

High Throughput Large Scale Sorting on a CPU-FPGA

Heterogeneous Platform

Chi Zhang, Ren Chen, Viktor Prasanna

Computer Engineering Technical Report Number CENG-2015-10

Ming Hsieh Department of Electrical Engineering – Systems

University of Southern California

Los Angeles, California 90089-2562

01 2016

High Throughput Large Scale Sorting on a CPU-FPGA Heterogeneous Platform∗

Chi Zhang, Ren Chen, Viktor Prasanna
Ming Hsieh Department of Electrical Engineering

University of Southern California, Los Angeles, USA 90089
Email: {zhan527, renchen, prasanna}@usc.edu

Abstract—As a fundamental database operation primitive,
sorting requires efficient implementation and high performance
in terms of latency, throughput, and energy consumption.
Recently accelerating sorting using FPGA has been of growing
interest in both industry and academia. However, the supported
size of data set is usually small for FPGA-only sorting designs
due to limited on-chip memory. In this paper, we propose to
speed-up large scale sorting using a CPU-FPGA heterogeneous
platform. We first optimize a fully-pipelined merge sort based
accelerator and employ several such designs working parallel
on FPGA. The partial results from the FPGA are then merged
on the CPU. We target Intel HARP as our experimental
platform incorporating Intel Xeon E5-2600 v2 processors and
Altera Stratix V FPGA. For a range of data set size, we improve
throughput by 2.9x and 1.9x compared with CPU-only and
FPGA-only baselines, respectively. Compared with the state-of-
the-art FPGA implementation for sorting, our design achieves
2.3x throughput improvement.

Keywords-FPGA; Merge sort; Heterogeneous architecture;

I. INTRODUCTION

With the advances of memory technology such as DDR4
and Hybrid Memory Cube [1], [2], the main memory now
is capable of storing large data sets. As a result, in-memory
database becomes feasible [3]. To fully utilize the memory
bandwidth, accelerating in-memory database operations us-
ing dedicated hardware has been studied [4], [5], [6], [3].
Sorting is one of the most fundamental database primitive
operations which requires efficient implementation and high
performance in terms of latency, throughput and memory
bandwidth utilization [7]. Several recent works on acceler-
ating sorting have been proposed on FPGA platforms [4],
[8], [6]. These results show that reconfigurable logic for
accelerating sorting demonstrates competitive performance
compared with multi-core CPUs and GPGPUs. However, the
maximum data set size supported by the FPGA accelerator
is usually small due to the limited available on-chip memory
resource.

Nowadays, heterogeneous architectures incorporating
CPU with FPGA are becoming attractive for achieving large
performance improvements as accelerators continue to raise
the bar for both performance and energy efficiency. Emerg-
ing heterogeneous architectures such as Microsoft Catapult,
Xilinx Zynq and Intel HARP [9], [10], [11], [12] promise
massive parallelism by offering continuing advances in
hardware acceleration through FPGA technology. Advances

∗This work has been funded by US NSF under grant CCF-1018801.
Equipment grant from Intel, Inc. is gratefully acknowledged.

in interconnection bandwidth among heterogeneous devices
also makes data communication much more efficient and co-
operative computation between FPGA and CPU feasible. As
CPU and FPGA are able to communicate through coherent
memory in these platforms, cache hit rate is increased and
overall data communication latency is reduced.

In this paper, to achieve high throughput for sorting large
data sets, we develop a hybrid design for sorting tailored
to a CPU-FPGA heterogeneous platform. In particular, the
key idea is to make CPU the master computation and
dispatching unit while FPGA as an Accelerator Function
Unit (AFU). We develop a merge sort based accelerator
(MSA) which supports processing streaming data. Several
MSAs are employed on the AFU and work in parallel to
exploit the massive data parallelism on FPGA. We fix the
supported data set size of each MSA and fully pipeline them
to achieve high throughput. A complete input data set is
partitioned into several sub data sets; each of them is first
sorted by a MSA. Concurrently, CPU keeps on merging the
sorted sub data sets from FPGA. As a result, computation
threads of CPU and FPGA are able to work in parallel by
overlapping the CPU and FPGA computation. A large shared
memory workspace is allocated for storing large interme-
diate data and reducing the memory usage burden on the
FPGA. Our experimental results show that high throughput
can be sustained using our proposed hybrid design to sort
large data sets. Besides, our design demonstrates significant
performance improvement compared with FPGA-only and
CPU-only baselines. Specific contributions include:

• A high throughput merge sort based hybrid design on
a CPU-FPGA heterogeneous platform.

