

Fast Online Set Intersection for Network Processing on

FPGA

Yun R. Qu, Viktor Prasanna

Computer Engineering Technical Report Number CENG-2015-07

Ming Hsieh Department of Electrical Engineering – Systems

University of Southern California

Los Angeles, California 90089-2562

September 2015

1

Fast Online Set Intersection for Network
Processing on FPGA

Yun R. Qu, Member, IEEE, and Viktor K. Prasanna, Fellow, IEEE

Abstract

Online set intersection operations have been widely used in network processing tasks, such as Quality of Service
differentiation, firewall processing, and packet/traffic classification. The major challenge for online set intersection is
to sustain line-rate processing speed; accelerating set intersection using state-of-the-art hardware devices is of great
interest to the research community. In this paper, we present a novel high-performance set intersection approach
on FPGA. In our approach, each element in any set is represented by a combination of Group ID (GID) and Bit
Stride (BS); all the sets are intersected using linear merge techniques and bitwise AND operations. We map our
online set intersection algorithm onto hardware; this is done by constructing modular Processing Element (PE) and
concatenating multiple PEs into a tree-based parallel architecture. In order to improve the throughput on a state-
of-the-art FPGA, we feed all the inputs to FPGA in a streaming fashion with the help of the synchronization GIDs.
Post place-and-route results show that, for a typical set intersection problem in network processing, our design can
intersect 8 sets, each of upto 32K elements, at a throughput of 47.4 Thousand Intersections Per Second (KIPS) and
a latency of 94.8µs per batch of inputs. Compared to the classic linear merge or bitwise AND techniques on state-
of-the-art multi-core processors, our designs on FPGA achieves upto 66× throughput improvement and 80× latency
reduction.

Index Terms

Set intersection, Network Processing, Field-Programmable Gate Array (FPGA).

F

1 INTRODUCTION

S Et intersection is a key operation in many query processing tasks of databases. Meanwhile, due to the
rapid growth of Internet, set intersections are also widely performed in a plethora of network processing

tasks, including network security, packet classification, and traffic clustering. For example, packet classification
[1] requires multiple fields of the packet headers to be examined. After searching all the fields of an incoming
packet header, the candidate rule ID sets have to be intersected to produce the final classification result [2].

Performing set intersection in network processing faces two major challenges: the increasing size of the
datasets, and the demand on line-rate processing. For example, the OpenFlow table lookup [3] in Software
Defined Networking (SDN) may require upto 40 sets to be intersected. At the same time, the increasing
bandwidth of the current Internet has evolved to a rate of over hundreds of gigabits per second. These two
factors pose great challenges on intersecting many sets during run-time.

State-of-the-art VLSI chips can be built with massive amount of on-chip computation and memory resources,
as well as large number of I/O pins for off-chip memory accesses; Field Programmable Gate Arrays (FPGAs)
[4], with their flexibility and reconfigurability, are especially suitable for accelerating network applications [5].
Efficient algorithms and parallel architectures are still to be explored on FPGA in order to achieve extremely
high performance.

In this paper, we present a novel approach based on both Linear Merge (LM) and Bitwise AND (BA)
techniques. Compared to prior works where only the LM technique or the BA technique is used, our hybrid
approach is both memory-efficient and hardware-friendly. Specifically, our contributions in this paper include:
• We split all the elements in the same set into multiple groups; each group is assigned a Group ID (GID).

We linearly merge all the GIDs from different sets in multiple clock cycles.
• We construct a Bit Stride (BS) for each group of elements. The BSs corresponding to the same GID are

bitwise ANDed in a pipelined fashion to produce the final set intersection result.

This work has been funded by the U.S. National Science Foundation under grand number CCF 1116781.

• The authors are with the Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089.
E-mail: {yunqu, prasanna}@usc.edu

2

0 5 7 103 255

3 5 103

2 5 7 103

in
te
rs
e
ct
in
g

5 103

𝑺𝟎

𝑺𝟏

𝑺𝟐

𝑰

Fig. 1: An example of intersecting M = 3 sets, where all the elements are represented by IDs.

• We prototype our design on a state-of-the-art FPGA device. We present various tradeoffs on design
parameters; we compare the performance of our designs in this paper with software-based set intersection
engines.

• We sustain 47.4 KIPS throughput when intersecting 8 sets, each of upto 32 K elements. Compared to the
classic LM technique or BA technique on state-of-the-art multi-core processors, our approach achieves
upto 66× throughput improvement and 80× latency reduction.

The rest of the paper is organized as follows: We introduce the background and related works in Section 2.
We present our novel data structures and algorithms in Section 3. We implement our set intersection engine
on FPGA in Section 4. We evaluate the performance in Section 5 and conclude the paper in Section 6.

2 BACKGROUND

2.1 Notations
Set intersection is a well-known operation to select common elements in all the given sets. In this paper, we
assume, without loss of generality, that the elements in each set are presorted in ascending order. We denote
the number of sets to be intersected as M . We denote the number of elements in each set as Nm, where
m = 0, 1, . . . ,M −1. We show an example of M = 3 in Figure 1, where N0 = 5, N1 = 3, and N2 = 4. We denote
the final intersected set as I ; in the example shown in Figure 1, I = {5, 103}.

We use argmin
m

Nm as the index of the smallest set, where argmin
m

Nm ∈ {0, 1, . . . ,M−1}. Similarly, argmax
m

Nm

can be defined. Assuming the element IDs use natural numbers, we denote the largest element in any set as
(Ω− 1). In Figure 1, argmin

m
Nm = 1, argmax

m
Nm = 0, and Ω = 256.

2.2 Approaches
Set intersection has been widely studied in both database systems [6], [7] and network processing [8]–[10]. In
general, there are two major categories for set intersection approaches: (1) the LM techniques, and (2) the BA
techniques.

The classic LM technique requires the elements in each set to be represented by IDs, each of log Ω bits;
the common elements appearing in all the sets can be identified by iteratively checking the smallest/largest
elements in all the sets [10]. This technique requires O (

∑
Nm log Ω) memory and O (

∑
Nm log Ω) time com-

plexity.
An enhanced version [7] of the LM technique can be much more complex, where the elements in the

smallest set are used to eliminate the candidates in all the other sets. The memory consumption for this
enhanced version is O (

∑
Nm log Ω), while the time complexity for intersecting all the M sets is

O

 ∑
m 6=argmin

m
Nm

log (Nm log Ω)

 (1)

The major drawback of the LM techniques is that it is not easy to implement such algorithms in a streaming
fashion on hardware. A single intersection on M sets introduces processing latency of multiple clock cycles.

