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Abstract

Demand Response (DR) is a widely used technique to minimize the peak to average consumption ratio during high
demands. An effective DR scheduling algorithm should minimize the curtailment error - the difference between the targeted
and achieved curtailment values to minimize the costs to the utility provider and maintain system reliability. Several polyno-
mial time heuristics have been proposed in the literature to achieve this goal, however their accuracy can be extremely low.
We argue that minimizing the error alone is not enough as peaks can be concentrated in some intervals while consumption
being heavily curtailed in other intervals. In this paper, we leverage the availability of smart meters to provide fine grained
data and customer control and formally develop the notion of Sustainable DR as a solution that distributes the curtailment
evenly across the DR event. We formulate both Traditional DR and Sustainable DR problems as Integer Linear Programs.
For both problems, we first provide a very fast

√
2-factor approximation algorithm. We also propose a Polynomial Time

Approximation Scheme (PTAS) for approximating the curtailment error to within an arbitrarily small factor of the optimal. We
develop a novel ILP formulation that solves the sustainable DR problem while explicitly accounting for strategy switching
overhead as a constraint. We perform experiments using real data acquired from a university’s smart grid and show that
our sustainable DR model achieves near exact results (error in the order of 10−5).

INTRODUCTION

Recent technological advances have transformed traditional power grids to complex cyber-physical systems [1], [2]. The
widespread use of bi-directional smart meters, in addition to reporting energy consumption, allows remote monitoring
and intelligent grid control. Utility providers now have several tools at their disposal to dynamically meet energy demand
while ensuring the reliability of the power grid.

Reliable operation of a power grid requires utilities to constantly match (fluctuating) energy supply with (fluctuating)
load. Demand levels of customers fluctuate with peak demands concentrated in some portions of the day. During such
periods, the demand might exceed the generation capacity of the utility forcing them to buy energy from the spot market at
high rates. Demand Response (DR) is a standard technique used by utilities to mitigate energy supply-demand mismatch.
Customers are incentivised to enroll in the program and curtail their energy consumption during peak load times which
is signaled by a DR event. Each customer is provided with various strategies to reduce consumption. e.g. a customer can
reduce the air conditioning or turn off some number of lights. For each customer-strategy pair, the utility estimates the
load curtailment. This information is then used to decide the optimal strategies that will achieve the desired curtailment
value.

We observe that Demand Response can be implemented in two modes. Sometimes fine grained control of customer
strategies may not be available, for example, due to a lack of smart meters for control and the necessity of manual
intervention for adjusting strategies (such as manually turning on/off the AC). Under such circumstances, load curtailment
during a DR event can be achieved by optimally selecting customer-strategy pairs to curtail demand by the desired amount
for the entire peak demand period.

Conversely, when fine grained control is available, the entire peak period can be divided into smaller intervals where
customer strategies can be micro-adjusted. Note that implementing the first approach (which we label Traditional DR)
might produce customer strategy assignments which achieve the desired total curtailment value by aggressively curtailing
demand over a few small intervals. This could create peaks and valleys of demand over intervals (while still technically
achieving DR objectives). Such demand peaks could possibly exceed the instantaneous generation capacity, forcing
the utility to pay for additional procurement of energy. This motivates our Sustainable DR approach: To leverage the
availabilty of fine grained smart meter data and customer control by evenly distributing curtailment over the entire time
period.
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RELATED WORK

Significant literature exists addressing the challenges, solutions, implementations and estimation methodology for calcu-
lating the energy savings for Demand Response (DR) [3], [4], [5]. Early works focused on DR scheduling for individual
residential cases [6] or household appliances [7]. These approaches are not scalable to smart grids.

Traditionally, DR algorithms have focused on targeting customers based on aggregate consumption data, relying
on customer selection using billing data or surveys [8], [9], employing dynamic programming techniques for load
management and minimizing peak load over a period [10], particle swarm optimization based techniques [11] and game
theoretical solutions constrained by real time pricing [12] and customer comfort levels [13]. However, with data available
from smart meters, work such as [14], [15] show that such approaches are very inaccurate. The actual consumption data
over a period differs significantly from the data obtained from surveys or billing cycles. Moreover, the selection is done
oblivious to the distribution of load throughout the day. Therefore such approaches contribute little to reducing the peak
energy consumption and distributing it over other periods.