• A divide and conquer based strategy to exploit the task
parallelism on FPGA and the thread parallelism through
overlapping CPU and FPGA computation.

• Demonstrate detailed system design approach to map
a large scale merge sort tree onto the heterogeneous
CPU-FPGA platform.

• Analysis of the performance improvement and resource
utilization of the hybrid design with FPGA-only and
CPU-only baselines.

• Analysis of the design tradeoffs between system perfor-
mance and resources utilization of the proposed hybrid
design for sorting on Intel HARP.

Input FIFO (Size M/2)

Input FIFO (Size M/2)

M
u
x

Output FIFO (Size M)

Figure 1. FIFO-based 2-to-1 merge unit

2-to-1 Merger 2-to-1 Merger 2-to-1 Merger 2-to-1 Merger

2-to-1 Merger 2-to-1 Merger

2-to-1 Merger

Figure 2. Logical Sort Tree Structure (depth=3)

II. BACKGROUND AND RELATED WORK

The role of sorting is to arrange an array of data in
an ordered sequence for future search or merge. Efficient
sorting algorithms in software have been developed includ-
ing mergesort, heapsort and quicksort. However, software
approaches are often limited by throughput and memory
bandwidth utilization. Recently, several customized hard-
ware designs have been developed to accelerate sorting
operation for high throughput [6], [4], [8]. In this section,
we evaluate several merge sort implementations on hardware
and give a brief introduction on our target CPU-FPGA
heterogeneous platform.

A. FIFO-based Merge Sort Design

Figure 1 shows a FIFO-based balanced 2-to-1 merge unit
commonly used in a merge sort based hardware design. It
assumes the input to be sorted data sequences. In [13], the
author propose to divide data into chunks and use a primary
general purpose processor to pre-sort each chunk through
software-based quicksort. Then odd-even based merge net-
work is employed to perform O(N

2M log 2 N
M)1 operations

in order to sort the whole data sequence, where N is the
input data size and M is the output FIFO size as shown in
Figure 1. There are two main drawbacks in this approach.
Although it uses CPU and FPGA to perform sorting, it
fails to fully utilize the computation resources as the data
parallelism on FPGA is not exploited. Instead the sorting
process is performed in serial and data chunks have to be
transferred between FPGA and memory for several times.
Another disadvantage is the supported problem size for this
architecture is small due to high FPGA on-chip memory
usage.

1All logarithms are to the base 2 in this paper.

Main memory

FPGA

...Core Core

On-chip cache hierarchy

Coherent memory
interface

BRAM

Coherent memory
interface

LUTs

...

System
InterfaceOn-chip

Interconnection

CPU

Other I/O devices

Figure 3. Target architecture integrating general purpose processors and
FPGA

B. Merge Sort Tree

Another widely used sort design is to employ multiple
levels of merge unit which look like a binary logical sort
tree structure as described by [14] in Figure 2. For depth
N merge sort tree, it requires O(2N) FIFO entries which
consume a large amount of memory resource. Besides, the
area consumption grows exponentially with the problem
size. For large size N , the data buffering process in the nodes
at the bottom of the tree has to be performed using external
memory. This results in throughput performance decline as
external memory bandwidth is relatively much smaller than
the on-chip memory bandwidth.

C. Intel HARP Heterogeneous Platform

1) System overview: The target heterogeneous system
platform with integrated CPU and FPGA is shown in Figure
3. Specifically, we employ the Intel Heterogeneous Archi-
tecture Research Platform (HARP) as our primary exper-
imental platform where Intel Xeon E5-2600 v2 processor
and Altera Stratix V[15] FPGA are integrated. The CPU
and FPGA communicate through Intel QuickPath Intercon-
nection (QPI) [16] with 6.4 GT/s full bandwidth. Studies
in [16][17] show that QPI offers much higher bandwidth
with low latency, packetized, point-to-point interconnect
compared to FSB, which is suitable for continuous, large
volume data transfer between heterogeneous devices. The
FPGA on chip cache also makes it much more efficient for
hardware to access data.