The classic BA technique requires all the elements in the same set to be represented by a Bit Vector (BV);
for a particular set, a bit is set to “1” only if the element appears at the corresponding position. For example,
in Figure 2, S1 = {0, 2, 6}; so starting from LSB, the 0th, 2nd, and 6th bits are all set to “1”. The common
elements in all the sets can be reported by ANDing the BVs of all the sets [8]. The memory consumption and
the time complexity of this classic BA technique are both O (M · Ω). This is much more expensive1 compared

1. Exponential with respect to the number of bits of each element.

3

0 1 1 0 1 1 0 1𝑺𝟎

𝑺𝟏

𝑺𝟐

0 1 0 0 0 1 0 1

0 0 1 1 1 1 1 1

&

&

0 0 0 0 0 1 0 1𝑰

intersecting

Fig. 2: An example of intersecting M = 3 sets, where all the sets are represented by BVs.

Set
intersection

engine

𝑰

𝑺𝟎

𝑺𝟏

𝑺𝑴−𝟏

FPGA

Set
intersection

engine

𝑰

Index to 𝑺𝟎

Index to 𝑺𝟏

Index to 𝑺𝑴−𝟏

FPGA

memory

memory

memory

……
Fig. 3: Two types of set intersection operations: (1) The presorted sets are stored in memory; during run-time,
only the indexes to the sets are provided to the hardware, as shown on the left side. (2) The elements of the
sets are fed in a streaming fashion and in ascending order, as shown on the right side.

to the classic LM technique, especially when the elements are “sparse” [9]. For example, the BV for any set
in Figure 1 needs to be at least 256 bits.

To enhance the classic BA technique, several optimization techniques are proposed in [6], [9]. For example,
multiple BVs can be folded by OR operations, where only the positions corresponding to non-zero bits are
examined in the folded BV. However, neither the memory consumption nor the time complexity is reduced
in the worst case. In general, the BA techniques are easy to implement on hardware, but they also consume
a huge amount of memory.

2.3 Network Applications
Set intersection has a variety of applications in network processing. For example, in packet classification [1],
a packet header may match different sets of rules in various fields, but only the rules, whose IDs appear in
all the fields, are considered as matching the packet header. This is equivalent to intersecting all the matching
rule IDs from all the fields.

Another application is the defense against Denial of Service (DoS) attacks [11] for network security. A router
may see a lot of sources sending similar packets; each ingress port of the router may need to forward a set
of packets to the same destination. In this case, performing set intersections on all the destinations from all
the ingress ports is beneficial; it can report what destinations are under attack.

2.4 Our Focus
For real-time network processing, the major challenge of set intersection is the strict performance requirement.
Sets have to be intersected at very high throughput to sustain line-rate processing. Design of high-performance
online set intersection engine is the focus of this paper.

The elements in each given set can be presorted in ascending order. The discussion of sorting all the elements
in each set is beyond the scope of this paper. Depending on the network application type, the sets can be

4

GID BS

10000 0111

00001 1110

00000 1101

GID BS

11111 0001

00100 0100

00001 1011

Comparator
(=)

Bitwise
AND

Elements of 𝑆0 Elements of 𝑆1

GID BS

00100 0100

00001 1000

Elements of 𝑆2

5
5

5

4

4

45

4

𝒎 = 𝟎 𝒎 = 𝟏 𝒎 = 𝟐

GID BS

00001 1000

EN

Fig. 4: Using GID and BS for set intersection. In this example, there are M = 3 sets, g = 5 bits per GID, and
s = 4 bits per BS. After groups are intersected, an enable signal EN is generated to control the bitwise AND
operations for the corresponding BSs.

prepared during design-time [1], or provided as inputs during run-time [11]. This leads to two slightly different
hardware implementations, as shown on the left side and right side of Figure 3, respectively. In this paper,
since our focus is the high-performance set intersection engine, we assume all the elements of the sets are
only known during run-time; hence we choose the implementation type as shown on the right hand side of
Figure 3.

3 DATA STRUCTURES AND ALGORITHMS

3.1 Motivations
As can be seen, the LM techniques are memory-efficient for sparse sets, while the BA techniques are easy for
hardware implementation. This observation inspires us to exploit a hybrid data structure. The basic ideas are:

1) We split all the elements into multiple groups; each group in a set is assigned a unique Group ID (GID).
All the sets are intersected on GIDs first, using the LM techniques.

2) We associate each GID with a shorter Bit Stride (BS); each bit in the BS corresponds to an element in a
set. For different sets, only the BSs corresponding to the same GIDs are ANDed.

Since all the sets are represented in GIDs and BSs, we define this representation of data structures as GID/BS
representation.

3.2 GID/BS representation
We denote the number of bits for a GID as g. We denote the number of bits in a BS as s. Based on the notations
introduced in Section 2.1, each long BV in the classic BA technique can use upto Ω bits. To reduce the memory
consumption, we split each BV into a total number of Ω

s groups, each of s bits. Hence each group corresponds
to an s-bit BS. We assign a GID to a group. The GIDs are unique in each set, but the GIDs in different sets
can be identical.

For instance, suppose there are three sets S0 = {0, 2, 3, 5, 6, 7, 64, 65, 66}, S1 = {4, 5, 7, 18, 124}, and S2 =
{7, 18}. Further suppose we have Ω = 128, and we choose s = 4. The classic BA technique generates one
128-bit BV for each set, where most of the bits are zero. However, in our technique, we split them into groups
of 4 bits each; this leads to 32 groups per set. Thus, the GID requires 5 bits each. We show the GIDs and BSs
constructed for this example in Figure 4. As can be seen:
• We only keep the groups where the corresponding BSs are non-zero (at least one bit out of s bits is “1”).

This leads to a significant amount of memory reduction on BVs, especially for very sparse sets.
• We use the same GIDs for different sets. For different sets, only the BSs corresponding to the same GID

have to be ANDed.
Note g = logdΩ

s e. Denoting the number of GID/BS pairs stored for set m as Gm (0 < Gm ≤ Nm), we have
the memory consumption for all the GIDs and BSs as

O

(
M−1∑
m=0

Gm

(
log
⌈Ω

s

⌉
+ s

))
(2)

5

For s = 1, this memory requirement is the same as the classic LM technique. For s = Ω, this memory
requirement is the same as the classic BA technique. We will discuss the time complexity of our set intersection
algorithm in Section 4. We will also determine the value of s later in Section 5.