The authors in [16] propose a stochastic knapsack based algorithm for selecting customers to maximize reliability: the
probability the desired curtailment value is achieved over the period of the entire DR event while limiting the utility’s cost
(one metric is the number of customers participating in the DR event). The algorithm relies on the central limit theorem
to assume the joint customer response is normally distributed and thus is conditioned on the assumption that there are a
large number of customers from whom a subset can be selected. For example, in order to achieve high reliability (> 95%)
for large curtailment targets, the algorithm requires around N = 2000 customers which increases the computation cost.
Two heuristics are proposed but the approximation bounds are dependent on the ratio of customer demand response
variances which could be arbitrarily large. Although fine grained data is available, the selection algorithm focuses on
aggregating the curtailment over a time interval. However, as mentioned before, such an approach can aggressively curtail
load in some intervals and concentrate peak in other intervals.

The notion of achieving sustainable DR over a peak period divided into subintervals was proposed in [17] using a
change making heuristic to evenly distribute curtailment over intervals. The proposed definition, which includes several
terms relating curtailment between adjacent intervals, the max and min curtailment values primarily attempts to achieve
consistency between intervals without reference to the target. The customer-strategy pairs are also fixed across intervals. A
detailed analysis of this heuristic (omitted due to space constraints) shows that it can lead to unbounded errors (deviation
from the target). Our experimental results demonstrate this is indeed the case.

OUR CONTRIBUTIONS

In this paper, we leverage the availability of smart meters to provide fine grained data and customer control and formally
develop the notion of Sustainable DR. A Sustainable DR solution minimizes the curtailment error - defined as the ‖l‖1
distance between achieved curtailment values and a smoothed target value per interval. We formulate both traditional
DR and sustainable DR problems as Integer Linear Programs (ILP). For both problems, we first provide a very fast√
2-factor approximation algorithm. By precomputing and storing results for a range of target values, our algorithm can

return approximately optimal DR strategies in O(1) time.
State-of-the-art works have a very low operation yield-the ratio of the actual energy curtailed vs the curtailment target,

in the range of 10-30% [18]. In this paper, we also propose a Polynomial Time Approximation Scheme (PTAS) for
approximating the ILP and substantially increasing the operation yield. Our proposed PTAS minimizes the curtailment
error to within an arbitrarily small factor of the optimal. For sustainable DR an important practical consideration is the
cost of switching between strategies. Even with smart meter control, it may be uneconomical to rapidly switch strategies
between intervals. We develop a novel ILP formulation that explicitly accounts for switching overhead as a constraint
and solves the sustainable DR problem. We perform experiments using real data acquired from a university’s smart grid
and show that our sustainable DR model achieves near exact results (error in the order of 10−4).

TRADITIONAL DEMAND RESPONSE

Given the list of customers, the strategies they can adopt and the curtailments achieved by each customer-strategy pair,
Traditional Demand Response (TDR) scheduling algorithms find the strategy to be adopted by each customer such that the
difference between the targeted and achieved curtailment values is minimized. From the utility’s point of view minimizing
this difference is desirable for the following reasons:

1) Bounding the value by which the achieved curtailment overshoots the targeted curtailment ensures that the grid is
not under utilized by trying to aggressively curtail the demand during the peak demand time.

2) Bounding the value by which the achieved curtailment undershoots the targeted curtailment ensures that lower costs
are incurred to the utility to buy the additional required power to maintain grid stability.