2) Shared Memory Approach: Figure 4 shows the data
communication scheme through a shared memory workspace
between CPU and FPGA. The DRAM access granularity for
FPGA is cache line width, which is 512 bits, providing a
total of 10 GB/s memory bandwidth. However, the FPGA
cannot access the DRAM directly. Instead, it has to send
read/write request to the coherent cache system so as to
access DRAM data. The shared memory scheme enables
efficient data communication between CPU and FPGA, as
well as simplifying and facilitating the design of FPGA.

CPU

FPGA

Block 2

Block 3

Block 4

…

Block K-2

Block K-1

Block K

Shared Workspace
in Main Memory

Cache

Cache

AFU

Cacheline
(64bytes)

Data Block

QPI

Figure 4. Shared Memory Scheme between CPU and FPGA

III. DESIGN METHODOLOGY

A. Divide and Conquer Strategy

The divide-and-conquer strategy is based on the shared
memory scheme on HAPR such that it allows CPU and
FPGA to manipulate data concurrently by continuous data
transfer through QPI. The detailed strategy goes as followed:

• Divide: Break the whole data sequence into K blocks
as denoted in Figure 4. Each block contains M cache
lines as shown in the first block.

• Acceleration: CPU continuously sends blocks of data
to FPGA while FPGA keeps sorting unit block data and
send back to shared memory through QPI.

• Conquer: As long as CPU detects sorted data blocks in
shared memory, it will start merging data blocks.

B. Data Streaming Merge Sort Acceleration Unit

In this section, we propose our high throughput merge
sort based design, which supports streaming data processing.
To process streaming data, we divide the sorting design
into stages and partition the memory of each stage so that
they can store serial sorted data from previous stage and
simultaneously output data for the next stage. This fully
pipelined design also takes the advantage of FPGA block
RAMs to achieve high performance. In order to clarify our
design, we first define several key parameters as followed

1) p: data Parallelism. We define data parallelism p to be
the number of sorted keys output from the merge sort
unit. In order to make our design more efficient, we
always choose p to be a power of 2.

2) k: stage index of data permutation unit in merge sort
unit. The total number of stages should be o(log p).

1) Staging and Memory Partitioning: Like the merge
tree structure, it is necessary to break the sorting operation
into stages in order to reduce the system complexity and
prevent feedback loop. A typical data permutation unit (DP
Unit) is shown in Figure 5(a). To support streaming data
permutation, we use two memory blocks, each containing
two groups called Group A and Group B. Each permutation
cycle, either Group A is performing storing sorted data
stream from previous stage and Group B is performing

2-to-2
Interconnection

Group A

Group B

Ctrl

32 32

32

Address Computation
Unit

Group A

Group B

32

k + 1

(a) Data Permutation (DP) Unit

DP Unit

DP Unit

…

DP Unit

Stage 1 Stage 2 … Stage log p

32

32

32

32

(b) Streaming Data Processing Kernel

Figure 5. High Throughput Merge Sort Accelerator Design

sending out data for next stage to sort or Group B is
performing storing sorted data stream from previous stage
and Group A is performing sending out data for next stage to
sort. In this way, all the I/Os are utilized at every clock cycles
without doing extra and duplicate work. Hence, the proposed
design achieves the theoretical maximum throughput for
serial merging. For every consecutive p keys coming into
the merge sort accelerator, after certain delay, they would
be popped out in sorted order.

The memory consumption for the DP Unit is determined
by its stage index k as o(2k). Thus, every 2k cycles, a sorted
data chunk of size 2k has been sent out or stored in the next
stage. Unfortunately, the area consuming of this approach
also goes exponentially with the number of stage, which
is logarithmic to the data parallelism as the Merge Tree
approach. However, with the shared memory approach, we
will see that p is actual determined by shared memory data
block size, which is flexibly adjustable according to available
hardware resources.

2) Interconnection: The 2-to-2 interconnection contains a
comparator and a demultiplexer. The ’Ctrl’ signal determines
the data flow direction and whether the output is in ascending
order or in descending order.

3) Overall MSA architecture: The overall merge sort
accelerator design is a serial concatenation of DP Units with
log p stages as shown in Figure 5(b). The data would be fed
into this merge sort accelerator serially and be popped out at

Input BufferContinuous Data
Packets from QPI

MSA

MSA

MSA

MSA

…

Output Buffer Write Back to
Coherent Cache

System

FIFO-policy scheduler Output Round-robin Scheduler

Figure 6. AFU design on FPGA

the same rate after certain delay. The latency of the proposed
design is 22+23+ · · ·+2log p+1 ∼ o(p). The total memory
consumption would be (23+24+ · · ·+2log p+2) ·32Bytes ∼
o(p).

