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I. INTRODUCTION

In team decision problems, there are multiple decision-makers/team members, each controlling different
actions or decision variables and having access to different information. However, there is a single common
goal or cost function for all members. A team decision problem is referred to as static if the information
available to each member is independent of the actions of other members. For static team problems
with Gaussian random variables, linear observations and quadratic, strictly convex cost functions, it has
been shown that there exists a unique optimal decision strategy and that the optimal strategy is a linear
function of the members’ information [1], [2], [3]. In this report, instead of assuming that the quadratic
cost function is strictly convex, we assume that it is only convex. Hence, the results of [1], [2], [3] cannot
be directly applied here.

We show that for static team problems with Gaussian random variables, linear observations and quadratic,
convex cost functions, linear decision strategies are optimal if a certain linear system of equations has a
solution.

II. NOTATION

Uppercase letters denote random variables/vectors and their corresponding realizations are represented
by lowercase letters. Uppercase letters are also used to denote matrices. Almost sure equality between
random variables X and Y is denoted by X

a.s.

= Y . E[·] denotes the expectation of a random variable. For
collection of functions g, Eg[·] denotes that the expectation depends on the choice of functions in g. When
random variable X is normally distributed with mean µ and variance ⌃, it is shown as X ⇠ N (µ,⌃).

For a sequence of column vectors X, Y, Z, ..., the notation vec(X, Y, Z, ...) denotes vector [X|, Y |, Z|, ...]|.
Furthermore, the vector vec(X1, X2, ..., Xt

) is denoted by X1:t. The transpose, Moore-Penrose pseudo-
inverse, and trace of matrix A are denoted by A|, A†, and tr(A), respectively. I

n

denotes a n⇥n identity
matrix. We omit the subscripts when dimensions can be inferred from context.

A matrix can be partitioned as A =
h
A|

r,1 A|
r,2 . . . A|

r,n

i|
and A =

h
A

c,1 A
c,2 . . . A

c,n

i
where

the dimensions of A
r,i

and A
c,i

are inferred from the context. Furthermore, the vectorization of a m⇥ n
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matrix A is denoted by A
v

and is formed by stacking all the columns of A into a column vector, that is,
if A =

h
A

c,1 A
c,2 . . . A

c,n

i
where each A

c,j

is an m⇥ 1 matrix, then,

A
v

=

2

66664

A
c,1

A
c,2
...

A
c,n

3

77775
.

If A is an m ⇥ n matrix and B is a p ⇥ q matrix, then the Kronecker product A ⌦ B is a mp ⇥ nq

block matrix formed as follows,

A⌦ B =

2

66664

a1,1B a1,2B · · · a1,nB

a2,1B a2,2B · · · a2,nB
...

... . . . ...
a
m,1B a

m,2B · · · a
m,n

B

3

77775

where a
i,j

is the entry in the i-th row and j-th column of matrix A. For two matrices A and B with the
same dimension m⇥ n, the Hadamard product A� B is a matrix of the same dimension and is defined
as,

A� B =

2

66664

a1,1b1,1 a1,2b1,2 · · · a1,nb1,n

a2,1b2,1 a2,2b2,2 · · · a2,nb2,n
...

... . . . ...
a
m,1bm,1 a

m,2bm,2 · · · a
m,n

b
m,n

3

77775

where a
i,j

and b
i,j

are the entry in the i-th row and j-th column of matrices A and B, respectively.
If set A is subset of set B, it is denoted by A ⇢ B.

III. TEAM MODEL

Consider a team composed of n members denoted by M = {1, 2, ..., n}. Let ⌅ 2 Rd⇠ be a random
vector that represents all the uncertainties of the external world which are not controlled by any of the
team members. ⌅ is a Gaussian random vector: ⌅ ⇠ N (0,⌃), where ⌃ is a positive definite matrix. The
probability distribution of ⌅ is assumed to be known to all members. The information available to member
i is denoted by Zi 2 Rdzi which is a known linear function of ⌅:

Zi = H i⌅ 8i 2 M (1)

where H i is a d
z

i ⇥ d
⇠

matrix and is known to all members. Clearly, Zi ⇠ N (0, H i⌃H i|). We assume
that H i⌃H i| is positive definite.

