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Abstract. Significant changes in traffic patterns often indicate network
anomalies. Detecting these changes rapidly and accurately is a critical
task for network security. Due to the large number of network partic-
ipants and the high throughput requirement of today’s networks, tra-
ditional per-item-state techniques are either too expensive when imple-
mented using fast storage devices (such as SRAM) or too slow when im-
plemented using storage devices with massive capacity (such as DRAM).
Sketch, as a highly accurate data stream summary technique, signifi-
cantly reduces the memory consumption when supporting a large number
of items. Therefore, the Sketch based techniques can be supported by the
fast on-chip storage of state-of-the-art computing platforms to achieve
high throughput. In this work, we propose a fully pipelined Sketch based
architecture on FPGA for online heavy change detection. Our architec-
ture forecasts the activity of the network entities based on their his-
tory, then reports the entities whose difference between their observed
activities and the forecast activities exceed a threshold. The post place-
and-route results on a state-of-the-art FPGA show that our architecture
sustains high throughput of 96 - 103 Gbps using various configurations
for online heavy change detection.

1 Introduction

Abrupt heavy changes in the network traffic patterns are often caused by network
anomalies such as attacks or network failures. The ”heavy change” refers to the
significant inconsistency between the observed behavior and the normal behavior
(usually derived based on history) in a short period of time. Detecting the heavy
changes is a very important technique to detect network anomalies such as DoS
attacks [1], network changes [2], etc.

In recent years, 100 Gbps networking has become a standard. 400 Gbps is
well accepted as the next mile stone [3]. For such a high throughput requirement,
there is a large amount of streaming data to process with tight real-time data
processing constraints. Thus, it is desirable that the data stream processing,
including heavy change detection, be performed online and at high throughput.

To perform heavy change detection, both the current state and the history of
the network need to be maintained. Thus, given the current scale and complexity
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of the network, traditional per-item-state techniques need a large amount of
memory. For example, the number of concurrent flows on a typical backbone
link is around 1 M [4]. If we use one 32-bit counter for the current state and
three 32-bit counters for the history, then we need 128 Mb memory in total. Such
a large memory footprint can only be handled by external storage devices such
as DRAM. Due to the relatively low memory bandwidth provided by DRAM, it
is very difficult for the per-item-state solution to achieve a very high throughput.

To achieve a high throughput, we need a solution that is able to support a
large number of items on the on-chip storage of state-of-the-art computing plat-
forms. Sketch is a data stream summarization technique with sub-linear memory
complexity [5]. When supporting a large number of items, its memory consump-
tion is much lower than the per-item-state counter based techniques with very
little accuracy trade-off [2], [5]. In [2], the authors proposed a heavy change
detection technique based on K-ary Sketch. The technique shows excellent accu-
racy with very low memory consumption. In this paper, we modify the original
algorithm proposed in [2] to support online feature and propose an architecture
to accelerate our modified algorithm.

To achieve high possible throughput, we choose FPGA as our target platform.
State-of-the-art Field Programmable Gate Arrays (FPGAs) offer high operating
frequency, unprecedented logic density and massive on-chip memory bandwidth.
It is a promising platform to support the parallel arithmetic operations and
memory operations needed for many networking applications [6], [7].

Our main contributions are as follows:

– An online solution for Sketch based heavy change detection based on the
algorithm proposed in [2]

– A high throughput architecture for our proposed online heavy change de-
tection solution on FPGA. It sustains 96 - 103 Gbps throughut for various
configurations.

– A fully pipelined architecture for online univariate time series forecasting
based on a sliding window of data stream history.

– 5× to 250× throughput improvement compared with other existing archi-
tectures for heavy change detection on various computing platforms.

The rest of the paper is organized as follows. Section 2 defines our prob-
lem. Section 3 reviews the related work in heavy change detection. Section 4
gives a detailed explanation of our proposed algorithm. Section 5 presents our
architecture. Section 6 evaluates our architecture. Section 7 concludes the paper.

2 Problem Definition

In this section we define the online heavy change detection problem considered
in this paper.