C. Accelerator Function Unit Design

1) Overall Architecture Design: The top level design of
Accelerator Function Unit is illustrated in Figure 6. The
data would be fed into AFU in the form of packets from
QPI, along with the information of virtual address in main
memory. In order to maximumly utilize the CPU-FPGA
platform computational capacity, we follow the ”divide-and-
conquer” strategy by dividing the workspace into blocks as
shown in Figure 4, each containing several cachelines. Thus,
we define

1) N : Size of the workspace, the total number of cache-
lines in shared workspace. Accordingly, the total num-
ber of keys to be sorted is 16N . Without losing
generality, we assume N to be a power of 2.

2) M : Block size, number of cachelines in one block.
In order to take the advantage of CPU binary merge
speed, we design M to be a power of 2.

3) K: The total number of unsorted blocks, which is
equal to N

M .
First, we could notice that p = 16M because each block

contains 16M keys and we design AFU to be able to sort a
block of data without requesting the same block again.

Then, we would like to justify that by using 8 parallel
merge sort accelerators, the data consuming rate matches the
QPI bandwdith. In [18], it is measured that the FPGA read
bandwidth through QPI is approximately 6 GBytes/s. For
FPGA operating at 200 MHz, each merge sort accelerator
consumes 4 Bytes data per cycle. Thus, for 8 parallel accel-
erators, the total data consuming rate is 200× 4× 8 = 6400
MBytes/s ≈ 6 GBytes/s.

However, in real systems, packets would not arrive at
constant speed. Instead, data burst and interval occurs often
times, which pulls down the QPI bandwidth utilization.

2) Scheduler Design: For input scheduler, the FIFO pol-
icy would maximize the utilization of QPI bandwidth by
dispatching newly arrived cacheline to any idle merge sort
accelerator.

The output scheduler would be performing round-robin
checks of the 8 parallel merge sort accelerators. There should

Algorithm 1 Streaming Merge Algorithm
1: function MERGEAREA(a, b)
2: . merge block area [a, b− 1] and [b, 2b− a− 1]
3: end function
4:
5: procedure SMA
6: input: serial sorted blocks from FPGA
7: output: entire sorted workspace
8: initialization: i← 1, total block number K
9: while i ≤ K do

10: if block i+ 1 not sorted by FPGA then
11: continue
12: end if
13: MERGEAREA(i, i+ 1)
14: Let p← 4, k ← i
15: while (i+ 1)%p == 0 do
16: k ← k − p/2
17: MERGEAREA(k, k + p/2)
18: p← p× 2
19: end while
20: i← i+ 2
21: end while
22: end procedure

be a register at the output of each merge sort accelerators
to prevent sorted data being flushed. We would argue that
under such scheme, for every merge sort accelerators, the
output scheduler would fetch the sorted data block into
output buffer before the next data block being sorted from
the same sorter.

Proof: For each block of data, it takes p
16 = M

cycles to store into the output buffer because of cache-
line granularity. For each merge sort accelerators, it takes
p = 16M cycles for the next data block to be sorted. For
a particular merge sort accelerator i, it takes at most 7M
cycles before the scheduler starts serving it when the other
merge sort accelerators all have valid output. Then it takes
M cycles for i to store its output into the buffer. Since
7M +M = 8M < 16M , we could conclude that for every
merge sort accelerator, the output scheduler would fetch the
sorted data block into the output buffer before the next data
block being sorted for the same merge sort accelerator.

Actually, we can see from the proof that the maximum
possible parallel merge sort accelerators should be 15.
However, increasing merge sorters would only increase the
hardware complexity and consume more resources without
increasing the QPI bandwidth utilization according to the
bandwidth match analysis before.

D. Software Engine Design

To exploit CPU computational ability in this architecture,
we develop a slightly different merge algorithm, which sup-
ports merging streaming sorted blocks coming from FPGA

concurrently. It is based on eager evaluation, indicating
that before block j has been received from FPGA, all the
possible work of merging should be completed already. Our
streaming merge algorithm is defined as Algorithm 1. Note
that the MERGEAREA function takes two arguments a and
b, which is the starting block index from a to b−1 and from
b to 2b− a− 1. Before this merge operation, we can make
sure that all data between these two areas are in sorted order.
Compared with the traditional ”bottom-up” approach, it can
be viewed as ”left-to-right” approach, where we try to merge
as many present data as possible. The space complexity and
time complexity is the same as normal merge sort as O(N)
and O(16N logK), but this approach will keep CPU doing
useful work without just waiting for FPGA.