Member i chooses control action U i 2 Rdui as a function of Zi, that is, U i = �i(Zi) where �i is the
control strategy of member i. We define the class of admissible control strategies for member i, denoted
by �i, as the set of all Borel measurable functions �i : Rdzi ! Rdui which have finite second moments,
that is, E[�i(Zi)|�i(Zi)] < 1. The collection � = (�1, �2, . . . , �n) where � 2 � = �1 ⇥ �2 ⇥ . . . ⇥ �n
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is called the control strategy of the team (or team strategy). The cost function C(⌅, U) is a quadratic
function of ⌅ and U = vec(U1, U2, . . . , Un):

C(⌅, U) = (M⌅+NU)|(M⌅+NU) = U|RU + 2U|S⌅+ ⌅|Q⌅ (2)

where R = N|N , S = N|M , and Q = M|M . The dimensions of N and M are d
s

⇥
P

n

i=1 dui and
d
s

⇥ d
⇠

respectively. The performance of the control strategy � is measured by the expected cost

J (�) = E�
⇥
C(⌅, U)

⇤
. (3)

The optimization problem we consider is defined as follows.

Problem 1. For the static team problem described above, find team control strategy � that minimizes the
expected cost given by (3).

If R is positive definite, it has been shown that there exists a unique optimal decision strategy and that
the optimal strategy is a linear function of the members’ information [1], [2], [3]. In this report, we do
not assume that R is positive definite. Hence, the results of [1], [2], [3] cannot be applied directly.

Remark 1. The cost function is defined in terms of ⌅ and the vector of all decisions, U = vec(U1, U2, . . . , Un).
For the sake of convenience, we will at times write the cost C(⌅, U) as C(⌅, U1, . . . , Un). When the
meaning is clear from the context, we may also rearrange the decisions in C(⌅, U1, . . . , Un).

IV. OPTIMAL STRATEGIES

For the team problem formulated above, suppose a team strategy � 2 � is such that

• J (�) is finite,
• The partial derivatives in (4) are well-defined for all i 2 M,
• For each i 2 M and for all realizations zi of Zi, define

F
z

i(ui) := E
h
C
�
⌅, {�j(Zj)}

j2M\{i}, u
i

�
|Zi = zi

i
.

F
z

i(ui) is the conditional expected value of the cost given Zi = zi if all members j 6= i use strategy
�j and member i takes the action ui. Suppose � satisfies the following equations:

r
u

iF
z

i(ui)��
ui=�i(zi)

= 0, i 2 M. (4)

A team strategy satisfying the above three conditions is called stationary [3].

Sufficient Conditions for Optimality of Stationary Strategies: [Theorem 2.6.5 [3]] Consider a static
team problem satisfying the following conditions:

1) The cost function C(⇠, u) is convex and continuously differentiable in u for all realizations ⇠ of ⌅,
2) J (�) is bounded from below for all � 2 �,
3) �i is a Hilbert space for each i 2 M,
4) J (�) < 1 for all � 2 �,
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5) For all realizations ⇠ of ⌅ and u = (u1, . . . , un) of U , we define D
i

�
⇠, u1, . . . , un

�
..= r

u

iC
�
⇠, u1, . . . , un

�
.

Then, for all � 2 �,

E[D
i

�
⌅, �1(Z1), . . . , �n(Zn)

�
|Zi] 2 �i 8i 2 M. (5)

Then, if �⇤ 2 � is a stationary strategy, it is also optimal.

Lemma 1. Problem 1 satisfies all five aforementioned conditions for optimality of stationary strategies.

Proof. See Section VI.