A stochastic knapsack based heuristic for this problem is detailed in [16]. We solve the deterministic version of the
same problem and measure its effectiveness in terms of the error.
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Fig. 1. SDR vs TDR

We are given a set of M customers, N strategies and a C ∈ RM×N curtailment matrix with element cij denoting
the curtailment value of customer i adopting strategy j. Let A denote the corresponding decision matrix. Let the desired
curtailment value across the entire DR event be γ. The problem can be formulated as an ILP as follows:

Minimize : Error = |
M∑
i=1

N∑
j=1

Cij ∗Aij − γ | (1)

Subject to :

N∑
j=1

Aij = 1 ∀i (2)

Equation 2 ensures that a customer adopts exactly one strategy in the DR event. This includes the default strategy
with a curtailment value of 0. Experimental results for the Traditional DR problem are provided in a subsequent section.

SUSTAINABLE DEMAND RESPONSE
Motivation
The TDR algorithm proposed in the previous section will produce the desired result for the entire interval. However, it is
possible that TDR will produce assignments which aggressively curtail the demand in some intervals while accumulating
demands in other intervals. Such assignments will still have peaks in certain intervals of the DR event. These peaks can
possibly exceed the generation capacity in those intervals forcing the utility to pay for additional procurement of energy.

An example scenario is shown in Figure 1. The traditional DR algorithm (error: 0.13 %) performs better in terms
of error than the sustainable DR algorithm (error: 0.43%). However, at several intervals of the DR, the traditional DR
exceeds the peak generation capacity which is undesirable.

We define the notion of Sustainable Demand Response (SDR) to address such cases. SDR attempts to evenly smooth
the curtailment over the entire period of the DR event. Hence we define SDR as the customer-strategy assignment which
minimizes the ‖l‖1 distance between achieved curtailment values and a smoothed target value per interval.

As before we are given a set of M customers, N strategies and a time varying C(t) ∈ RM×N curtailment matrix with
element cij(t) denoting the curtailment value of customer i adopting strategy j at time interval t where t ∈ {1, . . . , T}.
Let A(t) denote the corresponding decision matrix at time t. Let the desired curtailment value across the entire DR event
be γ.

We propose two novel ILP formulations for this problem. The formulations differ in the number of times the customers
can change their strategies throughout the the DR event period.

ILP Formulation for Sustainable DR
We use the following ILP to model a Sustainable DR event.

Minimize :

T∑
t=1

εt (3)

Subject to:

|
M∑
i=1

N∑
j=1

Cij(t) ∗Aij(t)−
γ

T
| ≤ εt ∀t (4)

N∑
j=1

Aij(t) = 1 ∀i, t (5)
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The objective is the minimize the ‖l‖1 norm (Equation 3). As before, Equation 5 ensures that at any given interval,
each customer adopts exactly one strategy.

Algorithm 1: Fast
√
2-factor Sustainable DR Approximation

Preprocessing: Non-decreasing sorted lists {C(i)(t)} of customer-strategies for each customer i ∈ S and each
interval t

1 for intervals t = 1 to T do
2 if ∃(k ∈ S) ∧ (j ∈ C(i)(t)) : Ckj(t) ∈ [ γ

T
√
2
,
√
2γ
T ] then

3 Akj(t)← 1 ;
// Select customer k and curtailment strategy Ckj(t)

4 else
5 (p, qp)← argmini∈S,j∈C(i)(t){Cij(t)|Cij(t) ≥ γ

√
2/T} ;

6 Xp ← Cpqp(t) ;
7 For each customer i ∈ S : ki ← argmaxk{Cik(t) ≤ γ/(T

√
2)} ;

8 Let r denote the smallest index such that Xr ←
∑r
i=1 Ciki(t);Xr ≥ γ/(T

√
2) ;

9 r ←M if
∑M
i=1 Ciki(t) < γ/(T

√
2) ;

// Select Strategies for Activation as follows
10 if Xp − γ

√
2/T ≤ γ/(T

√
2)−Xr then

11 Set Apqp(t) = 1 ;
12 else
13 for i← 1 to r do
14 Set Aiki(t) = 1 ;

Output: Matrix {A(t)} of selected customer-strategies during each interval t.