E. Overlapping Computation with CPU and FPGA

In practice, we typically would like to increase the block
size to put more stress on the FPGA while saving the
latency of CPU to achieve a balance. Ideally, the maximum
computation overlapping occurs when FPGA is sorting the
last block and CPU finishes merging all the rest blocks.
Then, the system latency would be o(16N logK). However,
since the maximum feasible block size for FPGA is fixed, if
the problem size keeps increasing, CPU would be the master
sorting unit, which slows down the whole system.

IV. PERFORMANCE ANALYSIS

In this section, we propose several performance metrics,
make performance analysis and examine resource consump-
tion based on the architecture proposed in section III.
A brief summary of performance asymptotic analysis on
various architecture is shown in Table I, where p is the
data parallelism and n is the input size of various sorting
architecture.

A. Performance Metrics

1) FPGA resource consumption: It is measured after
place & route including on-chip memory consumption and
logic utilization. The on-chip memory consumption is a
bottleneck for FPGA sorting stages described in section III,
which determines the maximum overall throughput improve-
ment we can achieve using hybrid design.

2) QPI bandwidth utilization: We measure QPI band-
width using approximation of average block sorting rate in
HARP coherent cache system. Let Ti be the timestamp (in
seconds) of block i to be sorted. The problem size is 64N
bytes, where N is the total number of unsorted cachelines.
Thus we can estimate the QPI bandwidth as

QPI bandwidth ≈ 64N

TN − T1
Bytes/s (1)

Note that it is different from overall latency since we only
start the timer when we detect the first block sorted.

Design Latency Logic Memory Throughput
Merge Sort

o((n log p)/p) o(p logn) o(np) o(p) or o(p log p)Based[6]
Merge Sort

o(n) o(logn) 2n+ o(n) o(1)Based[8]
Parallel sorting

o(n logn
p log p

) o(p log2 p) p log2 p o(p log p
logn

)network[19]
Hybrid

o(n) o(logn) o(n) o(p)MSA

Table I
ASYMPTOTIC ANALYSIS OF PERFORMANCE OF VARIOUS SORTING

ARCHITECTURES

3) Overall latency: The overall latency is the time from
the first cacheline leaves the memory to the time all the
data is sorted. Let tFPGA and tCPU be the execution time
of FPGA and CPU respectively, toverlapping be the time
CPU and FPGA are working concurrently. We can calculate
overall latency as

toverall = tFPGA + tCPU − toverlapping (2)

B. Performance Analysis

1) QPI bandwidth utilization: The maximum measured
QPI read/write bandwidth is around 6 Gbytes/s [18]. How-
ever, it is achieved by carefully overlapping read/write
request on FPGA, which is not supported in our design. The
QPI bandwidth measurement approach mentioned in part A
also assumes a constant cache hit rate on both CPU and
FPGA side. The FPGA on-chip cache is 64 KBytes. For
problem size smaller than 64 Kbytes, the FPGA will benefit
much from high on-chip cache hit rate and the throughput
will approach 6 GBytes/s. For large problem size, CPU
cache miss rate will go high and causes decrease on the
QPI write bandwidth utilization.

2) Overall latency: It is determined by FPGA data par-
allelism, overlapping computation time and problem size.
The actual latency varies with different set of input data. In
order to make fair comparison, we conduct the experiments
using the same pseudo-random data. In equation 2, the
CPU latency is bounded by 16N log 16N

p , where N is the
problem size and p is the data parallelism. With the growth
of problem size, the CPU latency grows dramatically and
becomes the dominant factor for overall throughput. Even
though, the shared memory approach achieves significant
throughput improvement compared to FPGA-only and CPU-
only baseline approach within a range of data set size.

C. Resources Consumption

We summarize logic utilization and memory consumption
of the various architecture in Table I. Apart from that, the
FPGA peripheral and Intel QPI IP consumes fixed amount of
resources on chip including input and output buffer, sched-
uler logics, a 64 KBytes on-chip cache, QPI interconnect
protocol module, address translation and reorder buffer.