3.3 Online Set Intersection

Algorithm 1 Online Set Intersection

Input A total number of M sets Sm, m = 0, 1, . . . ,M − 1, represented using the GID/BS representation.
Output An intersected set I , whose entries are indexed by i. ∀i, ∀m, GID[i] = GID[m, im] for some im; BS[i] =

BS[0, i0] & BS[1, i1] & . . . & BS[M−1, iM−1] where GID[i] = GID[0, i0] = GID[1, i1] = · · · = GID[M−1, iM−1].
1: for m = 0 to M − 1 do
2: im ← 0 {pointers initialization}
3: end for
4: i← 0 {pointer for I}
5: while (i0 < G0) || (i1 < G1) ||

. . . || (iM−1 < GM−1) do
6: X ← GID[0, i0] {set current maximum}
7: for m = 0 to M − 1 do
8: if GID[m, im] > X then
9: flag ← false {reset flag}

10: X ← GID[m, im] {elements not equal}
11: else if GID[m, im] < X then
12: flag ← false {reset flag}
13: if im < Gm then
14: im ← im + 1 {advance index}
15: else
16: go to Step 37
17: end if
18: else
19: if m = 0 then
20: flag ← true {set flag for S0}
21: else if m = M − 1 then
22: if flag = true then
23: flag ← false {elements equal}
24: GID[i]← GID[0, i0]
25: BS[i]← BS[0, i0]
26: i0 ← i0 + 1 {advance index}
27: for m′ = 1 to M − 1 do
28: BS[i]← BS[i] & BS[m′, im′]
29: im′ ← im′ + 1 {advance index}
30: end for
31: i← i+ 1
32: end if
33: end if
34: end if
35: end for
36: end while
37: report I consisting of GID[i], BS[i], where i = 0, 1, . . . , P − 1

Our set intersection approach consists of two phases as follows:
1) Preprocessing: all the sets are preprocessed using the GID/BS representation. This phase can be done

offline.
2) Online Set Intersection: all the GIDs are intersected for different sets; their corresponding BVs are bitwise

ANDed.
As discussed in Section 2.4, we assume the elements in each given set are already sorted in ascending order,

thus, we ignore the discussion of the preprocessing phase in this paper. We focus on the online set intersection
phase in this section.

6

FIFO_0

FIFO_1

GID
Comparator

(=)

Bitwise
AND

EN_R0

EN_R1

EN_W0

EN_W1

EN_W2

BS

GID

BS

GID

BS

Fig. 5: Internal organization of a modular PE. The data width of any GID is g bits. The data width of any
BS is s bits. The data width of any control signal (e.g., EN W0, etc.) is 1 bit. Other FIFO control signals are
omitted for simplicity, e.g., not full, not empty, etc.

For set m, since there are Gm GID/BS pairs stored, we index them by im = 0, 1, . . . , Gm − 1; the GID and
BS corresponding to index im are denoted as GID[m, im] and BS[m, im], respectively. For example, in Figure 4,
for set S2, G2 = 2, and i2 = 0, 1. GID[2, 0] = 00100, BS[2, 0] = 0100, GID[2, 1] = 00001, and BS[2, 1] = 1000.
Similarly, we assume the final intersected set I has P GID/BS pairs, indexed by i = 0, 1, . . . , P − 1; the GID
and BS in set I are denoted as GID[i] and BS[i].

We show our online set intersection algorithm in Algorithm 1. Figure 4 shows an example of the correspond-
ing architecture. The smallest GIDs in all the M sets are compared against each other, and the GIDs smaller
than the maximum value (X , as denoted in Algorithm 1) are excluded from I . Only if all the smallest GIDs in
all the sets are equal, have we identified a common GID in all the M sets; in this case, the corresponding BSs
are ANDed. In other words, the GIDs are intersected using an LM-like technique, while the BSs corresponding
to the same GIDs are intersected using bitwise AND operations.

4 HARDWARE ARCHITECTURE

The architecture shown in Figure 4 is naive, because there are several drawbacks to be noticed:
1) The performance of comparing GIDs and bitwise ANDing BSs deteriorates as M increases; intersecting

a large number of sets can lead to very slow clock rate.
2) Intersecting GIDs may require multiple clock cycles to complete; this degrades the overall throughput

performance of the architecture.
In this section, we will improve the performance of our hardware architecture on FPGA using (1) modular
Processing Element (PE) (Section 4.1), and (2) tree-based parallel architecture (Section 4.2). We present a streaming
technique to feed different batches (see Section 4.3) of data back-to-back; our intention is to achieve very high
throughput by minimizing the communication overheads between different batches of data.

4.1 Modular PE
We show the internal organization of a modular PE in Figure 5. A modular PE takes GIDs and BSs from two
ordered sets; the GIDs and BSs are fed in ascending order into the PE. The basic operations of a modular
PE consist of reporting common GIDs, and performing bitwise AND operations on the corresponding BSs.
Specifically, a modular PE contains the following components: 2 FIFOs, one g-bit comparator, and one s-bit
bitwise AND gate.

4.1.1 2 FIFOs
The FIFOs are used to buffer the GID/BS pairs. The write enable signals EN W0 and EN W1 are fed from
the inputs. The read enable signals EN R0 and EN R1 are generated internally by the comparator.

4.1.2 g-bit Comparator
The comparator compares two GIDs, each of g bits. Based on the comparison result, the comparator generates
3 control signals:

1) On the one hand, if two GIDs are identical, the comparator sets EN W2 = 1 for the next PE to accept
this GID and the corresponding ANDed BS. To compare the next two GIDs, both EN R0 and EN R1 are
set to 1 for the two FIFOs.

7

TABLE 1: Truth table for the control signals (assuming neither of the FIFO is empty)

Case Equal GIDs
GID in FIFO 0 GID in FIFO 1

is smaller is smaller

EN R0 1 1 0
EN R1 1 0 1
EN W2 1 0 0

PE

PE

PE

From Set 𝑺𝟎

From Set 𝑺𝟏

From Set 𝑺𝟐

From Set 𝑺𝟑

Set 𝑰

Level 0 Level 1

Fig. 6: An example of tree-based architecture: M = 4 sets are intersected using 2 levels of PEs.

2) On the other hand, if two GIDs are not equal, the comparator sets EN W2 = 0. Since we only keep track
of the maximum value of the smallest elements in two sets, out of the two GIDs, the smaller one is
discarded; hence, only one of EN R0 and EN R1 is set to 1 for the corresponding FIFO to provide the
next GID.

We summarize the values of the control signals generated by the g-bit comparator in Table 1.

4.1.3 s-bit Bitwise AND Gate
The bitwise AND gate perform bitwise AND operations on two BSs, each of s bits. The result is an ANDed
BS, consisting of s bits. Although the bitwise AND gate produces results for any two compared GIDs, the
control signal EN W2 decides whether the result produced by this gate should be accepted by the next PE.
The ANDed BS is only accepted when the two GIDs compared are identical, as shown in Table 1.

4.2 Tree-based Parallel Architecture
The modular PE discussed in Section 4.1 only intersects 2 sets. To intersect a large number of sets, multiple
modular PEs have to be used. Also, to reduce the processing latency, parallel architectures have to be exploited.
Our intuition in this paper is to intersect M sets iteratively, two sets at a time using the modular PE in
Section 4.1.

For M sets, we choose to deploy logM levels of PEs; for instance, M = 4 in Figure 6, so 2 levels of PEs
are deployed. In our notations, level 0 always consists of all the leaves of the tree, where level (logM − 1)
consists of only the root of the tree. We denote this architecture as tree-based parallel architecture, because (1)
all the PEs are connected in a tree-like fashion, and (2) all the PEs at the same level perform set intersections
in parallel.

