CSim: A MOS Switch-Level Simulator

Fangzhou Wang, Sandeep K. Gupta

Computer Engineering Technical Report Number CENG-2016-03

Ming Hsieh Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089

December 2016

CSim: A MOS Switch-Level Simulator

Fangzhou Wang

Sandeep K. Gupta

Ming Hsieh Department of Electrical Engineering Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, USA 90089

fangzhow@usc.edu

ABSTRACT

We develop a new switch-level simulator, CSim, for MOS
transistor cells. CSim simulates cells without circuit pa-
rameters, such as the sizing of transistors. To tackle the
challenges caused by the lack of circuit parameters, a new
transistor-level levelization algorithm is developed. SPICE
simulator is used as reference simulator, CSim is accurate in
a sense that the simulation results for a cell are consistent
with SPICE simulation results for any transistor sizing con-
figurations. The program was tested on all possible cells up
to 4 transistors and was able to report accurate results for
all levelizable cells.

1. INTRODUCTION

A slowdown in benefits of CMOS scaling motivates re-
searchers to explore new materials and physical phenomena
to develop new design alternatives. While it took us more
than three decades to develop a design methodology based
on modeling, exploration, and optimization for the CMOS
technology before we can fully harness its benefits, the de-
velopment cycle for post-CMOS alternatives needs to be far
more compressed. Hence, it is imperative to rapidly exploit
promising post-CMOS technologies. We need to discover
a rich set of design primitives, or cell libraries without be-
ing heavily influenced by CMOS designs. Our objective is
to develop a completely new approach based on computer-
assisted, data-driven, and yet human-in-loop systematic ex-
plorations to enable fast discoveries that help rapidly har-
ness the benefits of emerging technologies. Our proposed
approach is significantly beyond traditional CAD, where al-
gorithmic innovations are used to harness existing knowl-
edgebase. What we proposed is a computer-aided approach
that not only precedes the cells, principles, and methods, it
actually helps in their discovery. Hence, to distinguish from
CAD as we know it, we call what we propose to develop
as Computer-Aided Discovery, or CADis for short. CADis
uses a paradigm of successive-refinement of computer-aided
tools for rapid discovery, with humans-in-loop being assisted
by the tools and the data generated by the tools to rapidly
make refinements and discoveries. Figure 1 shows a top-
level view of CADis. It consists of three parts: (1) cell
enumerator, (2) cell simulator, and (3) cell selector. A cell
enumerator generates all possible configurations for a given
number of components, a cell simulator is designed to gen-
erate accurate results based on the limited cell configuration
information provided by the cell enumerator, a cell selector
selects promising cells based on certain criteria.

We developed our first version of CADis for MOS to test

University of Southern California
Los Angeles, USA 90089

sandeep@usc.edu

Devices
Enumerator

Simulation models

for devices
e o o o oo s o,
| .
: Simulator
Selector No
Is a cell superior to other .
cells (including previously Discard

known ones)?

Yes I Simulation

|
|

Logic cells v results : em
Added to the library |

Figure 1: A top-level view of CADis

our proposed framework. An enumerator is developed to
enumerate all possible distinct cell configurations. Though
the complexity for topology enumeration is high, it is still
manageable for small number of transistors. However, enu-
merating all possible transistor sizings would create astro-
nomical number of cells that are hardly manageable. Thus,
our cell enumerator only enumerates cell topology configu-
rations. A cell simulator is used to compute the boolean
function implemented by the enumerated cells. However,
detailed circuit parameters are required by the existing sim-
ulators such as SPICE[1]. With the limited information
provided by our enumerator, we decided to use switch-level
simulators. The existing switch-level simulators such as IR-
SIM[2] would also require transistor sizing information to
compute the strengths of transistors. Thus, a special switch-
level simulator needs to be implemented.

In this report, we develop a special cell simulator to an-
alyze astronomical numbers of cells and report accurate re-
sults.

2. MAIN CHALLENGES

A specially designed simulator enables us to analyze the
very large number of cell configurations generated by our cell
enumerator. Qur simulator is required to provide accurate
simulation results based on the limited information provided
in the cell configuration. We use SPICE simulator as our ref-
erence simulator. That is, if the simulation results provided
by our simulator are consistent with the SPICE simulation
results, then the simulation result of our simulator is accu-
rate.

Since we do not have the information about transistor
sizes, we do not know the value of important circuit-level
parasitics, such as capacitances of transistor gates and dif-
fusion regions and the above consistency requirement must
be satisfied for all possible combinations of transistor sizes.
This is also one of the reasons for why we cannot use SPICE
simulator to analyze cells generated by our cell enumerator.
Without the sizing information, we cannot compute tim-
ing values and face many challenges. First, without timing
information, only steady-state logic response can be com-
puted. Second, if steady-state responses vary depending on
the precise timing of various transients, then our simulator
cannot report a specific steady-state response.