Fast
√
2-factor Approximation for Sustainable DR

We now describe a fast algorithm for computing approximately optimal sustainable DR strategies. Our algorithm provides
a
√
2-factor approximation to the optimal target during each curtailment period.

Theorem 1. Algorithm 1 is a
√
2-factor approximation to the optimal sustainable DR solution.

Proof: Let Xt denote the curtailment value for period t returned by Algorithm 1. We show that either Xt ∈
[ γ

T
√
2
, γ
√
2

T ] or Xt is the optimal curtailment value achievable for that period. If line 2 of the algorithm is satisfied, then
this is trivially true. Assume line 2 is not satisfied. From line 8, we must have γ/(T

√
2) ≤ Xr =

∑r−1
i=1 Ciki +Crkr ≤

2 · γ/(T
√
2) = γ

√
2/T .

Finally, consider the case when when r = M and XM ≤ γ/(
√
2T ). Since ki represents the strategy with the largest

curtailment value ≤ γ/(
√
2T ) for each customer i, by definition Xr is the largest achievable curtailment value < Xp

and so either Xp or Xr is the optimal strategy for this period.
The following result follows from a straightforward analysis of the algorithm.

Theorem 2. Algorithm 1 can be used to compute
√
2-approximate sustainable DR solutions in O(TM logN) time when

strategies are preprocessed in advance for a given curtailment target. The one-time preprocessing cost assuming apriori
knowledge of curtailment strategies is O(TMN logN).

By precomputing and storing results for a range of target values, we can speed up the retrieval of approximately
optimal strategies even further to O(1) time.

A PTAS for Sustainable DR
While the approximation algorithm above can be used to very quickly compute sustainable DR solutions, the error due
to the

√
2-factor approximation may be unacceptable in some cases. Therefore, we also develop a Polynomial Time

Approximation Scheme (PTAS) that approximates the optimal solution provided by the ILP in Equation 3 to within an
arbitrarily small ε-factor in time polynomial in MN/ε.

Theorem 3. Algorithm 2 is a PTAS for the ILP in Equation 3.

Proof Sketch: The number of intervals l ≈ log 1
1−ε

(γ/T ) is polynomial in ln(γ/T )
ε . Line 9, if a curtailment value is

already marked feasible (i.e Q(k−1)
s (t) is 0), then customer k does not contribute to the feasible solution. The total number
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of iterations is O(lNM). From line 7, using induction, we can show Vj+1 ≥
∑
Cqr∈B(M)

j (t)
Cqr ≥ (1 − δ)MVj+1 ≥

(1 − ε)Vj+1 = Vj . and hence
∑
Cqr∈B(M)

j (t)
Cqr ∈ [Vj , Vj+1]. Thus the algorithm outputs an ε approximation to the

optimal achievable target and is therefore a PTAS.

ILP formulation for Sustainable DR with Strategy Overheads
Switching rapidly from one strategy to another during a DR event may be impractical and lead to the utility or the customer
incurring additional overheads. We model this constraint by imposing a limit τ on the number of times a customer can
switch strategies in between intervals. We formulate this modified SDR problem as an ILP with an additional novel
strategy switching constraint. Since τ is fixed, a customer is likely to have contiguous strategies across intervals. We
express this as a constraint in the ILP using an additional state transition variable.

Minimize :

T∑
t=1

εt (6)

Subject to:

|
M∑
i=1

N∑
j=1

Cij(t) ∗Aij(t)−
γ

T
| ≤ εt ∀t (7)

N∑
j=1

Aij(t) = 1 ∀i, t (8)

Sij(t) = | Aij(t)−Aij(t− 1) | (9)
Aij(0) = 0 ∀i, j (10)

T∑
t=1

N∑
j=1

Sij(t) ≤ τ ∀i, j (11)

The new constraints to limit the strategy switching are introduced using Equations 9, 10 and 11. Equation 9 calculates
the number of times customer i switches a particular strategy. Equation 11 bounds the total number of times a customer
can switch strategies. In our experiments, we fix the value of τ = 6.