We use the cash register streaming model [2] to describe the network traffic.
Let S = p0, p1 ... be a stream of items. Each item p = < k, a > consists of a key
k, and a positive activity a. Associated with each unique key value k is a time
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varying signal A[k]. The arrival of each new data item p causes the underlying
signal A[k] to be updated: A[k]+ = a. Let I denote a time interval containing
a consecutive sequence of items from S. Then the stream S can be viewed as a
series of concatenated time intervals I0, I1 ... . We want to find the keys whose
total activities change dramatically over time intervals. These keys are referred
to as heavy change keys.

Formally, the heavy change keys can be defined as follows:

Definition 1 Given an input data stream S, for any time interval Ij in S,

for any key k in Ij, let O
Ij
k denote the observed total activity of key k in time

interval Ij, let F
Ij
k denote the forecast total activity of key k in time interval

Ij. If |OIj
k − F

Ij
k | is greater than a threshold Φ, then we define key k as a heavy

change key.

Our goal is to find the heavy change keys in each interval through online pro-
cessing at a high throughput. In this paper, online processing means that every
clock cycle one input item is processed and the processing for one interval starts
right after the processing for the last interval completes.

The threshold Φ is application specific. There are various ways to generate
the threshold in the literature. [8], [9] use a fraction of the total differences as the
threshold. [2] uses a scaled second moment of the total difference as the threshold.
[1] determines the threshold based on the features of its target application. It
is also possible for some applications to determine the threshold in advance
(for example, using machine learning techniques). Therefore in this paper, we
don’t specify the method to generate the threshold. Instead, we assume that
for any time interval, a threshold is available by the end of that interval. This
assumption is general enough whether the threshold is generated at the end of
the time interval, during the interval or pre-determined.

According to Section 1, to achieve a high throughput, we need to use Sketch
based solutions. As a technique based on random compression, Sketch based
solutions cannot guarantee to identify all the heavy change keys. However the
technique proposed in [2] has been proved to be able to generate a sufficiently
good approximation of the true heavy change key sets. Therefore, we develop
our solution based on the offline algorithm proposed in [2].

As discussed above, neither the total activity of each key nor the threshold
are available before the end of the time interval, thus we can determine the
heavy change keys only after we have processed the input stream in the interval.
However, Sketch does not preserve the keys in the input stream, so we need
to go through the input stream again to test each input key [2]. We use the
”first/second pass” to refer to the first/second time we go through the input
stream. Note that the activity has been recorded in the first pass, we only need
to go through the keys in the second pass. So for each unique key, a copy needs
to be made in the first pass and tested in the second pass. Recording and re-
trieving the input keys are not closely related to the main topic of this paper,
so we assume that an existing system performs these operations. We discuss
its memory space and bandwidth requirement in Section 5.4 to show that for a
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typical performance requirement, state-of-the-art computing platform is able to
support such a system.

As a summary, our goal is to design a high throughput architecture on FPGA
for online heavy change detection based on the solution proposed in [2]. The
architecture runs two passes over the input data stream. In the first pass, the
architecture summarizes the data stream to record the total activity. In the
second pass, the heavy change keys are identified according to the threshold
available by the end of the first pass.

3 Related Work

[2] first applied sketch to heavy change detection in data streams. The authors
proposed a data struture called K-ary Sketch and use it to summarize the time
intervals in the data stream. Time series forecast models are used to forecast the
“normal behavior” of the items in the current interval based on their observed
behavior in the past time intervals. To identify the heavy changes, the absolute
difference between the observed behavior and the forecast behavior is compared
with the threshold based on the second moment of the forecast errors. Through
thorough experiments, the authors show that by carefully choosing the param-
eters, their Sketch based solution detects the heavy change keys with very low
false positive and false negative rates.

The K-ary Sketch used in [2] is irreversible, thus a second pass over the input
keys is needed to identify the heavy change keys. To address this problem, [8]
proposed a reversible sketch data structure so that the detected heavy change
keys can be recovered from the sketch without the second pass. The main ideas
are intelligently partitioning the input keys and designing the hash functions, so
that the keys can be recovered through set intersections.

Heavy change detection has been accelerated on various computing platforms
in the research community, such as CPU [10], GPU [10], NetFPGA [11] and
FPGA [8]. None of these works achieves a throughput close to 100 Gbps. In
Section 6, we make a detailed comparison of our architecture and the acceleration
techniques proposed in these works.