V. FINDING A STATIONARY STRATEGY

Lemma 1 implies that if we can find a stationary strategy, then it is guaranteed to be optimal. We
consider linear control strategies of the form �i(Zi) = ⇧iZi for all i 2 M. According to (4), this control
strategy is stationary, if it satisfies the following equations for all realizations zi of Zi,

r
u

i E
h
C
�
⌅, {⇧jZj}

j2M\{i}, u
i

�
|Zi = zi

i
��
ui=⇧izi

= 0, i 2 M. (6)

First, note that using (2), we have,

C
�
⌅, {⇧jZj}

j2M\{i}, u
i

�
= ui|R

ii

ui + 2ui|
X

j2M\{i}

R
ij

⇧jZj +
X

j,k2M\{i}

Zj|⇧j|R
jk

⇧kZk + 2ui|S
r,i

⌅

+ 2
X

j2M\{i}

Zj|⇧j|S
r,j

⌅+ ⌅|Q⌅. (7)

Then,

E
h
C
�
⌅, {⇧jZj}

j2M\{i}, u
i

�
|Zi = zi

i
= ui|R

ii

ui + 2ui|
X

j2M\{i}

R
ij

⇧j E[Zj|Zi = zi]

+
X

j,k2M\{i}

E[Zj|⇧j|R
jk

⇧kZk|Zi = zi]

+ 2ui|S
r,i

E[⌅|Zi = zi] + 2
X

j2M\{i}

E[Zj|⇧j|S
r,j

⌅|Zi = zi]

+ E[⌅|Q⌅|Zi = zi], (8)

r
u

i E
h
C
�
⌅, {⇧jZj}

j2M\{i}, u
i

�
|Zi = zi

i
��
ui=⇧izi

= 2R
ii

⇧izi + 2
X

j2M\{i}

R
ij

⇧j E[Zj|Zi = zi]

+ 2S
r,i

E[⌅|Zi = zi]. (9)

The vectors ⌅, Zi, i 2 M, are jointly Gaussian. Consequently,

E[Zj|Zi = zi] = ⌃
Z

j
Z

i⌃�1
Z

i
Z

iz
i 8j 2 M\ {i}

E[⌅|Zi = zi] = ⌃⌅Zi⌃�1
Z

i
Z

iz
i (10)
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where,

⌃
Z

j
Z

i = E[Zj(Zi)|] = E[Hj⌅⌅|H i|] = Hj⌃H i| 8j 2 M\ {i},

⌃⌅Zi = E[⌅Zi|] = E[⌅⌅|H i|] = ⌃H i|. (11)

Considering (9) and the fact that E[Zj|Zi = zi] and E[⌅|Zi = zi] are as calculated in (10), the
conditions of (6) can be simplified as follows,

R
ii

⇧izi +
X

j2M\{i}

R
ij

⇧j⌃
Z

j
Z

i⌃�1
Z

i
Z

iz
i + S

r,i

⌃⌅Zi⌃�1
Z

i
Z

iz
i = 0 8i 2 M. (12)

Since (12) should be true for all realization zi of Zi, we get,
nX

j=1

R
ij

⇧j⌃
Z

j
Z

i⌃�1
Z

i
Z

i = �S
r,i

⌃⌅Zi⌃�1
Z

i
Z

i 8i 2 M. (13)

We rewrite this result in the following Lemma.

Theorem 1. The linear control strategy �j(Zj) = ⇧jZj for all j 2 M is team optimal for Problem 1 if
the following equations have a solution for ⇧j , j 2 M,

nX

j=1

R
ij

⇧j⌃
Z

j
Z

i = �S
r,i

⌃⌅Zi 8i 2 M. (14)

Proof. By multiplying both sides of (13) from right side by ⌃
Z

i
Z

i , we can get (14). If (14) has a solution
for ⇧j , j 2 M, then the strategy �j(Zj) = ⇧jZj , j 2 M, satisfies the conditions for being a stationary
strategy. Since we have shown that Problem 1 satisfies the sufficient conditions for optimality of stationary
strategies, we can conclude that the strategy �j(Zj) = ⇧jZj , j 2 M, is team optimal.

Next, we provide an example where the system of equations of (14) has a solution.

Example 1. Consider a team problem with 2 members. The information available to team members is as
follows,

Z1 = H1⌅ =
h
1 0

i
⌅, Z2 = H2⌅ =

h
1 1

i
⌅

where ⌅ ⇠ N (0, I). Hence,

⌃⌅Z1 =

"
1

0

#
, ⌃⌅Z2 =

"
1

1

#
, ⌃

Z

1
Z

1 = 1, ⌃
Z

1
Z

2 = ⌃
Z

2
Z

1 = 1, ⌃
Z

2
Z

2 = 2.