In addition to the limited information, another primary
challenge for the simulator is the bidirectionality of the tran-
sistor channel. Every transistor channel is bidirectional with
the only exception being when one of the diffusion regions
of the transistor is connected to VDD, GND, or a primary
input (each of these are assumed to be stronger than any
internal node). This requires that (1) if an internal circuit
node (including the output node) is connected to the diffu-
sion region of one or more transistor, then the value at the
diffusion region cannot be computed until the gate values are
known for all these transistors, and (2) if two internal nodes
n1 and ng are connected to each other through a transistor
channel, then the values of n1 and ne must be computed at
the same time.

Hence, we need to implement a special simulator that can
perform simulation using only transistor-level netlist infor-
mation and can tackle the challenges of transistor channels
without assuming any transistor sizes.

3. MOS CELL SIMULATOR

In order to tackle the challenges of limited information
and bidirectionality of the channel of a transistor, we de-
sign a new transistor-level levelization algorithm. This new
levelization approach guarantees the correctness of our sim-
ulation results by identifying the subset of cells for which
our cell simulator can accurately compute the steady-state
response. If a cell is levelizable, then (1) the level of dif-
fusion region of a transistor should always be at least one
level greater than the gate of the transistor, and (2) for any
transistor, both of its diffusion region should be at the same
level. The only exception for these is that one of the diffu-
sion region of the transistor is connected to VDD, GND, or
primary input.

Our new levelization algorithm is shown in Algorithm 1.
All the cell configurations that can be levelized by this algo-
rithm hold the following crucial properties which enable our
simulator to compute the steady-state response without the
information about transistor sizes, hence without any infor-
mation about transistor strengths and delays. Our simula-
tion proceeds level by level, so it is guaranteed to provide
correct steady-state response, if the cell can be levelized.

LEMMA 1. For a given transistor, each of its diffusion
regions will always be assigned a level that is at least one
level higher than the level of the transistor’s gate. The only
exception are cases where the node that contains the diffusion
region also contains a cell input, VDD, or GND.

Proof: If the node that contains the diffusion region also
contains a cell input, VDD, or GND, then that diffusion

Algorithm 1: An outline of levelization algorithm

1 Phase - Initialization

2 Initialize level=undefined to every terminal of every
transistor and every node

3 Pass -0

4 For every node that contains a cell input, VDD, or
GND, assign level=0 to every gate/diffusion region in
the set and assign level=0 to this node.

5 Pass - i

6 repeat

7 foreach transistor gate that is assigned a new level

j in the previous pass do

8 Assign level j+1 to each of its diffusion regions,

and then assign the nodes that contains the

diffusion regions a level that is maximum of the

diffusion regions in the set. Update all other

nodes that have channel connections to this

node with the same level of this node. Update

all the transistor gates that are contained in

these modified nodes.

9 end

10 until until no change is made during the iteration or i
is greater than the number of transistors in the cell;

11 Phase - Check

12 If all nodes in the configuration have been assigned a
level and the maximum count is not reached, then the
levelization is completed successfully, otherwise, the
levelization fails.

region will be assigned as level = 0. Otherwise, the leveliza-
tion algorithm will assign level j+4 1 to the diffusion region if
the gate is at level j. Since the levelization algorithm even-
tually chooses the highest level while updating the level of
an internal node or the output node, the level of a diffusion
region will remain j 4+ 1 or increase. Hence, the level as-
signed to each diffusion region of a transistor will always be
at least one level higher than the level of its gate (except for
the above special case).

LEMMA 2. If a node Ngq contains a diffusion region of
transistor t and a node Ny contains the gate terminal of
transistor t, then Nq is at least one level higher than Ng,
except the case in which Ng also contains a cell input, VDD,
or GND.

Proof: By Lemma 1, each diffusion region of transistor ¢
is always at least one level high than the gate terminal of ¢.
According to our levelization algorithm, a node is assigned
a level that is the maximum of the diffusion regions in the
set. Hence, Ny is at least one level higher that Ny.

LEMMA 3. Within a node, the level of any gate terminal
that belongs to the node is the same as the level of the diffu-
sion region which has the highest level.

Proof: In our levelization algorithm, a gate terminal is
assigned a level that is the maximum of the diffusion regions
in the set.

LEMMA 4. If a node Ny contains the gate terminal of a
transistor t, then its value cannot be affected by a node Ny
which contains one of the diffusion regions of t.

Proof: When processing the nodes at level j, the simu-
lation algorithm would not have updated the value of the

nodes at level j + 1 or higher. If N, can be affected by Ny,
then Ny should have a level that is higher than or equal to
Ng4. However, by Lemma 2, Ny is at least one level higher
than Ny, hence the value of N, cannot be affected by Ng.

LEMMA 5. For any transistor, the node containing its dif-
fusion regions are at the same level. The only exception is
that one of the diffusion region is connected VDD, GND, or
primary nput.