Modules BRAM BRAM Registers Logic
Size utilization utilization (in ALMs)

Merge Sort Accelerator 3.084 MB 51.4% 18693 65%
FPGA peripheral 1.66MB 27.7% 155125 28%

Intel QPI IP 80.25KB 1.3% 71269 5%

Table II
RESOURCES CONSUMPTION FOR BLOCK SIZE 1024 ON ALTERA

STRATIX V FPGA

With the growth of data parallelism, MSA will consume
more memory, which becomes resources bottleneck on
FPGA. The logic consuming basically comes from 2 × 2
interconnection mentioned in section III, which is linear to
the number of serial merge stages and logarithmic to the
input size.

V. EXPERIMENT AND RESULTS

In this section, we provide a detailed experimental setup
and evaluation of the proposed merge sort approach on
heterogeneous architecture, along with a performance and
resources utilization comparison to the state-of-art designs
and CPU-only and FPGA-only baseline approach.

A. Experimental Setup

Our design is target at Intel HARP, which integrates
10 Intel Core Xeon E5-2600 v2 processor running at 2.8
GHZ with 128 GB DDR3 memory and Altera Stratix V
FPGA with 2 channel of external DDR3 memory up to
64GB.[11] The Intel provided FPGA on-chip cache is 64
KBytes, along with QPI interface and address translation
unit. In our design, the FPGA clock frequency for 6.4GT/s
QPI is 200MHZ. In order to exploit the relations between
performance and resource utilization and demonstrate the
advantage of using FPGA and CPU, we develop a highly
parameterized AFU on FPGA and do real testing with M =
1, 8, 32, 128, 1024, where M is the number of cachelines per
block. The input key sequence is 16KBytes ∼ 512MBytes.
Since we use CPU generated random keys as input, the
testing performance varies when we switch input data but
will keep stable under probabilistic meaning.

B. Maximum Resources Consumption

The resources consumption for block size equal to 1024
is shown in Table 2, which is the maximum data parallelism
this FPGA could support. Apart from FPGA on-chip cache,
additional block memory is consumed for reordering buffer,
which is offered by Intel as System Protocol Layer. The
AFU peripherals convert parallel cachelines into serial input
and do the opposite at the output. Therefore, a huge amount
of logic and registers are consumed, which can be optimized
in the future. The merge sort accelerators consumes 3.084
MB block rams, which is almost half of Altera Stratix V
FPGA on-chip memory.

On-chip memory consumption (Mbits)
0 2 4 6 8

O
ve

ra
ll

T
hr

ou
gh

pu
t (

G
B

yt
es

/s
)

0

1

2

3

4

5

6

[8]
[20]
[21]
Our design

Figure 7. Performance comparison of various sorting designs

Problem Size (MBytes)
0 100 200 300 400 500 600

O
ve

ra
ll

T
hr

ou
gh

pu
t (

G
B

yt
es

/s
)

0

1

2

3

4

5

6

CPU+FPGA
FPGA only
CPU only

Figure 8. Throughput comparison for various input size

C. Performance Evaluation

1) State-of-art comparison: To compare with state-of-
art designs, we generate pseudo-random 16K key se-
quence as input. We compare our design with state-of-
art approaches[8], [20], [21] in terms of on-chip memory
consumption and system throughput. It is obvious that with
the growth of on-chip memory consumption, the throughput
increases in our design because FPGA sorting blocks be-
come larger and CPU latency decreases as a factor of log 1

p
as shown in Figure 7. By utilizing both CPU and FPGA, we
achieve a peak throughput of 5.1 GBytes/s when the problem
size is 16 KByte, which is 85% of the QPI bandwidth. On
average, we achieve 2.3x throughput improvement compared
to state-of-art designs. In this example, we also take advan-
tage of FPGA on-chip cache due to small problem size. QPI
only fetches data from main memory for limited amount of
times and the FPGA on-chip cache hit rate is very high,
which contributes to the low overall system latency.