In our architecture, we notice that the size of the intersection of any two sets is no greater than the size of
the smaller set; as we go towards the root, smaller and smaller FIFOs can be used. The clock rate supported
by the PE at the root is no slower than the clock rates supported by the PEs at the leaves.

The naive architecture shown in Figure 4 leads to a time complexity (or processing latency) of

O

(
M−1∑
m=0

Gm

(
log
⌈Ω

s

⌉
+ s
))

∼ O
(
M ·max

m
[Gm]

(
log
⌈Ω

s

⌉
+ s
))

(3)

where Gm (0 < Gm ≤ Nm) denotes the number of GID/BS pairs stored for set m.
However, using our tree-based parallel architecture introduced in this section, we can intersect M sets with

a (parallel) time complexity of

O

((
logM

)
·max

m
[Gm] ·

(
log
⌈Ω

s

⌉
+ s
))

(4)

8

10

9

7

5

2

10

7

3

2

PE

10

7

2

10

9

7

255

5

2

10

255

7

3

2

PE

10

255

2

A
d

d
in

g
sy

n
c.

 G
ID

(W
ro

n
g

re
su

lt
)

(C
o

rr
e

ct
 r

e
su

lt
)

Fig. 7: Adding synchronization GIDs, where g = 8 and M = 2. Red numbers denote synchronization GIDs,
while black numbers denote regular GIDs.

Note that this upperbound is quite a loose upperbound. As discussed, this is because the number of common
elements in two sets is no more than the number of elements in the smaller set; we have (possibly) smaller
and smaller sets to be merged linearly as we go down towards the tree root.

4.3 Streaming Inputs
Our architecture can intersect M sets at a time. We denote such M sets to be intersected as a batch. For example,
in Figure 7, suppose a batch of two sets, consisting of GIDs {2, 5} and GIDs {2, 3, 7}, are to be intersected;
another batch of two sets, consisting of GIDs {7, 9, 10} and GID {10}, are to be intersected. Using a single
modular PE, we need to generate the correct results consisting of GID {2} and GID {10} sequentially.

In our architecture, all the GID/BS pairs can be streamed in; this means the time for getting GIDs from
different batches can be overlapped. This benefits the throughput performance. However, the inputs from
different batches need to be distinguished to avoid any confusion; otherwise the intersected result can be
wrong. Continuing the example discussed above, we show the wrong results generated from two batches of
inputs on the left side of Figure 7.

We employ synchronization GID to separate GIDs from different batches. As opposed to regular GIDs, a
synchronization GID is a GID with all of its g bits set to 1. A synchronization GID is forbidden in the
input; meanwhile, all of the synchronization GIDs in the final output2 are discarded. Continuing the example
discussed in this subsection, we show how we generate the correct intersected sets using synchronization
GIDs in Figure 7. As can be seen in this figure, since g = 8, we add the synchronization GID 255 immediately
after the end of the first batch; note that the same synchronization GID must be added to all the M sets (in
this example, M = 2). The synchronization GID is an overhead for streaming inputs:
• Time overhead: it takes 1 extra clock cycle to synchronize all the sets of the same batch.
• Resource overhead: the synchronization GID uses g bits itself; also, the corresponding s-bit BS cannot be

utilized for this GID.
We add synchronization GIDs during the preprocessing phase; thus, the synchronization GIDs are streamed
in just like all the other regular GIDs.

5 EVALUATION

We organized this section as follows:
• In Section 5.1, we introduce the setups of our experiments.
• In Section 5.2, we determine the values of g and b by investigating their effect on the hardware perfor-

mance.
• In Section 5.3, we examine the impact of various values of Ω on the performance with respect to through-

put, latency, resource utilization, and power.
• In Section 5.4, we examine the impact of various values of M on the performance with respect to through-

put, latency, resource utilization, and power.

2. Only at the root level of the tree-based architecture.

9

TABLE 2: Performance with respect to g and b (M = 4)

g
b 2 4 8 16 32 64

2

Clock rate (MHz) 486.85 441.31 375.66 379.51 383.58 312.50
Logic slices (%) 0.01 0.01 0.02 0.02 0.04 0.07

BRAM (%) 0.00 0.00 0.00 0.00 0.00 0.00
I/O pins (%) 2.90 3.81 5.63 9.27 16.54 31.09

4

Clock rate (MHz) 321.13 330.58 311.72 306.00 328.19 269.47
Logic slices (%) 0.02 0.03 0.03 0.04 0.05 0.07

BRAM (%) 0.00 0.00 0.00 0.00 0.00 0.31
I/O pins (%) 3.81 4.72 6.54 10.18 17.45 32.00

6

Clock rate (MHz) 305.53 304.51 329.60 299.04 290.87 255.43
Logic slices (%) 0.04 0.05 0.05 0.05 0.06 0.08

BRAM (%) 0.00 0.00 0.00 0.15 0.15 0.31
I/O pins (%) 4.72 5.63 7.45 11.09 18.36 32.90

8

Clock rate (MHz) 299.31 297.53 299.31 292.57 286.20 306.37
Logic slices (%) 0.11 0.09 0.09 0.10 0.10 0.12

BRAM (%) 0.00 0.15 0.15 0.15 0.15 0.31
I/O pins (%) 5.63 6.54 8.36 12.00 19.27 33.81

10

Clock rate (MHz) 265.96 287.27 282.17 276.24 264.55 268.89
Logic slices (%) 0.27 0.28 0.28 0.28 0.29 0.30

BRAM (%) 0.15 0.15 0.15 0.15 0.31 0.63
I/O pins (%) 6.54 7.45 9.27 12.90 20.18 34.72

12

Clock rate (MHz) 257.86 259.13 259.07 258.13 258.26 257.27
Logic slices (%) 1.04 1.05 1.05 1.06 1.08 1.10

BRAM (%) 0.15 0.15 0.31 0.63 1.27 2.39
I/O pins (%) 7.45 8.36 10.18 13.81 21.09 35.63

• In Section 5.5, we evaluate the performance of our set intersection engine using real-life datasets.
• In Section 5.6, we compare our work with prior works on various platforms.

5.1 Experimental Setup
5.1.1 Hardware and Software
We conducted experiments on the state-of-the-art Xilinx Virtex 7 FPGA (XC7VX1140T-FLG1930 -2L) [4]. This
FPGA has 218800 logic slices, 1100 I/O pins, and 68 Mb BRAM; it can be configured to realize a large amount
of distributed RAM (distRAM, upto 18 Mb). To simplify our designs, we instantiated all the memory modules
(e.g., FIFO) using single-port distRAM or BRAM. We evaluated the performance using Xilinx Vivado 2014.2
design tool [12].

5.1.2 Performance Metrics
The following performance metrics were considered in our experiments:

– Throughput: the number of intersected sets (I) produced per unit time (in KIPS). We recorded the
throughput values based on the clock rates from the post-place-and-route timing reports.

