16] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew, “Greening
geographical load balancing,” in Proc. ACM SIGMETRICS, San Jose,
CA, 7-11 Jun 2011, pp. 233–244.

[17] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic

right-sizing for power-proportional data centers,” in Proc. INFOCOM,
April, 2011.

[18] M. Lin, Z.Liu, A.Wierman and L.L.H. Andrew, “Online algorithms for
geographical load balancing,” in Proceedings of IEEE IGCC, 2012.

	Cover page - TEMPLATE
	edas.paper-1570071473