Problem Size (Mbytes)
4 16 64 128 256 512

C
P

U
-F

P
G

A
 e

xe
cu

tio
n

tim
e

pe
rc

en
ta

ge

0

10

20

30

40

50

60

70

80

90

100

CPU
FPGA

Figure 9. CPU and FPGA execution time break down

2) FPGA and CPU baseline comparison: To show the
performance improvement compared to FPGA-only and
CPU-only approach, we use the maximum available FPGA
resources by implementing 8 merge sort accelerators and
1024 cachelines as its input size. The problem size ranges
from 16 KBytes to 512MB and the overall throughput is
shown in Figure 8. Compared with CPU-only approach,
CPU+FPGA approach achieves 2.9x throughput improve-
ment on average. For FPGA-only approach, the peak
throughput cannot be maintained for large problem size. For
example, to sort 1 MByte 64-bit keys, 20 cascaded merge
sort stages are needed to achieve peak throughput, and at
least 16 MBytes on-chip memory is required for only data
buffering between the merge stages. This on-chip memory
requirement exceeds the capacity of the most state-of-art
FPGA-only approach[22]. Therefore, to process large set of
data, external memory is needed and multiple times of data
transfer between FPGA and external memory largely impair
the overall FPGA throughput. Compared with FPGA-only
approach, we achieve 1.9x more throughput on average.

3) Execution time: To illustrate the execution time of the
system and how the execution time is broken down using
both CPU and FPGA, we experiment problem sizes from
4MBytes to 512MBytes and track the execution time of
CPU and FPGA separately. The input size of FPGA is 1024
cachelines, which utilizes maximum available hardware re-
sources on FPGA. The CPU-FPGA execution time break
down is shown in Figure 9 and actual overall execution
time is shown in Figure 10. For small problem size, the
number of CPU merge operation is limited such that the
overall execution time is low. For large problem size, the
CPU latency starts to dominate and the overall latency
increases dramatically as shown in Figure 10. For CPU-
FPGA hybrid approach, we can further take the advantage of
shared memory approach by overlapping CPU merging and
FPGA acceleration. Figure 10 shows that we can achieve

Problem Size (MBytes)
0 100 200 300 400 500 600

O
ve

ra
ll

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0

2

4

6

8

10

12

Separate Execution
Overlapping

Figure 10. Overall execution time for various problem sizes

approximately 10% acceleration on average for problem
size below 256 MBytes by overlapping CPU and FPGA
execution procedure. However, when CPU becomes the
dominant factor for large problem size, the overlapping
becomes negligible.

VI. CONCLUSION AND FURTHER WORK

In this paper, we presented a ”divide-and-conquer” strat-
egy for streaming data processing merge sort on heteroge-
neous platform. We exploited the shared memory approach
by comparing the performance and resources utilization with
the state-of-art approach and FPGA-only and CPU-only
baseline approach.

Compared to FPGA-only approach, the shared memory
and FPGA on-chip cache facilitates the data access of FPGA.
The high bandwidth QPI makes streaming data transfer
between main memory and FPGA efficient. It also breaks the
on-chip memory and external memory bandwidth limitation,
which is the primary bottleneck of FPGA-only approach.
The drawback of this approach lies in that the CPU latency
becomes the bottleneck when problem size grows larger. We
summarize the benefits of design as

• Support streaming data processing up to maximum
512MB problem size with 5.1 GBytes/s peak through-
put.

• Utilize approximately 80% hardware resources and
exploit heterogeneous architecture computational ca-
pacity by overlapping CPU and FPGA to achieve high
performance

• On average, we improve throughput by 2.9x and 1.9x
compared with CPU-only and FPGA-only approach,
respectively.

In actual implementation, we did not make the best effort
to achieve the peak QPI bandwidth (6 GBytes/s) by carefully
overlapping read/write request on FPGA [18]. Further work

involving efficient utilization of QPI bandwidth is worth
considering.

In our design, the FPGA peripheral consumes too much
memory for registering cacheline data in order to work
coherently with unpredictable QPI instant packet pattern.
However, such an approach limits the maximum data par-
allelism and FPGA computational capacity, which can be
improved in the further.

Other interesting area is how to effectively utilize the
FPGA-CPU coherent cache system in order to improve
performance.

ACKNOWLEDGMENT

We would like to thank Andrew Schmidt and the Infor-
mation Sciences Institute, University of Southern California
for their his assistance in conducting the experiments. Also,
we would like to thank Intel and Altera for their donation
of HARP system to USC.

REFERENCES

[1] “Micron DDR3 and DDR4 SDRAM,”
http://www.micron.com/products/dram/.

[2] Hybrid Memory Cube Consortium. Hybrid Memory Cube
Specification. http://hybridmemorycube.org/files/
SiteDownloads/HMC Specification%201 0.pdf.