– Latency: the processing time required for intersecting M sets of the same batch. We reported the latency
values based on simulation results.

– Resource Utilization: the percentages of basic FPGA resources utilized. We investigated (1) logic slice
utilization, (2) BRAM utilization, and (3) I/O pin utilization, based on the post-place-and-route resource
utilization reports.

– Power: the power consumption of an entire design on FPGA, including both static power and dynamic
power. We fixed the temperature at 25 ◦C. We used Switching Activity Interchange Format (SAIF) files as
inputs to Vivado power analysis tool.

Throughput and resource utilization are very commonly used for most FPGA-based implementations [2], [5].
Latency has regained much attention nowadays in SDN [3]. Power is a very important metric, especially for
large data centers.

In addition, for throughput, we further defined:

10

– Peak throughput (Tpeak): the throughput determined by the hardware architecture for a given set of
design parameters (e.g., M , g, etc.). When calculating the peak throughput, we assume the FIFOs in the
PEs are full for worst-case analysis.

– Sustained throughput (Tsustained): the throughput measured for a specific data trace. The sustained
throughput varies during run-time, because the number of GID/BS pairs buffered in the FIFOs depends
on the data trace.

The sustained throughput is hard to measure; we defer the discussion of the sustained throughput until later
sections. For a given design, the peak throughput mainly depends on (1) the clock rate achievable on FPGA
and (2) the size of the largest set to be intersected. Let f denote the maximum frequency achievable for a
design. Considering the time overhead on synchronization GIDs, we have:

Tpeak =
f

max
m

[Gm] + 1
(5)

5.1.3 Datasets
We conducted extensive experiments on the real datasets from the classic 5-field packet classification problem
[1], due to the availability of the rule sets and the packet traces [13]. Assuming all the 5 sets from the same
packet header had already been obtained, we only focused on intersecting M = 5 sets in this paper3. In order
to make all the implementations “modular”, for M = 5, we designed our intersection engines to take input
data from at most 8 sets concurrently; i.e., all the values of M were rounded up to the nearest power of 2.

For real-life datasets in the 5-field packet classification, the largest real-life rule set, to the best of our
knowledge, had 32 K rules [13]; i.e., Ω = 32 K in this case. To measure the sustained throughput, we categorized
different packet traces [13] based on the values of max

m

[
Gm

]
. We conduct 10 runs (as examples) for each

category; each run performs 10 K set intersections.
To investigate the sustained throughput, we defined selectivity (denoted as η) to be the ratio of the size of

the intersection to the size of the largest set to be intersected:

η =
|I|

max
m

[Gm]
(6)

As can be seen later, η has significant impact on the throughput and latency performance4.

5.2 Determining Parameters
There are many ways to determine the values of g and b. For instance, our approach exploits the LM techniques,
which is a data-dependent algorithm. For a specific data trace, there may exist an “optimal” combination of
g and b, which gives the highest throughput or lowest processing latency. However, at the design time, we
usually don’t know the statistics of the input data; the input data can also be purely random. In such cases, it
is impossible to always use the “optimal” values of g and b. In this paper, we assume very little information
on the input data is known at the design time; thus, we determine the values of g and b based on the hardware
performance.

5.2.1 FIFO depth
The maximum value of Gm is no greater than (2g − 1), because for any set m, the maximum number of
possible g-bit GIDs is (2g − 1), excluding the synchronization GID as discussed in Section 4.3.

There is no direct relation between the FIFO depth and the values of Gm. For simplicity, we use a FIFO
depth greater than (2g − 1); this ensures that there is no data drop for the same batch of streaming inputs.
In the tree-based parallel architecture as introduced in Section 4.2, the FIFOs in the PEs at various levels may
require different FIFO depths; however, in this paper, we simply use the same FIFO depth for all the levels.

To summarize, the relationship between the FIFO depth, the value of g, and the value of Gm, m =
0, 1, . . . ,M − 1 in this paper can be described as:

FIFO depth > 2g − 1 ≥ max
m

[
Gm

]
(7)

When conducting experiments, we always follow the relation indicated in Equation 7 in this paper.

3. The packet classification problem also involves searching all the fields to get all the sets before intersecting all the sets.
4. In [7], selectivity was defined to be the ratio of the size of the intersection to the size of the smallest set. However, they are very

similar definitions and have similar impact on the performance.

11

TABLE 3: Performance for various combinations of g and b, where Ω = 32 K, M = 8

g 11 12 13 14
b 16 8 4 2

Clock (MHz) 222.52 261.23 196.19 180.54
slices (%) 0.80 2.50 5.72 0.25

BRAM (%) 1.06 0.74 0.74 5.95
I/O (%) 23.90 18.18 15.72 14.90

5.2.2 g and b
To determine the values of g and b, we first fix M = 4 as an example; similar trends can be seen for other
values of M . We fix the depth of all the FIFOs in the modular PEs to be 2g ; thus, large values of g result in
deep FIFOs. We show the clock rate achieved by our design and the corresponding resource consumption in
Table 2. As can be seen:
• Since both M and the FIFO depth are small, our designs utilize very small amounts of logic and memory

resources.
• As the values of g increases, the clock rate usually degrades. Since the memory resources (distRAM

and BRAM) on FPGA are organized in modules, deep FIFOs require a large number of modules to be
connected by long wires.

• As the values of b increases, the clock rate also degrades. Since each PE in our designs performs AND
operations in every clock cycle, it requires longer clock period to AND wide BSs.

• As the values of g or b increases, there are very few cases where the clock rate varies. The small variations
are caused by the design suite.

As can be seen in Table 2, the best clock rate is achieved at b = 4 or b = 8 in most cases; this is because for
b = 4 or b = 8, very short BSs are ANDed in each PE, resulting in compact circuits and short wire lengths.
Hence we tend to use small values of b in all of our experiments. Recalling Section 3.2, we have g = logdΩ

s e;
therefore we choose the values of g based on both values of b and Ω.

5.2.3 Case Study
Let us study the case where Ω = 32 K and M = 8 as an example; we follow the same design methodology for
other values of g, b, Ω, and M in this paper. Since we tend to use small values of b, we restrict b to be 2, 4,
8, and 16. The corresponding values of g are 11, 12, 13, and 14, respectively. Under these configurations, we
show the performance with respect to the clock rate and the resource utilization in Table 3. As can be seen,
the best clock rate is achieved when g = 12 and b = 8; this matches our conclusion in Section 5.2.2 that the
best clock rate is achieved when b = 4 or b = 8.

Note in Table 3, as the value of g increases, there are variations with respect to the utilization of logic slices
and BRAM. This is because we do not put any restrictions on the memory type (distRAM or BRAM) of the
FIFOs; instead, we relay on the Vivado design suite to choose the memory type for best performance. A simple
calculation reveals that as g increases, the total memory consumption still increases.