Member i = 1, 2, chooses control action U i 2 R as a function of Zi, that is, U i = �i(Zi), where �i

is the control strategy of member i. The performance of control actions U1 and U2 is measured by the
following cost function

C(⌅, U1, U2) = (M⌅+ U1 + 2U2)2 = (
h
1 1

i
⌅+ U1 + 2U2)2

=
h
U1 U2

i
R

"
U1

U2

#
+ 2

h
U1 U2

i
S⌅+ ⌅|

"
1 1

1 1

#
⌅
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where R =

"
1 2

2 4

#
and S =

"
1 1

2 2

#
. Note that R is not positive definite.

According to Theorem 1, the linear control strategy U j = ⇧jZj , j = 1, 2, is team optimal if the
following equations have a solution for ⇧1 and ⇧2,

⇧1 + 2⇧2 = �1

2⇧1 + 8⇧2 = �4.

By solving the above system of equations, ⇧1 and ⇧2 can be found to be
"
⇧1

⇧2

#
=

"
1 2

2 8

#�1 "
�1

�4

#
=

"
0

�0.5

#
.

Therefore, the control strategies U1 = 0 and U2 = �0.5Z2 are team optimal.

Remark 2. The system of equations in (14) can be written as,

NX

j=1

(⌃
Z

i
Z

j ⌦R
ij

)(⇧j)
v

= (�S
r,i

⌃⌅Zi)
v

i = 1, 2, . . . , N

where (⇧j)
v

denotes the vectorization of the matrix ⇧j formed by stacking the columns of ⇧j into a
single column vector and ⌦ is the Kronecker product. Let’s define Gij = ⌃

Z

i
Z

j ⌦ R
ij

, Y j = (⇧j)
v

and
W i = (�S

r,i

⌃⌅Zi)
v

. Note that Gij is a d
u

id
z

i ⇥ d
u

jd
z

j matrix and Y j and W i are column vectors with
the size of d

u

jd
z

j and d
u

id
z

i , respectively. Then, we have

NX

j=1

GijY j = W i, i = 1, 2, . . . , N,

which can be written as GY = W , where

G =

2

66664

G11 . . . G1N

G21 . . . G2N

... . . . ...
GN1 . . . GNN

3

77775
, Y =

2

66664

Y 1

Y 2

...
Y N

3

77775
, W =

2

66664

W 1

W 2

...
WN

3

77775
.

Note that Y and W are column vectors both with the size of
P

N

i=1 duid
z

i and G is a
P

N

i=1 duid
z

i ⇥
P

N

i=1 duid
z

i square matrix. All solutions of GY = W (if any exist) are given as Y = G†W +(I�G†G)T,

where T is any arbitrary vector with the same size as vector W and G† is the Moore-Penrose pseudo-
inverse of G. A necessary and sufficient condition for any solution(s) to exist is that GG†W = W .

In the case of Example 1,

G =

"
⌃

Z

1
Z

1 ⌦R11 ⌃
Z

1
Z

2 ⌦R12

⌃
Z

2
Z

1 ⌦R21 ⌃
Z

2
Z

2 ⌦R22

#
=

"
1 2

2 8

#
, Y =

"
⇧1

⇧2

#
, W =

"
�S

r,1⌃⌅Z1

�S
r,2⌃⌅Z2

#
=

"
�1

�4

#
.
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Since G is invertible, we have

G† = G�1 =

"
2 �0.5

�0.5 0.25

#
.

Furthermore, since GG†W =

"
�1

�4

#
= W , we know the solution(s) exist and are given by,

Y =

"
⇧1

⇧2

#
= G†W + (I �G†G)T =

"
0

�0.5

#

which is the same as our previous result.

Lemma 2. Let an m⇥m matrix A be partitioned into the m
i

⇥m
j

blocks Aij and n⇥ n matrix B into
the n

k

⇥ n
l

blocks Bkl where
P

i

m
i

= m,
P

j

m
j

= m,
P

k

n
k

= n, and
P

l

n
l

= n.
1) The ij-th block of Khatri-Rao product of A and B, denoted by A ⇤ B, is defined as (A ⇤ B)ij =

Aij⌦Bij which is the m
i

n
i

⇥m
j

n
j

sized Kronecker product of Aij and Bij [4]. Then, the following
equalities hold [5]:

a) (A ⇤B)|(A ⇤B) = (A|A)� (B|B)

b) (A ⇤B)† = [(A|A)� (B|B)]†(A ⇤B)|

where � denotes the Hadamard product.
2) If A is a symmetric positive definite matrix and B is a symmetric positive semi-definite matrix such

that Bkk block matrix is positive definite for every k, then the Hadamard product of A and B is
positive definite [1].