[3] B. Sukhwani, H. Min, and et.al., “Database analytics
acceleration using FPGAs,” in Proc. of PACT. ACM, 2012,
pp. 411–420.

[4] R. Chen and V. Prasanna, “Energy and memory efficient
mapping of bitonic sorting on FPGA,” in Proc. of
ACM/SIGDA FPGA, 2015.

[5] A. Becher and et.al., “Energy-aware sql query acceleration
through FPGA-based dynamic partial reconfiguration,” in
Proc. of IEEE FPL, Sept 2014, pp. 1–8.

[6] J. Casper and K. Olukotun, “Hardware acceleration of
database operations,” in Proc. of ACM/SIGDA FPGA, 2014.

[7] G. Graefe, “Implementing sorting in database systems,”
ACM Comput. Surv, vol. 38, pp. 1–37, 2006.

[8] D. Koch and J. Torresen, “FPGASort: A high performance
sorting architecture exploiting run-time reconfiguration on
FPGAs for large problem sorting,” in Proc. of ACM/SIGDA
FPGA, 2011, pp. 45–54.

[9] Microsoft Corporation, “An FPGA-based reconfigurable
fabric for large-scale datacenters.” [Online]. Available:
http://research.microsoft.com/en-us/projects/catapult/

[10] Xilinx Inc, “Zynq-7000 all programmable soc.” [Online].
Available: http://www.xilinx.com/products/silicon-devices/
soc/zynq-7000.html

[11] Intel Inc., “Xeon+FPGA platform for the data center.”
[Online]. Available: http://www.ece.cmu.edu/∼calcm/carl/lib/
exe/fetch.php?media=carl15-gupta.pdf

[12] Micron Technology, Inc., “The Convey HC-2 computer.”
[Online]. Available: http://www.conveycomputer.com/files/
4113/5394/7097/Convey HC-2 Architectual Overview.pdf.

[13] R. Marcelino, H. Neto, and J. Cardoso, “A comparison of
three representative hardware sorting units,” in Industrial
Electronics, 2009. IECON ’09. 35th Annual Conference of
IEEE, Nov 2009, pp. 2805–2810.

[14] K. Fleming, M. King, M. C. Ng, A. Khan, and
M. Vijayaraghavan, “High-throughput pipelined mergesort.”
in MEMOCODE, 2008, pp. 155–158.

[15] Altera Corporation, “Stratix v device overview.” [Online].
Available: https://www.altera.com/content/dam/altera-www/
global/en US/pdfs/literature/hb/stratix-v/stx5 51001.pdf

[16] D. Ziakas, A. Baum, R. Maddox, and R. Safranek, “Intel R©
quickpath interconnect architectural features supporting
scalable system architectures,” in High Performance
Interconnects (HOTI), 2010 IEEE 18th Annual Symposium
on, Aug 2010, pp. 1–6.

[17] B. Mutnury, F. Paglia, J. Mobley, G. Singh, and
R. Bellomio, “Quickpath interconnect (QPI) design and
analysis in high speed servers,” in Electrical Performance of
Electronic Packaging and Systems (EPEPS), 2010 IEEE
19th Conference on, Oct 2010, pp. 265–268.

[18] G. Weisz, J. Melber, Y. Wang, K. Fleming, E. Nurvitadhi,
and J. C.Hoe, “A study of pointer-chasing performance on
shared-memory processor-FPGA systems,” accepted by 24th
ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays.

[19] S. Olariu, M. Pinotti, and S. Zheng, “An optimal
hardware-algorithm for sorting using a fixed-size parallel
sorting device,” IEEE Transactions on Computers, vol. 49,
no. 12, pp. 1310–1324, 12 2000.

[20] M. Zuluaga, P. Milder, and M. Püschel, “Computer
generation of streaming sorting networks,” in Proceedings of
the 49th Annual Design Automation Conference, ser. DAC
’12. New York, NY, USA: ACM, 2012, pp. 1245–1253.
[Online]. Available:
http://doi.acm.org/10.1145/2228360.2228588

[21] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks
on FPGAs,” The VLDB Journal, vol. 21, no. 1, pp. 1–23,
Feb. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s00778-011-0232-z

[22] Xilinx Inc., “XST user guide for Virtex-6, Spartan-6, and 7
series devices,”
http://www.xilinx.com/support/documentation.

	tech_report_1
	report_1