5.3 Varying Ω

5.3.1 Throughput and Latency
Using b = 8 and M = 8 as our configuration, we show the peak throughput and the corresponding latency
with respect to various values of g in Figure 8. For b = 8 and g = 11, 12, 13, 14, the corresponding values of Ω
are 16 K, 32 K, 64 K, and 128 K, respectively; these values are sufficiently large for network applications [10]. As
the value of g increases, the FIFO depth increases exponentially; the peak throughput tapers while the latency
increases dramatically. The reason is that our set intersection approach still employs the LM techniques, whose
time complexity is linear with respect to max

m

[
Gm

]
(or 2g in this paper, because of Equation 7).

5.3.2 Resource Utilization
In Figure 9, we show the corresponding resource utilization with respect to (1) the logic slices, (2) BRAM, and
(3) I/O pins on FPGA. As can be seen, the I/O pin utilization increases slightly as g increases; this matches
our intuition because each input GID/BS pair requires (g + b) input pins. There are variations with respect to
the logic slice utilization and BRAM utilization; this also matches our observation discussed in Section 5.2.3.

12

0

100

200

300

400

0

25

50

75

100

11 12 13 14

La
te

n
cy

 (
µ

s)

P
e

ak
 T

h
ro

u
gh

p
u

t
(K

IP
S)

No. of Bits per GID (g)

Throughput Latency

Fig. 8: Peak throughput for b = 8, and M = 8

0
.7

9
%

2
.5

0
%

5
.7

2
%

0
.2

6
%

0
.6

9
%

0
.7

4
%

1
.4

8
%

8
.1

9
%

1
7

.3
6

%

1
8

.1
8

%

1
9

.0
0

%

1
9

.8
1

%

0%

25%

50%

75%

100%

11 12 13 14

U
ti

liz
at

io
n

 (
%

)

No. of Bits per GID (g)

Logic slice BRAM I/O

Fig. 9: Resource utilization for b = 8, and M = 8

5.3.3 Power Consumption
In Figure 10, we show the corresponding power consumption. As can be seen, the static power consumption
varies little while the dynamic power consumption increases as g increases.

The trends shown in Figure 8, Figure 9, and Figure 10 can be observed for other combinations of b and M
as well. Again, most of our designs on FPGA only consume very few logic slices, which is consistent with the
results shown in Table 2. This is an advantage because the remaining logic slices can be used to implement
other database kernels besides set intersection.

5.4 Varying M

5.4.1 Throughput and Latency
To examine the effect of M on the performance, we still use Ω = 32 K as an example, although similar trends
can be seen for other values of Ω as well. Varying M , we show the peak throughput and the “worst-case”
latency in Figure 11, and Figure 12, respectively.

As can be seen in Figure 11 and Figure 12, as M increases, the peak throughput and the worst-case latency
deteriorate; this is because the clock rate degrades as M increases. For larger values of M , more resources are
utilized, leading to less routing choices, longer wire lengths, and slower clock rates (see Section 5.4.2).

We have two important observations in Figure 11 and Figure 12:
• The peak throughput and the worst-case latency are dominated by the largest size of the sets to be

intersected (2g).
• M only has limited impact on the performance, especially when 2g is large.

As can be seen in Equation 4, in each FIFO, all the 2g GID/BS pairs buffered have to be checked in the worst
case, leading to a time complexity of O (2g). This explains why the peak throughput is halved and the worst-
case latency is doubled each time as g increases. This matches our intuition in Equation 4: our tree-based

13

0

1

2

3

4

11 12 13 14
P

o
w

e
r

(W
)

No. of Bits per GID (g)

Static Dynamic

Fig. 10: Power consumption for b = 8, and M = 8

0

50

100

150

200

2 4 8 16

P
e

ak
 T

h
ro

u
gh

p
u

t
(K

IP
S)

No. of Sets (M)

g=11, b=16 g=12, b=8 g=13, b=4 g=14, b=2

Fig. 11: Peak throughput for Ω = 32 K

parallel architecture is in favor of intersecting a large number of small sets rather than intersecting very few
large sets.

5.4.2 Resource Utilization
In Figure 13 and Figure 14, we can see that the total memory utilization increases with respect to M , in spite
of the variations with respect to the logic slice utilization or the BRAM utilization only. The reasons are the
same as discussed in Section 5.2.3.

Figure 15 show that, the total number of I/O pins available on FPGA bottlenecks the scalability of our
design, since intersecting a large number of M sets requires a large number of O(M) parallel input pins to
be used.

5.4.3 Power Consumption
We show the static power and dynamic power for Ω = 32 K in Figure 16, with respect to various combinations
of g and b. As can be seen:
• As g increases, the dynamic power consumed by our designs increases linearly with respect to the total

memory consumption.
• As M increases, the dynamic power consumed by our designs also increases linearly with respect to the

total memory consumption.
• As g or M increases, the static power consumption only increases slightly.

Hence we observe that the total power consumption is almost linear with respect to the total memory utilized.
This observation matches our intuition that the memory power dominates the total power consumption.

14

0

50

100

150

200

2 4 8 16
La

te
n

cy
 (

µ
s)

No. of Sets (M)

g=11, b=16 g=12, b=8 g=13, b=4 g=14, b=2

Fig. 12: Worst-case latency for Ω = 32 K

0
.1

9
%

0
.5

6
%

0
.8

0
%

1
.0

2
%

0
.3

4
%

1
.0

5
%

2
.5

0
%

0
.4

0
%

0
.8

0
%

2
.4

4
%

5
.7

2
%

0
.4

4
%

0
.0

3
%

0
.1

1
%

0
.2

5
%

0
.5

1
%

0%

25%

50%

75%

100%

2 4 8 16

Sl
ic

e
 U

ti
liz

at
io

n
 (

%
)

No. of Sets (M)

g=11, b=16 g=12, b=8 g=13, b=4 g=14, b=2

Fig. 13: Utilization of logic slices for Ω = 32 K

5.5 Real Datasets
In this subsection, we use the real-life datasets in the 5-field packet classification to test our online set
intersection engines, as introduced in Section 5.1.3.

5.5.1 Throughput and Latency
For a batch of M sets, the set intersection is not considered as complete unless all the GIDs have been examined
(Gm GIDs for set m). In our tree-based parallel architecture, the sustained throughput is lowerbounded by
the throughput achieved at level 0 of the tree. We have

Tsustained ≥
f

2 ·max
m

[Gm]
(8)

Besides, the sustained throughput is upperbounded by the peak throughput. Hence:

f

2 ·max
m

[Gm]
≤ Tsustained ≤

f

max
m

[Gm] + 1
(9)

We show the sustained throughput with respect to various FIFO depths (from 2 K to 16 K) in Figure 17. We
indicate in this figure both the lowerbound and upperbound of the sustained throughput based on Equation 9.
For each FIFO depth, we show the sustained throughput for 10 runs, each run corresponding to 10 K set
intersections, as introduced in Section 5.1.3.