4 Algorithm

Our online algorithm is based on the offline algorithm proposed in [2]. We chose
this algorithm because it has been empirically proved to be very accurate for
heavy change detection. Both algorithms are based on K-ary Sketches. Thus in
the following subsections, we first introduce the k-ary Sketch, then the change
detection based on the K-ary Sketch.

4.1 K-ary Sketch

K-ary Sketch uses a two dimensional array of counters to record the total ac-
tivity of each item (identified by k) in a data stream. Let D and W denote the



5

ℎ1(𝑘)

ℎ2(𝑘)

ℎ3(𝑘)

ℎ𝐷(𝑘) It
em

 A
ct

iv
it

y
 E

st
im

at
io

n

W columns

D
R

o
w

s

Hash values Updated counts

+𝑎

+𝑎

+𝑎

+𝑎

Fig. 1. K-ary Sketch

number of rows and columns in the two dimensional array. Let C denote the
2-dimensional array, then C(d,w) is the counter value at the d-th row and w-th
column of the 2-dimensional array. As shown in Figure 1, for any item < k, a >
in S,

∀d ∈ [D], C(d, hd(k)) = C(d, hd(k)) + a (1)

Let Sum(S) denote the total activity recorded by the sketch. The estimation of
the total activity associated with key k is:

mediand∈[1,D]{
C(d, hd(k))− sum(S)/W

1− 1/W
} (2)

The estimation can be performed upon query to any item at any time during
the data stream.

4.2 Time Series Forecast

As defined in Section 2, change detection is based on the absolute difference
between the observed activity and the “normal” activity. In [2], the “normal”
activity is generated using time series forecast models based on the observed
activities in the past intervals. The authors explored the following commonly
used models: Moving Average Model, S-Shaped Moving Average Model, Expo-
nentially Weighted Moving Average Model, Non-seasonal Holt-Winters Model,
and Auto Regressive Integrated Moving Average Model (ARIMA). (Due to the
space limitation, we do not include the details of these models here.) These mod-
els can all be be abstracted as the linear combination of the previous activities.
Thus, using the same notations as in Definition 1, the forecast ”normal” activity
of k in interval Ij can be represented as:

F
Ij
k =

j−1∑
t=j−N

ctO
It
k (3)
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where ct is the weight for the corresponding interval. For different forecasting
models, cts are different. These coefficients can be determined by off-line training
and then programmed into the architecture. Therefore a general architecture can
be designed to support all these models. The general architecture is introduced
in Section 5. In practice we only need the severl most recent past intervals to
do the forecast. For example the ARIMA model normally needs only the last 2
intervals [2]. In Equation 3, N denotes the number of necessary past intervals.

4.3 Online Sketch Based Change Detection

Given Equation 3, the absolute difference between the observed and the forecast
activity can be represented as:

|OIj
k − F

Ij
k | = |O

Ij
k −

j−1∑
t=j−N

ctO
It
k | = |

j∑
t=j−N

ctO
It
k | (4)

In the Sketch based algorithm proposed in [2], all the OIt
k s are recorded using

K-ary Sketches and the linear combination is performed directly at the sketch
level by combining every entry. Therefore using the notation of K-ary Sketch,
Equation 4 can be represented as:

CIj
e (d,w) =

j∑
t=j−N

ctC
It(d,w) (5)

(CIt denotes the two dimensional array in the sketch for interval It). The result of
the combination is stored in another K-ary Sketch referred to as “error sketch”.
This sketch estimates the absolute forecast error according to Equation 2.

The offline algorithm proposed in [2] is shown in Algorithm 1. As mentioned
in Section 2, we need 2 passes over S to complete the change detection. More
specifically as shown in Algorithm 1, in the first pass, the activity in the cur-
rent interval is recorded using Equation 1 and the error sketch is constructed
using Equation 4. In the second pass, the forecast errors for all the keys are
estimated based on the error sketch using Equation 2 and then compared with
the threshold.