Proof: In our levelization algorithm, all nodes that have
channel connections with each other are updated to the same
level.

THEOREM 6. Our simulation algorithm provides correct
steady-state respond if the cell can be levelized.

Proof: Our simulation proceeds level by level, within each
level it first gathers all the values of the nodes in that level
and then computes the steady-state values for those nodes.
So it first takes all the nodes that are at level 0 (which are
VDD, GND, and Inputs), updates their values, and then
moves to the transistors whose gates are known and updates
the status of these transistors. Hence, the simulation process
would update all level 1 nodes. If they are at level 1, then
by Lemma 2, the status is known for all the transistors that
are driving them. According to the levelization algorithm,
all the other nodes that can affect its value are either from
the same level or connected to VDD, GND, or input, so the
values at the nodes at level 1 can be calculated. By Lemma
3 and 4, diffusion nodes can only affect either those diffusion
nodes that are at the same level or transistor gates that are
driven by these. Hence, as the simulation proceeds from low
level to high level it eventually computes the steady-state
response at the output of the circuit.

When we started to build the simulator, we only granted
ourselves to the switch-level model of the transistor without
any other detailed device characteristics. Since at the be-
ginning of our exploration, the number of transistors being
enumerated is small, we were able to exhaust all sizing op-
tions for a small portion of the generated cell so that SPICE
simulation can be run. After running simulations using our
simulator for small cells, we verified the simulation results
with the SPICE results. There were mismatches between the
simulation results for several cells. We then further inves-
tigated those cells and found out that the mismatches were
caused by signals passing via cascaded transistors. This lead
to the discovery of weak signal property of the MOS devices.
Then we expanded the value set of our simulator to not only
include strong logic 1 and strong logic 0, but also include
weak logic 1 (denoted as i) and weak logic 0 (denoted as
0). A weak logic 1 will be generated if a strong logic 1 is
passed through a conducting NMOS, a weak logic 1 will be-
come unknown if it is passed through a conducting NMOS
which is turned on by weak logic 1. Similar property holds
for PMOS devices. By enhancing our simulator with the
notion of weak signals, all the simulation results generated
by CSim match with the SPICE simulation results.

Extensions implemented: With a value set which con-
tains strong logic 0, strong logic 1, weak logic 0 (0), weak
logic 1 (i), and U, where U denotes unknown, our simu-
lator can be accurate. However, in many cases this would
produce too many U values at the output. By using spe-
cial composite values such as R to denote ratioed value and
Z to denote high — impedance value, the precision of our

Vel o1]|o|i|R|Z]|U

0 [o|R|O|R|R|O]|U

1 |[R[1|R|[1T|R|1]U VDD VDD

o [o[r][o[rR[R[o]U e
e v TLT LY
zZ|[o|1|o|i|R|Z]|U \E
U|ufu|u|lu|u|u]u

Figure 2: Value at node Z given value of X and Y
when both transistors are conducting.

simulator is improved while guaranteeing correctness. If the
gate of a transistor is R then the value of the two diffusion
regions will become R. If the gate of a transistor is U or Z,
then the two diffusion regions of the transistor will become
U. As shown in Fig. 2, if both logic 0 and logic 1 are af-
fecting the value of a node through channels of conducting
transistors or R is affecting the node through a conducting
channel, then R will be generated for that node. If U is af-
fecting a node through a conducting channel, then the value
of that node will become U. Z can be affected by any other
value, so all the nodes are initialized as Z.

4. CONCLUSION

We have developed a new switch-level simulator for MOS
technology to analyze the very large number of cell config-
urations generated by our cell enumerator. Since the cell
configurations only have topology information (i.e., circuit
parameters such as transistor sizing are not available), a
new transistor-level levelization algorithm was developed to
tackle the challenges of limited information and bidirection-
ality of the channel of a transistor.

Our simulator was able to compute accurate steady state
respond for all cells that can be levelized by the levelization
algorithm. SPICE simulations were performed on the same
set of cells with a set of extreme sizing configurations. All
simulation results computed by CSim match with the SPICE
simulation results in a sense that when CSim reports logic
0 or logic 1, the result is consistent for any sizing for SPICE
simulation.

Since our existing levelization algorithm levelizes cells with-
out assuming any input pattern, cells that can be levelized
under certain input patterns are excluded by the algorithm.
In addition to this, even though some cyclic cells cannot
be levelized, the steady state respond can still be computed
(e.g., a cell consists of two back to back inverters). We are
enhancing our levelization algorithm and our simulator to
be able to simulate cyclic cells with certain characteristics
and cells that can be levelized under certain input patterns
to expand the scope of CSim.

S. REFERENCES

[1] K. Kundert. The Designer’s Guide to Spice and
Spectre®. Springer Science & Business Media, 2006.

[2] A. Salz and M. Horowitz. Irsim: An incremental MOS
switch-level simulator. In Design Automation, 1989.
26th Conference on, pages 173-178. IEEE, 1989.