Algorithm 2: PTAS for Sustainable DR during each interval t
1 V0 ← mini,j Cij(t) ;
2 X ← mini,j Cij(t) ≥ γ/T ;
3 Divide [V0, X] into l intervals {[Vi, Vi+1]}, Vi = (1− δ)Vi+1, 0 ≤ i ≤ l − 2, Vl = X , δ = ε/M ;
4 ∀k ∈ S : Ykj ← Vi if Ckj ∈ [Vi, Vi+1] ;
5 B

(0)
i (t)← ∅; Q(0)

i (t)← 0; i = 0, 1, . . . , l − 1 ;
// B

(k)
i (t) is a subset of the first k customers, each with a non-zero strategy

selection, that add up to a curtailment value ∈ [Vi, Vi+1].
6 for Customers k = 1 to M do
7 for all intervals i, all strategies r do
8 Xir ← Q

(k−1)
i (t) + Ykr ;

9 Let Xir ∈ [Vs, Vs+1] ;
10 if ¬Q(k−1)

s (t) then
11 Q

(k)
s (t) ← Vs // Making Q

(k)
s (t) a feasible curtailment value

12 B
(k)
s (t)← B

(k−1)
i (t)

⋃
Ckr(t) ;

// Adding customer k strategy r pair to the feasible strategy set

Output: B(M)
j (t): Selection of customer-strategy pairs, where j is the closest interval to DR target γ/T with

Q
(M)
j (t) > 0
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TABLE 1
Comparison of demand curtailment values achieved in each interval for SDR and TDR for the targeted

curtailment value of 1000 kWh

Time Interval of DR Event Achieved Curtailment by TDR
(kWh)

Achieved Curtailment by SDR
(kWh)

Desired Curtailment per Inter-
val (kWh)

1 48.2751 62.4999 62.5
2 48.6096 62.5000 62.5
3 52.2919 62.5000 62.5
4 51.6158 62.4999 62.5
5 46.8347 62.5000 62.5
6 53.4670 62.4999 62.5
7 55.4195 62.5000 62.5
8 56.2443 62.4999 62.5
9 58.4918 62.4999 62.5
10 65.8869 62.5000 62.5
11 64.5838 62.5000 62.5
12 71.5662 62.5001 62.5
13 75.1756 62.5000 62.5
14 78.3424 62.5000 62.5
15 84.1755 62.4999 62.5
16 91.5856 62.5000 62.5

Fig. 2. Ratio of error incurred by State-of-the-art Heuristics to ILPs developed in this work vs Targeted
Curtailment Values (logarithmic scale)

EXPERIMENTS AND RESULTS

Experimental Setup
We use the Optimization Programming Language (OPL) [19] to define the Integer Linear Programming (ILP) formulations
developed in this work. The OPL definition is input to the IBM ILOG CPLEX Optimization Studio software (CPLEX) [20]
which is an optimization software package for mathematical programming. CPLEX produces the optimal assignment and
reports the value of the objective function. We use real data collected from the smart grid of an Anonymous university.
The data is collected over 15 minutes intervals for a period of 4 hours during 1 to 5 pm which is when the system
load was found to be the heaviest. 20 buildings are enrolled in the DR program and each building can adopt 1 out of 6
strategies. For each customer-strategy pair at a given time interval, the curtailment value is available in kWh.

Traditional DR
For Traditional DR we use the overall curtailment value for each customer-strategy pair in our experiments. For
comparative purposes we look at the curtailment errors of the state-of-the-art change making heuristic [17].

Figure 2 shows the ratio of the %-error incurred by the two methods on a logarithmic scale. The absolute error of our
ILP is 5.0× 10−7 − 7.0× 10−4 which are within the range of numerical precision error. Thus our ILP produces almost
exact solutions.