Figure 2 illustrates our modified version of Algorithm 1 to realize online
change detection. SIj denotes the sub-stream of S in interval Ij . As shown in
the figure, we are maintaining a sliding window of N + 1 intervals, 1 current
interval for observation and N most recent past intervals for forecasting. Every
time we start processing a new interval, the window slides 1 interval forward and
the least recent past interval is discarded. The major modifications are:

– Performing the first pass for the current interval and the second pass for
the last interval at the same time. This way, after completing the first pass
for any interval, we can immediately start the first pass of the next interval
rather than holding the input stream for the second pass of the current
interval.
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Algorithm 1 Offline Change Detection [2]

Fisrt Pass:
for Each item < k, a > in Ij do

for all d ∈ [1, D] do
CIj (d, hd(k)) = CIj (d, hd(k)) + a

end for
end for
for all d ∈ [1, D] do

for all w ∈ [1,W ] do

C
Ij
e (d,w) =

j∑
t=j−N

ctC
It(d,w)

end for
end for
End Fisrt Pass

Second Pass:
for All the keys k in S do

if |mediand∈[1,D]{C
Ij
e (d,hd(k))−sum(S)/W

1−1/W
}| ≥ Φ then

Report k as heavy change key
end if

end for
End Second Pass

– Updating the error sketch incrementally as the activity is recorded. As shown
in Figure 2, every time the activity of a key is recorded, its entry in the
error sketch is updated. Note that by doing this we do not update all the
entries in the error sketch as in Algorithm 1, but only the entries of the
keys that appear in the interval. Doing this is both safe and necessary for
online processing. It is safe because, as defined in Definition 1, we are only
interested to the keys that appear in the interval. It is necessary because
if we construct the error sketch after completing the activity recording, we
need to hold the input stream until the error sketch is constructed. This
is against our goal for online processing. If we don’t hold the input stream
after recording the activity, the window slides forward and the least recent
past interval is discarded. However, this interval is necessary to construct
the error sketch. We can assign additional storage to keep this interval, but
higher memory consumption is always not desired.

With these modifications, the algorithm shown in Figure 2 is able to perform
the online change detection as defined in Section 2. In Section 5 we introduce
our architecture to accelerated it.
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1:  for all the items < 𝑘, 𝑎 > in 𝑆𝐼𝑗 do
2: for all 𝑑: 1 → 𝐷 do

3: 𝐶𝐼𝑗 𝑑, ℎ𝑑 𝑘 += 𝑎

4:          𝐶𝑒
𝐼𝑗
(𝑑, ℎ𝑑 𝑘 ) =  𝑡=𝑗−𝑁

𝑗
𝑐𝑡𝐶

𝐼𝑡(𝑑, ℎ𝑑 𝑘 )

5: end for
6:  end for

7:  for all the keys 𝑘 in 𝑆𝐼𝑗−1 do
8:      for all 𝑑: 1 → 𝐷 do

9: 𝑣𝑑 =
𝐶𝑒
𝐼𝑗−1

𝑑,ℎ𝑑 𝑘 −𝑠𝑢𝑚(𝑆
𝐼𝑗−1)/𝑊

1−1/𝑊

10:    end for
11:    if 𝑚𝑒𝑑𝑖𝑎𝑛 𝑣1, 𝑣2, … 𝑣𝑑 ≥ Φ then
12: report 𝑘 as a heavy changer
13: end if
14: end for

𝑆𝐼𝑗

𝑆𝐼𝑗−1

𝑆𝐼𝑗−1

𝑆𝐼𝑗−2

𝑆𝐼𝑗−2

𝑆𝐼𝑗−3

𝐼𝑗 𝐼𝑗−1 𝐼𝑗−2

First Pass

Second Pass

First Pass over 𝑆𝐼𝑗

Second Pass over 𝑆𝐼𝑗−1

𝑆𝐼𝑗−𝑁

𝑆𝐼𝑗−𝑁−1

𝐼𝑗−𝑁
Sliding Window

of 𝑁 + 1 Intervals

Fig. 2. Online Change Detection

5 Architecture

5.1 Overall Architecture

The overall architecture based on Figure 2 is shown in Figure 3. In our online
algorithm both first and second pass iterate through the rows of various sketches.
Since each iteration step only involves the same rows of the involved sketches,
we map each iteration step to one super pipeline stage.