Remark 3. Let’s denote the matrix composed of ⌃
Z

i
Z

j = H i⌃(Hj)| as its ij-th block by ⌃̄, then
G = ⌃̄ ⇤ R. According to Lemma 2, the Moore-Penrose pseudo-inverse of G can be found as G† =

[(⌃̄|⌃̄)� (R|R)]†(⌃̄ ⇤R)|.

Remark 4. Note that ⌃̄ is a symmetric positive semi-definite matrix because it can be written as

⌃̄ =

2

66664

H1

H2

...
HN

3

77775
⌃
h
H1 H2 . . . HN

i
.

Furthermore, we assumed that ⌃̄ii = H i⌃(H i)| is positive definite for i = 1, 2, . . . , N . If R is a symmetric
positive definite matrix [2], then according to Lemma 2, (⌃̄|⌃̄)�(R|R) is positive definite and invertible.
Furthermore, G is symmetric and according to Lemma 2, G|G = G2 = (⌃̄|⌃̄) � (R|R). Therefore, G2

and consequently G are invertible, that is G†G = GG† = I . Then, according to Remark 2, GY = W

has the unique solution of Y = G�1W . In order words, in this, there exists a unique linear stationary
strategy.

VI. PROOF OF LEMMA 1

We verify the five conditions for optimality of stationary strategies below:
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1) In the cost function of (2), R is positive semi-definite because for any vector v, v|Rv = v|N|Nv =

(Nv)|(Nv) � 0. Hence, C(⇠, u) is convex in u.
It is easy to verify that for all realizations u of U and ⇠ of ⌅, r

u

C(⇠, u) exists and is continuous.
2) J (�) is bounded from below for all � 2 � because for any realization ⇠ of ⌅,

C
�
⇠, �1(z1), . . . , �n(zn)

�
=

⇣
M⇠ +

nX

i=1

N
c,i

�i(zi)
⌘|⇣

M⇠ +
nX

i=1

N
c,i

�i(zi)
⌘
� 0

where zi = H i⇠ for all i 2 M. Hence, J (�) = E[C
�
⌅, �1(Z1), . . . , �n(Zn)

�
] � 0.

3) Note that �i can be considered as the space of all Borel measurable functions �i : Rdzi ! Rdui ,
defined on the probability space {Rdzi ,B(Rdzi ), P}1, which have finite second moments, that is,
E[�i(Zi)|�i(Zi)] < 1. Let �i = vec(�i

1, �
i

2, . . . , �
i

dui
) where �i

l

: Rdzi ! R for l = 1, 2, . . . , d
u

i .
Then, the Borel measurability of �i

l

for l = 1, 2, . . . , d
u

i results from the Borel measurability of �i.
Furthermore, if function �i has a finite second moment, functions �i

l

for l = 1, 2, . . . , d
u

i have finite
second moments, that is E[

�
�i

l

(Zi)
�2
] < 1.

Denote by �i

l

the space of all Borel measurable functions �i

l

: Rdzi ! R defined on the probability
space {Rdzi ,B(Rdzi ), P} and with the finite second moments. Then �i =

Q
dui

l=1 �
i

l

. Now consider
the space �i

l

endowed with the inner product hf
l

, g
l

i = E[f
l

(Zi)g
l

(Zi)], associated norm kf
l

k =

(hf
l

, f
l

i)1/2, and metric kf
l

� g
l

k where f
l

, g
l

2 �i

l

. Then, �i

l

is a Hilbert space for l = 1, 2, . . . , d
u

i

[6]. For f, g 2 �i, let’s define hf, gi := E[f(Zi)|g(Zi)] be a mapping form �i ⇥ �i to R. Then,

hf, gi = E[f(Zi)|g(Zi)] = E[vec
�
f1(Z

i), f2(Z
i), . . . , f

dui
(Zi)