For each FIFO depth (10 runs), we show the average sustained throughput and the corresponding average
latency in Figure 18. As max

m

[
Gm

]
increases, both the throughput and the latency deteriorate. Since it takes

linear time to merge all the GIDs in our approach, the performance with respect to throughput and latency
is adversely affected by max

m

[
Gm

]
.

15

0
.1

0
%

0
.3

1
%

1
.0

6
%

2
.7

6
%

0
.1

0
%

0
.3

1
%

0
.7

4
%

3
.9

8
%

0
.1

0
%

0
.3

1
%

0
.7

4
%

7
.1

8
%

0
.8

5
%

2
.5

5
%

5
.9

5
%

1
2

.7
6

%

0%

25%

50%

75%

100%

2 4 8 16
B

R
A

M
 U

ti
liz

at
io

n
 (

%
)

No. of Sets (M)

g=11, b=16 g=12, b=8 g=13, b=4 g=14, b=2

Fig. 14: Utilization of BRAM for Ω = 32 K

8
.0

9
%

1
3

.3
6

%

2
3

.9
0

% 4
5

.0
0

%

6
.1

8
%

1
0

.1
8

%

1
8

.1
8

% 3
4

.1
8

%

5
.3

6
%

8
.8

1
%

1
5

.7
2

%

2
9

.5
4

%

5
.0

9
%

8
.3

6
%

1
4

.9
0

%

2
8

.0
0

%

0%

25%

50%

75%

100%

2 4 8 16

I/
O

 U
ti

liz
at

io
n

 (
%

)

No. of Sets (M)

g=11, b=16 g=12, b=8 g=13, b=4 g=14, b=2

Fig. 15: Utilization of I/O pins for Ω = 32 K

5.5.2 Resource Utilization and Power
For real datasets, the performance with respect to resource utilization and power consumption are consistent
with Figure 9 and Figure 10:
• The logic slice utilization increases linearly as the FIFO depth increases; the total resource utilization is

always kept under 25%.
• Our designs only consume a small amount of power, due to the low resource utilization.

In spite of the same power performance as Figure 10, the energy performance on real datasets may vary; this
is because different datasets can introduce various values of processing latency.

5.6 Comparison with Prior Works
5.6.1 Baseline
To the best of our knowledge, we are not aware of online set intersection engines on FPGA. Hence, to compare
this paper with prior works, we deployed software-based set intersection engines on state-of-the-art multi-core
General-Purpose Processors (GPPs) as the baseline implementations. We conducted experiments on a 2× AMD
Opteron 6278 processor [14] and a 2× Intel Xeon E5-2470 processor [15]. The AMD processor has 16 physical
cores, each running at 2.4 GHz. Each core is integrated with a 16 KB L1 data cache, 16 KB L1 instruction cache,
and a 2 MB L2 cache. A 6 MB L3 cache (Last-Level Cache, LLC) is shared among all the 16 cores; all the cores
have access to 64 GB DDR3-1600 main memory. The AMD processor runs openSUSE 12.2 OS (64-bit 2.6.35
Linux Kernel, gcc version 4.7.1). The Intel processor also has 16 physical cores, each running at 2.3 GHz. Each
core has a 32 KB L1 data cache, 32 KB L1 instruction cache, and a 256 KB L2 cache. All the 16 cores share
a 20 MB L3 cache (Last-Level Cache, LLC), and they have access to 48 GB DDR3-1600 main memory. This

16

0.0

1.0

2.0

3.0

4.0

2 4 8 16
P

o
w

e
r

(W
)

No. of Sets (M)

g=11, b=16, static g=11, b=16, dynamic
g=12, b=8, static g=12, b=8, dynamic
g=13, b=4, static g=13, b=4, dynamic
g=14, b=2, static g=14, b=2, dynamic

Fig. 16: Power consumption for Ω = 32 K

0

25

50

75

100

Su
st

ai
n

e
d

 T
h

ro
u

gh
p

u
t

(K
IP

S)

FIFO depth (K)

Sustained Upperbound Lowerbound

2 4 8 16

Fig. 17: Sustained throughput for the classic 5-field packet classification (b = 8, M = 5)

processor runs openSUSE 12.3 OS (64-bit 3.7.10 Linux Kernel, gcc version 4.7.2). Both of the AMD and the
Intel processors have 32 logical cores.

On each GPP platform, we implemented the classic LM technique [7], [10] and the classic BA technique
[6], [8], [9] using OpenMP [16]. We assumed our hybrid approach (using the GID/BS representation) could
perform at least as good as the better of the two techniques; hence we ignored the implementation of our hybrid
approach on the GPP platforms. Our implementations relied on the OS to allocate the hardware resources to
each thread dynamically. The thread synchronization and IO overhead were also considered in the performance
measurement.

5.6.2 Throughput and Latency
Setting M = 8 and Ω = 32 K as an example, we compare the throughput and latency performance of this work
with the baseline implementations in Figure 19 and Figure 20, respectively. Our GID/BS-based implementations
have b = 8 in this example. Similar trends can be seen for other combinations of these parameters.

In these figures, each of the data labels indicates the platform used, the approach exploited, and max
m

[
Nm

]
tested (recall this denotes the maximum size of all the M sets); however, there are two exceptions:

1) The performance of the BA technique does not depend max
m

[
Nm

]
, so we ignore max

m

[
Nm

]
in the corre-

sponding implementations.
2) For our GID/BS-based designs on FPGA, the data labels indicate max

m

[
Gm

]
. Note that:

max
m

[
Gm

]
≤ max

m

[
Nm

]
≤ b ·max

m

[
Gm

]
(10)

17

0

100

200

300

400

0

25

50

75

100

2 4 8 16

La
te

n
cy

 (
µ

s)

Su
st

ai
n

e
d

 T
h

ro
u

gh
p

u
t

(K
IP

S)

FIFO depth (K)

Throughput Latency

Fig. 18: Average sustained throughput and latency for the classic 5-field packet classification (b = 8, M = 5)

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1.0E+05

Su
st

ai
n

e
d

 T
h

ro
u

gh
p

u
t

(K
IP

S)

A
M

D
_B

A

A
M

D
_L

M
_6

4

A
M

D
_L

M
_1

0
2

4

In
te

l_
B

A

In
te

l_
LM

_6
4

In
te

l_
LM

_1
0

2
4

FP
G

A
_G

ID
B

S_
6

4

FP
G

A
_G

ID
B

S_
4

0
9

6

Fig. 19: Comparing sustained throughput

With b = 8 and max
m

[
Gm

]
= 4096, our GID/BS-based design can intersect 8 sets with 32 K elements per

set.
For each of our baseline implementations, we measure the performance with respect to various numbers
of batches processed concurrently (1, 2, 4, or 8 concurrent batches). Increasing the number of concurrent
batches improves the throughput but degrades the latency. For each of our GID/BS-based designs, we show
the lowerbound and the upperbound of the throughput indicated by Equation 9 in Figure 19; we show their
corresponding latency values in Figure 20.