At any super stage, the the input item in the first pass goes through hashing
and then the module for sketch update and linear combination. These steps
perform Line 3 and generate the RHS of Line 4 in Figure 2. The input key in
the second pass is hashed, then goes to the error sketch to help estimating the
forecast error. Since the two passes are processed at the same time, we need
to maintain two error sketch modules. Let ES0 and ES1 denote the two error
sketch modules. In any interval It, if ES0 constructs the error sketch for the
first pass over SIt , then ES1 is used to estimate the forecast error for the second
pass over SIt−1 . Later in It+1, the constructed error sketch in ES0 is used to
estimate the forecast error for SIt , and ES1 constructs the error sketch for SIt+1 .
A switch is implemented to route the two passes to its destination error sketch.
The switch and the two error sketches together perform the assignment of Line 4
and Line 9 in Figure 2. Line 11 is distributed to the super stages of the pipeline.
The basic idea is that: at any super stage, a sorted array of the vs from the
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earlier stages is taken as the input, the v generated at this stage is inserted into
the input array at the appropriate position to keep the resulting array sorted.
This resulting array is forwarded to the next super stage. The output array from
the last super stage is a sorted array of the vs from all the rows. The pivot
of this array is the median value to compare with the threshold. The mux in
Figure 3 selects the output for the second pass to insert to the sorted array. In
the following subsections, we introduce the detail of the modules in Figure 3.
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5.2 Hashing

We choose the hash functions from a hash function family called H3 [12]. The
hash function delivers highly even distribution of hash keys to hash values. It is
defined as follows [12]:

Definition 2 Let A = the key space, the set of all possible bit-vectors of M
bits, B = the hash value space, the set of all possible bit-vectors of H bits, Q
= set of all possible M × H boolean matrices. For a given q ∈ Q and x ∈ A,
let q(m) = the m-th row of q, and let x(m) = m-th bit of x. The hash function
hq(x) : A→ B is defined as:

hq(x) = x(1) · q(1)⊕ x(2) · q(2)⊕ ...⊕ x(M) · q(M)

· denotes the bitwise AND operation. ⊕ denotes the bitwise XOR operation. The
set {hq|q ∈ Q} is called H3 class.
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Fig. 4. Pipelined hash computation

To implement D hash functions for D rows, D matrices are chosen from Q.
Different q’s lead to different performance with respect to evenly distributing
the hash keys among hash values.(Selection of q’s is not the focus of this paper.)

Given any q ∈ Q, our proposed architecture for hq is illustrated in Figure
4. As defined in Definition 2, the H3 hash computation needs M sets of bitwise
AND and bitwise XOR operations. We map each set of operations to one pipeline
stage. At any stage m ∈ [1,M ], q(m) is stored in distributed RAM. A bitwise
AND operation is first performed on the m-th bit of the input k and q(m). Then,
the result of the bitwise AND operation is used to XOR with the partial hash
value forwarded from the previous stage.

5.3 Sketch Update & Linear Combination

The architecture for sketch update and linear combination is shown in Figure
5. As discussed in Section 4.3, we need to maintain a sliding window of N + 1
intervals. We map each interval to a super stage with an interval index. This
index is the number of intervals from the head of the sliding window (i.e. the
current interval) to the interval that corresponds to this super stage. When the
processing for one interval completes, the window slides forward to start the
processing for the next interval and the least recent past interval is discarded.
We use the super stage for the discarded interval to record the activity of the
next interval and preserve it until it is discarded. Figure 6 illustrates an example
for a sliding window of 4 intervals. Every time the window slides, the interval
indices of all super stages increment by 1. The stage with index 0 is the head of
the window and the stage with interval index 3 is to be discarded. In the following
subsections, we first discuss the linear combination of sketches assuming that the
super stages always preserve the correct data as illustrated in Figure 6. Then we
show how to handle the sketch update and the sliding of the window to makes
the assumption valid.
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Linear Combination of Sketches As shown in Figure 5 each super stage has
4 actual pipeline stages. The first 3 stages maintain the hash table containing
the recorded activity of the corresponding interval. The 4th stage stores the
coefficients (cts in Figure 2) for all the intervals and select the one corresponding
to the interval index to scale the activity value from the hash table. The scaled
value is added to the partial combination result from the last super stage. Then
the updated partial combination result is forwarded to the next super stage.
This way, the output of super stage N + 1 is RHS of Line 4 in Figure 2.
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Fig. 7. Hash Table