In [16], the error is unbounded for smaller number of customers. As described in their paper the minimum number of
customers required to achieve the targeted curtailment value with more than 95% probability is a quadratic function of the
targeted curtailment value. However, as shown by the results, the error incurred in our approach is bounded irrespective
of the number of customers.
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Fig. 3. Comparison of demand curtailment values achieved in each interval for SDR and TDR for the targeted
curtailment value of 1000 kWh

Fig. 4. Selected Strategies using SDR (SDR-1) and SDR with Strategy Overheads (SDR-2)

Sustainable DR
For Sustainable DR, we use the fine grained data available for each 15 minute interval for the duration of 4 hours. The
curtailment value for each customer-strategy pair for each time interval is available. We compare the values of the ‖l‖1
obtained after customer selection with the state-of-the-art change making problem based heuristic [17].

In Figure 2 we show the ratio of the %-error incurred using the state-of-art heuristic and our SDR ILP on a logarithmic
scale. We perform 103 − 105 times better than the state-of-the-art heuristic. Our ILP produces solutions with error in
the range 1.54× 10−4 − 1.67× 10−3. We found that the error of the change making heuristic became extremely large
(around 60%) for some curtailment values. We believe this is because the heuristic focuses more on smoothing between
intervals than on achieving the target and so one bad interval can lead to overall bad performance. Our fast

√
2-factor

approximation algorithm with an error bound of 40% has a better error performance than the change making heuristic.
To emphasize the significance of Sustainable DR over Traditional DR, we compare the demand curtailment values

achieved in each interval for the DR event for the targeted curtailment value of 1000 kWh. Traditional DR gives one
strategy per building for the entire period. Using this information and the available fine grained data, we calculate the
achieved curtailment in each interval for Traditional DR. The Traditional DR provides an almost exact solution with error
1 × 10−6 whereas the error for the Sustainable DR is 5.28 × 10−4. Although the SDR error is larger than Traditional
DR, it is still close to zero over each interval. Thus we show the results with precision in Table 1. Note that as shown
in Figure 3 Traditional DR has peaks and valleys.

Sustainable DR with Strategy Overheads
The motivation behind using Sustainable DR with Strategy Overheads is to reduce the number of times each building
switches its strategy in the DR interval. We limit the number of times building i can switch strategies. Figure 4 compares
the strategies adopted by two buildings in the DR event using Sustainable DR approach and Sustainable DR with strategy
overhead approach. Note that the line for the latter approach has less number of transitions as compared with the line
for the former approach which is zig zag. Figure 5 compares the number of strategy switches for some of the buildings.
Figure 6 shows the ratio of the error incurred by using the ILP for SDR with strategy overheads and SDR. Clearly there
is a trade off between the increased error vs the cost savings offered by the SDR approach with constrained strategy
switching.
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Fig. 5. Number of Strategy Switching Overheads using SDR (SDR-1) and SDR with Strategy Overhead (SDR-2)

Fig. 6. Ratio of Error Incurred by SDR with Strategy Overheads and SDR

ILP is a computationally intensive process. To converge to the error rates shown in the results, the IBM CPLEX
required 15-20 minutes of processing time. Since DR programs are based on predictive data [21] which are available in
advance, the time required can be perceived as reasonable. For larger problem sets, accuracy can be traded off with the
fast bounded approximate heuristics proposed in this paper.

CONCLUSION

In this work, we formulated the problem of customer selection for Demand Response as Integer Linear Programs (ILP).
We motived the need for the Sustainable Demand Response by experimentally showing the cases where Traditional
Demand Response produces peaks in the consumption potentially exceeding the generation capacity of the utility, and
how the problem could be mitigated using Sustainable Demand Response. We showed that our ILP provides near
exact solutions even in the cases where the existing heuristics produce unbounded errors. We also provided fast

√
2-

factor approximation algorithm which returns approximately optimal DR strategies in O(1) time and a Polynomial Time
Approximation Algorithm for approximating the ILP. We developed a novel ILP formulation that explicitly accounts for
switching overhead and solves the sustainable DR problem.

In future work, we will focus on associating cost functions to strategy switching. We will also incorporate a strategy
transition matrix in our formulation which determines what strategy transitions are possible for a customer at any given
interval of time.
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