�|vec
�
g1(Z

i), g2(Z
i), . . . , g

dui
(Zi)

�
]

= E[
duiX

l=1

f
l

(Zi)g
l

(Zi)] =

duiX

l=1

E[f
l

(Zi)g
l

(Zi)] =

duiX

l=1

hf
l

, g
l

i. (15)

Since hf
l

, g
l

i for l = 1, 2, . . . , d
u

i is an inner product, we can easily conclude that hf, gi is an inner
product. Hence, �i is a vector space equipped with hf, gi = E[f(Zi)|g(Zi)] as an inner product and
kfk = (hf, fi)1/2 as the corresponding norm. Furthermore, for f, g 2 �i, we can define the metric
(distance) of kf � gk. Therefore, �i is a pre-Hilbert space.
In order to be a Hilbert space, we need the space �i to be complete. That is, we need to show that
every Cauchy sequence in �i has a limit point that belongs to �i. To show this, let {fn} ⇢ �i be
a Cauchy sequence, that is kfm � fnk ! 0 as m,n ! 1. This implies that {fn

l

} is a Cauchy
sequence in �i

l

for l = 1, 2, . . . , d
u

i because,

kfm � fnk2 = hfm � fn, fm � fni =
duiX

l=1

hfm

l

� fn

l

, fm

l

� fn

l

i =
duiX

l=1

kfm

l

� fn

l

k2

and

kfm � fnk ! 0 as m,n ! 1 =) kfm

l

� fn

l

k ! 0 as m,n ! 1 8l = 1, 2, . . . , d
u

i .

1P is the probability measure induced by the Gaussian density of Zi.
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Since �i

l

is a Hilbert space, the Cauchy sequence {fn

l

} converges to a limit point f
l

2 �i

l

(that is
kfn

l

� f
l

k ! 0 as n ! 1) for l = 1, 2, . . . , d
u

i . If we define f = vec(f1, f2, . . . , fdui ), then f 2 �i

because according to (15)

hf, fi =
duiX

l=1

hf
l

, f
l

i < 1.

Furthermore, {fn} converges to f because

kfn � fk2 = hfn � f, fn � fi =
duiX

l=1

hfn

l

� f
l

, fn

l

� f
l

i =
duiX

l=1

kfn

l

� f
l

k2

and
kfn

l

� f
l

k ! 0 as n ! 1 8l = 1, 2, . . . , d
u

i .

Therefore, �i is a Hilbert space.
4) To show that J (�) < 1 for all � 2 �, note that J (�) can be written as follows,

J (�) = E[C(⌅,�)] = E
h h

�1(Z1)| �2(Z2)| . . . �n(Zn)|
i
R

2

66664

�1(Z1)

�2(Z2)
...

�n(Zn)

3

77775

i

+ 2E[
nX

i=1

�i(Zi)|S
r,i

⌅] + E[⌅|Q⌅]. (16)

Lemma 3. Assume X 2 Rn is a random vector and Q is a deterministic, symmetric positive semi-
definite n⇥ n matrix. Then, there is a non-negative constant ↵ such that E[X|QX]  ↵E

⇥
X|X

⇤
.

Proof. For any vector x, x|Qx  �
max

x|x, where �
max

� 0 is the largest eigenvalue of Q. Taking
expectation of the above inequality proves the lemma.

Let’s define �(Z) := vec
�
�1(Z1), �2(Z2), . . . , �n(Zn)

�
, then the first term of (16) can be written

as E[�(Z)|R�(Z)]. Since R is symmetric positive semi-definite, Lemma 3 implies that for some
↵ � 0,

E[�(Z)|R�(Z)]  ↵E
⇥
�(Z)|�(Z)

⇤
= ↵

nX

i=1

E[�i(Zi)|�i(Zi)] < 1, (17)

where the last inequality is true because E[�i(Zi)|�i(Zi)] < 1 for all i.
For the second term of (16),
���E

⇥ nX

i=1

�i(Zi)|S
r,i

⌅
⇤��� =

���
nX

i=1

E[�i(Zi)|S
r,i

⌅]
��� 

nX

i=1

�
E[�i(Zi)|�i(Zi)]