Hash Table Maintenance The architecture of the hash table is shown in
Figure 7. We implement the hash tables using the on-chip dual-port BRAM,
one port for memory read, one port for memory write. When the super stage
corresponds to the current interval, for each input item, we need to retrieve the
corresponding hash table entry, update it and write it back to the hash table to
execute Line 3 of Figure 2. We map these operations to a 3 stage pipeline. In
Stage 1, the activity counts are retrieved from the BRAM using the hash value.
In Stage 2, the counts are updated. In Stage 3, the updated counts from Stage 2
are written back into the memory. The pipelined architecture takes 3 clock cycles
to perform 1 hash table update. Since each clock cycle we are taking in one hash
value, it is possible that the up-to-date count for the input hash value is still
being processed in the pipeline and the activity count retrieved from BRAM is
out-dated. To solve this problem, we forward the updated counts at the memory
write stage to the memory read stage and the computation stage. If the hash
value in memory read stage or computation stage matches the hash value in the
memory write stage, then the up-to-date activity count is being written back to
the memory. When such situation occurs, the forwarded counts from the memory
write stage is used for further processing rather than the outdated activity count
from the BRAM. When a super stage corresponds to a past interval, the memory
write and the data forwarding are both disabled, because there are no need to
update the activity record for a past interval.
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Fig. 8. Controls During the Sliding of Windows

Handling the Sliding Window Since each super stage has 4 actual pipeline
stages, the sliding of the window is not instant: it takes 4 clock cycles for the new
interval from entering the super stage to completely occupying the super stage.
During this 4 clock cycles, the new interval and the last interval co-exist in the
super stage, we need to control the data forwarding and the memory operations
to make sure the two neighboring intervals do not interfere with each other’s
processing.

Figure 8 shows the control policy during the transition between the past
and the current intervals. When the super stage is fully occupied by the past
interval, data forwarding and memory write are both disabled. For the first item
in the current interval, the memory write is enabled, but the data forwarding
is kept disabled because the forwarded data belongs to the last interval. For
the second item in the current interval, the data forwarding at memory read
stage is kept disabled to avoid mistakenly receiving the forwarded data from the
past interval. The data forwarding at computation stage is enabled in case that
the second item updates the same memory location as the first item. For the
third and later items in the current interval, both memory write and the data
forwarding are enabled. In the last stage of the super stage, the appropriate
coefficient is selected according to the interval index at that stage. The interval
indices is set by the first item in the interval. During the transition from the
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current to the past interval, once the last item of the current interval leaves the
corresponding stage, the data forwarding and the memory write is disabled, and
the interval indices are incremented. During the transition between two past
intervals, all the controls stay the same.

One last issue is that during the current interval when any hash table entry is
accessed for the first time, it contains the activity record from the last interval.
We need to use zero as the activity count to update it instead of its original
count. To decide if this entry has ever been updated in the current interval,
we associate each hash table entry with the ID of the interval in which it is
last updated. This ID is not the interval index, it is a unique ID among all the
intervals. When we update the hash table entry, if the recorded ID is different
from the current interval ID, then this entry has never been updated in the
current interval.

5.4 Heavy Change Determination

As discussed in Section 5.1, the result of the linear combination is recorded by
the error sketch in the first pass and then used to estimate the forecast error in
the second pass. The median of the outputs from the error sketches is found by
sorting and picking the pivot. In this section we discuss the details about the
error sketch, the sorting module, and the solution to make the second pass of
the input stream available.

Error Sketches The update to the error sketch is independent of the preserved
value in the error sketch. When any entry needs to be updated the new value
simply overwrites the old value. Therefore its architecture only has one memory
stage to perform both read and write, and a stage to perform Line 9 of Figure
2.The memory write is enabled during the first pass and disabled during the
second pass.