We have the following observations:
• The BA technique performs better than the LM technique when the sets are relatively large, but worse

when the sets are sparse (max
m

[
Nm

]
� Ω).

• For the same configuration, our AMD platform outperforms our Intel platform, due to its larger L2 (on-
chip) cache size and higher clock rate.

• Compared to the baseline implementations, our GID/BS-based designs on FPGA sustain higher through-
put (upto 66× improvement) at lower processing latency (upto 80× reduction).

As can be seen, our GID/BS-based designs presented in this paper demonstrate superior performance for
online set intersection. The reasons are: (1) Our approach in this work exploits a hybrid data structure that
performs at least as good as the better of the LM and BA techniques. (2) Our implementations are deployed
on FPGA for better streaming performance compared with the GPP platforms.

6 CONCLUSION

In this paper, we presented a high-performance online set intersection engines on FPGA. The designs were
based on a hybrid data structure combining the advantages of the LM and BA techniques. Compared to the

18

1.0E-01

1.0E+01

1.0E+03

1.0E+05

1.0E+07

La
te

n
cy

 (
µ

s)

A
M

D
_B

A

A
M

D
_L

M
_6

4

A
M

D
_L

M
_1

0
2

4

In
te

l_
B

A

In
te

l_
LM

_6
4

In
te

l_
LM

_1
0

2
4

FP
G

A
_G

ID
B

S_
6

4

FP
G

A
_G

ID
B

S_
4

0
9

6

Fig. 20: Comparing latency

classic LM and BA techniques on multi-core platforms, our prototypes demonstrated superior performance
with respect to throughput and latency.

A future direction towards online set intersection is to explore even more hybrid data structures (e.g.,
hashing) for fast streaming applications. We also plan to target large data on FPGA in the future.

ACKNOWLEDGMENTS

This work is supported by the U.S. National Science Foundation (NSF) under grant No. CCF-1116781. Equip-
ment grant from Xilinx is gratefully acknowledged.

REFERENCES
[1] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE Network, vol. 15, no. 2, pp. 24–32, 2001.
[2] D. E. Taylor, “Survey and Taxonomy of Packet Classification Techniques,” ACM Computing Surveys, vol. 37, no. 3, pp. 238–275, 2005.
[3] “OpenFlow Switch Specification V1.3.1,”

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-
v1.3.1.pdf.

[4] “Virtex-7 FPGA Family,”
http://www.xilinx.com/products/virtex7.

[5] W. Jiang and V. K. Prasanna, “A FPGA-based Parallel Architecture for Scalable High-Speed Packet Classification,” in Proc. IEEE
ASAP, 2009, pp. 24–31.

[6] B. Ding and A. C. König, “Fast Set Intersection in Memory,” Proc. VLDB Endow., vol. 4, no. 4, pp. 255–266, 2011.
[7] D. Tsirogiannis, S. Guha, and N. Koudas, “Improving the Performance of List Intersection,” Proc. VLDB Endow., vol. 2, no. 1, pp.

838–849, Aug. 2009.
[8] F. Baboescu and G. Varghese, “Scalable Packet Classification,” in Proc. SIGCOMM, 2001, pp. 199–210.
[9] J. Li, H. Liu, and K. Sollins, “Scalable Packet Classification using Bit Vector Aggregating and Folding,” MIT LCS Technical Memo:

MIT-LCS-TM-637, 2003.
[10] Y. R. Qu, S. Zhou, and V. K. Prasanna, “A Decomposition-Based Approach for Scalable Many-Field Packet Classification on Multi-core

Processors,” Intl. Journal of Paral. Prog., pp. 1–23, September 2014.
[11] S. T. Zargar, J. Joshi, and D. Tipper, “A Survey of Defense Mechanisms against Distributed Denial of Service (DDoS) Flooding

Attacks,” IEEE Comm. Surv. & Tutor., vol. 15, no. 4, pp. 2046–2069, 2013.
[12] “Vivado Design Suite,”

http://www.xilinx.com/products/design-tools/vivado.html.
[13] “Evaluation of Packet Classification Algorithms,”

http://www.arl.wustl.edu/∼hs1/PClassEval.html.
[14] “AMD Opteron 6200 Series Processor,”

http://products.amd.com/en-us/OpteronCPUDetail.aspx?id=791&f1=AMD+Opteron%E2%84%A2+6200+Series+Processor&f2=
&f3=Yes&f4=&f5=&f6=G34&f7=B2&f8=32nm&f9=&f10=6400&f11=&.

[15] “Intel Xeon Processor E5-2470,”
http://ark.intel.com/products/64623/Intel-Xeon-Processor-E5-2470-20M-Cache-2 30-GHz-8 00-GTs-Intel-QPI?wapkw=e5+2470.

[16] “OpenMP,” http://openmp.org/wp/.

19

Yun R. Qu received the BS degree (2009) in electrical engineering from Shanghai Jiao Tong University, and the MS
degree (2011) in electrical engineering at the University of Southern California. He is currently a PhD candidate
in computer engineering at University of Southern California. His research interests include large-scale regular
expression matching, IP address lookup, multi/many-field packet classifier, and online traffic classification engine
for network routers. He has also done research in error correcting codes and communication theory. His primary
focuses are on algorithm design, algorithm mapping onto custom hardware, high-performance and power-efficient
architectures. He is a member of IEEE and ACM.

Viktor K. Prasanna received the BS degree in electronics engineering from the Bangalore University, the MS
degree from the School of Automation, Indian Institute of Science, and the PhD degree in computer science from
the Pennsylvania State University. He is Charles Lee Powell Chair in Engineering in the Ming Hsieh Department of
Electrical Engineering and professor of computer science at the University of Southern California (USC). His research
interests include High Performance Computing, Parallel and Distributed Systems, Reconfigurable Computing, and
Embedded Systems. He is the executive director of the USC-Infosys Center for Advanced Software Technologies
(CAST) and is an associate director of the USCChevron Center of Excellence for Research and Academic Training
on Interactive Smart Oilfield Technologies (Cisoft). He also serves as the director of the Center for Energy Informatics
at USC. He served as the editor-in-chief of the IEEE Transactions on Computers during 2003-06. Currently, he is the
editor-in-chief of the Journal of Parallel and Distributed Computing. He was the founding chair of the IEEE Computer
Society Technical Committee on Parallel Processing. He is the steering cochair of the IEEE International Parallel and

Distributed Processing Symposium (IPDPS) and is the steering chair of the IEEE International Conference on High Performance Computing
(HiPC). He is the recipient of the 2009 Outstanding Engineering Alumnus Award from the Pennsylvania State University. He is a fellow of the
IEEE, the ACM and the American Association for Advancement of Science (AAAS).