�1/2�E[(S
r,i

⌅)|S
r,i

⌅]
�1/2

=
nX

i=1

�
E[�i(Zi)|�i(Zi)]

�1/2�E[⌅|S|
r,i

S
r,i

⌅]
�1/2

< 1, (18)
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where the first inequality is true because of Cauchy-Schwarz inequality on the Hilbert space of all
Borel measurable functions from Rd⇠ to Rdui , defined on the probability space {Rd⇠ ,B(Rd⇠), P}2,
which have finite second moments. The second inequality is true because according to Lemma 3,

E[⌅|S|
r,i

S
r,i

⌅]  ↵E[⌅|⌅] = ↵E[tr(⌅|⌅)] = ↵E[tr(⌅⌅|)] = ↵ tr(E[⌅⌅|]) = ↵ tr(⌃) < 1.

(19)

Similarly,using Lemma 3 and (19), the last term of (16), that is E[⌅|Q⌅], can also be shown to be
finite. Therefore, J (�) < 1 for all � 2 �.

5) To show that (5) holds, according to (2), for realizations ⇠ and u of ⌅ and U , D
i

(⇠, u) is as follows,

D
i

(⇠, u) = 2R
ii

ui + 2
X

j2M\{i}

R
ij

uj + 2S
r,i

⇠. (20)

By considering control strategies U i = �i(Zi) for all i 2 M,

E[D
i

�
⌅, �1(Z1), . . . , �n(Zn)

�
|Zi] = 2R

ii

�i(Zi) + 2
X

j2M\{i}

R
ij

E[�j(Zj)|Zi] + 2S
r,i

E[⌅|Zi]. (21)

To show that (21) belongs to �i, it suffices to show that each term in the right hand side of (21)
belongs to �i (since �i is a Hilbert space). Each of these terms is a mapping from Rdzi ! Rdui , to
show that each term belongs to �i, we need to show that it has a finite second moment.
The first term 2R

ii

�i(Zi) 2 �i because according to Lemma 3,

E[�i(Zi)|R|
ii

R
ii

�i(Zi)]  ↵E[�i(Zi)|�i(Zi)] < 1, (22)

where the last inequality is true because �i 2 �i.
The second term in the right hand side of (21) is a linear combination of terms 2R

ij

E[�j(Zj)|Zi]

for j 2 M\ {i} where each term belongs to �i because,

E
h
E[�j(Zj)|Zi]|R|

ij

R
ij

E[�j(Zj)|Zi]
i
 ↵E

h
E[�j(Zj)|Zi]| E[�j(Zj)|Zi]

i

 ↵E
h
E
⇥
�j(Zj)|�j(Zj)|Zi

⇤i
= ↵E

h
�j(Zj)|�j(Zj)

i
< 1, (23)

where the first inequality is true because of Lemma 3, the second inequality holds because of
Jensen’s inequality3, and the last inequality is true because �j 2 �j . Furthermore, the first equality
is true because of smoothing property4. Therefore, the second term in the right hand side of (21)
belongs to �i.
The last term in the right hand side of (21) also belongs to �i because,

E
h
E
⇥
⌅|Zi

⇤|
S|
r,i

S
r,i

E
⇥
⌅|Zi

⇤i
 ↵E

h
E
⇥
⌅|Zi

⇤| E
⇥
⌅|Zi

⇤i
 ↵E

h
E
⇥
⌅|⌅|Zi

⇤i

= ↵E
⇥
⌅|⌅

⇤
= ↵ tr(⌃) < 1, (24)

2P is the probability measure induced by the Gaussian density of ⌅.
3Jensen’s inequality states: If  : R ! R is convex and bounded from below, and if X is a random variable defined on the probability

space (⌦,F , P ), then E[ (X)|H] �  (E[X|H]) where H is any sub �-algebra of F .
4According to smoothing property: If X is a random variable defined on the probability space (⌦,F , P ) and if H is any sub �-algebra

of F , then E[X] = E
⇥
E[X|H]

⇤
.
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where the first and the second inequalities are true because of Lemma 3 and the Jensen’s inequality,
respectively. Furthermore, the first equality is true because of the smoothing property.
Therefore, (21) belongs to �i.
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