Insert and Sort Figure 9 shows the architecture of the insert and sort module.
It uses the module for Row 4 as an example. The input is a sorted array of
3 items and one new item to insert. The output is a sorted array of 4 items.
Because the new value is inserted into a sorted array, at any position of the
output array, there are only 3 possible value: 1. the value at the same position
in the input array, 2. the new value, 3. the value at the neighboring position
towards the start of the array. The rules to choose the values for the positions
in the output array are shown in Algorithm 2 (suppose we sort the values in
ascending order):

Second Pass over the Input Data Stream As discussed in Section 2, we need
to store the keys during the first pass and retrieve them during the second pass.
Since the first pass for the current interval and second pass for the last interval
need to run at the same time, we need to have two storage modules running in
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Algorithm 2 Insert and Sort Algorithm for Row R

Input: Sorted Array of R− 1 items I[R− 1]
Input: New item to insert v
Output: Sorted Array of R items O[R]
Given a position p
if p = 0 then . The start of the output array

if v ≥ I[p] then
O[p] = I[p] . New item in [1, R− 1]

else
O[p] = v . New item at 0

end if
else if p = R− 1 then . The end of the output array

if v ≥ I[p] then
O[p] = v . New item at R− 1

else
O[p] = I[p− 1] . New item in [0, R− 2]

end if
else . Other positions of the output array

if v < I[p− 1] then
O[p] = I[p− 1] . New item in [0, p− 1]

else if v < I[p] then . v ≥ I[p− 1]
O[p] = v . New item at p

else
O[p] = I[p] . New item in [p+ 1, R− 1]

end if
end if
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parallel taking turns to perform the storing and retrieving. As shown in Section
6, the highest clock rate our architecture is 327 MHz. At such a frequency,
suppose the key is 128 bits, the required memory bandwidth is 80 Gbps in total
for both storing and retrieving. Such a bandwidth can be supported by state-
of-the-art FPGA platform. In [13], the FPGA platform provides 24 GB memory
with 115 Gbps (384 bits × 300 MHz) memory bandwidth. 24 GB memory is able
to support 2 modules each storing 750 M unique 128-bit keys, which is more than
enough for a typical problem size of several million concurrent flows [4].

6 Evaluation

6.1 Experimental Setup

We implemented our heavy change detector on a Xilinx Virtex-7 xc7vx690tffg1930-
3 FPGA. All reported results are post place-and-route results using Xilinx Vi-
vado 2014.3. The implementation is RTL implementation, no high level synthesis
tool is used. Throughput is our target performance metric. We use Gigabit per
second (Gbps) as the unit for throughput. When we calculate the throughput
based on the clock rate, we assume that every clock cycle the architecture can
take in one packet and all packets have minimum packet size of 40 Bytes. Thus,
the reported throughput is the minimum throughput. We also report the FPGA
resource usage. The logic resources on Xilinx FPGA devices are organized us-
ing slices containing LUTs and registers. All the hash tables are maintained
in BRAM. Thus the usage of slice LUT, slice register, and BRAM reflect the
resource consumption of the implemented design. We report the usage in per-
centage. The device we use has 433 K slice LUTs, 866 K slice registers and 1470
36-Kb BRAM blocks.

Our architecture can be configured using the following 5 parameters:

– The width of key k determines the number of unique keys the detector
can support. Using K-bit keys, the architecture can support 2K unique keys.

– The width W and depth D of the two dimensional counter array deter-
mine the accuracy of the algorithm, i.e. false positive rate and false negative
rate.

– The length of the interval C determines the width of the counters in the
sketch entries. The worst case is that all the items in the stream goes to the
same entry. Therefore, each counter needs to be able to support the entire
stream in the interval.

– The width of the window N + 1 determines the number of 2-dimensional
arrays the architecture needs to maintain.

In the following subsections we first report the performance using a typical con-
figuration. Then we vary these parameters to test the scalability of our architec-
ture.

For the typical configuration, we choose 16, 32, 64, 128 bits for the key width.
These numbers cover most of the key types in network application (IPv4, IPv6,
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Port numbers, 5-tuple information1, etc). For W and D, it is empirically proved
in [2] that using D = 5 and W = 32K, K-ary Sketch excellently guarantees
low false negative rate and false positive rate. Total stream size is proportional
to the interval length. As mentioned in [2], 5 minutes is a typical time interval
length for change detection because it is a reasonable trade-off point between re-
sponsiveness and computational overhead. However since our proposed solution
is an pipelined online hardware solution, shorter interval length does not lead to
additional computational overhead. Therefore we can use shorter intervals for a
faster response rate. So we use 1 minute, another interval length used in [2]’s
experiments as a typical interval length. The throughput of our design is around
100 Gbps. For such an interval length on a 100 Gbps link, we need to support
a stream of size 6 Gb (0.75 GB). The corresponding counter width is 40 bits
(supporting up to 1 TB). The window width depends on the forecast model.
ARIMA model is the most accurate model in [2], it needs no more than 2 past
intervals. Therefore we use N + 1 = 3 for the typical configuration.

Table 1. Throughput comparison of various sketch acceleration techniques

Platform Device
Key

Width
(bit)

Window
Size (# of
intervals)

Interval
Length
(sec.)

D W
Throughput

(Gbps)

NetFPGA
[11]

— 32 4 60 3 215 4

GPU [10]
1 Radeon
HD 5870

16 3 60 5 216 2.875

CPU [10]
1 AMD

Athlon 64
X2 at 2 GHz

16 3 60 5 216 0.4

FPGA [8]
3 Xilinx
Virtex
2000E

— — — 5 212 22

Our
Architecture

1 Xilinx
Virtex 7

XC7VX690
32 4 60 5 215 106

6.2 Performance Using Typical Configuration

The throughput and resource usage using the typical configuration is shown in
Figure 10. For all the key width, our architecture achieves 100 Gbps through-

1 the 5-tuple information refers to source/destination IP address, source/destination
port number and transport layer protocol



18

0

20

40

60

80

100

0

20

40

60

80

100

120

16 32 64 128

R
es

o
u

rc
e 

U
sa

g
e 

(%
)

T
h

ro
u

g
h

p
u
t 

(G
b

p
s)

Key Width (bits)

Throughput Slice LUT (%) Slice Reg (%) BRAM (%)

322 MHz 316 MHz 313 MHz 315 MHz

Fig. 10. Performance Using Typical Configuration

put. This demonstrates that our architecture can support almost all types of
commonly used keys at high throughput.

The usage of the slice registers grows fast with the increment of key width.
This is because the key width is the same as the number of pipeline stages
for the hash computation. Carrying the input key and the partial hash value
through the pipeline consumes a large amount of registers. Through comparing
the resource usage in Figure 10, 11 and 12 we can notice that the key width
has the biggest affect on the slice register usage. The BRAM usage stays the
same for all 4 key width because the key width doesn’t affect the size of the
2-dimensional array or the number of arrays. The usage of slice LUT also varies
little when the key width increases because the logic and arithmetic operations
in the hash computing is simple and consume little slice resource.

6.3 Scalability

Window Size Figure 11 shows the throughput and the resource usage for
various window sizes. For the window size of 2 and 3 intervals, the throughput
achieves 100 Gbps. As the window size increases, the throughput drops slightly.
For each interval in the window, we need to implement one 2-dimensional array,
thus the BRAM usage grows linearly as the window size increases. The slice
LUT and slice register usage stays almost the same for all the window sizes. As
discussed in Section 4.2, our architecture is a general architecture for various
time series forecast models. Thus Figure 11 demonstrates that our architecture
achieves high throughput for various time series forecast models based on various
window size.

Interval Length Figure 12 shows the throughput and the resource usage for
various interval length. For all the interval length, our architecture can achieve
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100+ Gbps. Shorter interval length leads to faster response rate for change de-
tection. Figure 12 shows that our architecture can be used for various application
scenarios where various response rates are needed.

6.4 Comparison with Other Sketch Acceleration Techniques

In Table 1, we compare the throughput of our architecture with other archi-
tectures for heavy change detection on various platforms [11], [10], [8]. For the
publications that used different assumption when computing their throughput,
we re-compute the throughput based on the reported results in the original
publication assuming 40-bytes minimum packet size. A blank cell means the in-
formation is not available in the paper. As shown in Table 1, our architecture
achieves a much higher throughput than all other techniques. The throughput
improvement is 5× - 250×.

7 Conclusion

In this work, we proposed a solution for online heavy change detection and accel-
erated it using a deeply pipelined architecture. The architecture can consistently
achieve around 100 Gbps throughput using various configurations. Our results
demonstrate that through hardware acceleration, online heavy change detection
can be performed at a very high throughput for various application scenarios
using various key widths, various time series forecast models, and with various
response rates. As future research, we will study the application of our solu-
tion with the help of High Level Synthesis Tools on FPGA and on other high
performance computing platforms such as multicore platforms or heterogeneous
platforms.
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