

Optimizing Frequency Domain Implementation of CNNs on

FPGAs

Hanqing Zeng, Ren Chen, Viktor K. Prasanna

Computer Engineering Technical Report Number CENG-2017-03

Ming Hsieh Department of Electrical Engineering – Systems

University of Southern California

Los Angeles, California 90089-2562

July 2017

Optimizing Frequency Domain Implementation of CNNs on
FPGAs

Hanqing Zeng, Ren Chen, Viktor K. Prasanna
Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, California 90089

{zengh,renchen,prasanna}@usc.edu

ABSTRACT
Convolutional neural networks (CNNs) have become popular for
many machine learning applications. Recently, accelerators either
in ASIC or using FPGA have been proposed to achieve low latency
for classi�cation as well as reduce the energy consumption. How-
ever, with increasing variety of deep learning models and prolifer-
ation of FPGA devices and families, realizing a high-performance
design becomes challenging. In this paper, we propose an algorithm-
architecture co-design methodology based on the computational
characteristics of CNN models and the features of underlying hard-
ware to realize high performance designs. To speed up various CNN
models, our methodology consists of two levels of optimization for
convolution in the frequency domain: (1) At the algorithm level,
we reduce the total number of operations. We propose a new tech-
nique called Concatenate and Pad (CaP). By applying it with its dual
operation Overlap and Add (OaA), we can match various image
sizes to any given FFT size. Our hybrid algorithm based on native
FFT, OaA-FFT and CaP-OaA-FFT achieves signi�cant computation
reduction for a wide range of CNNs. (2) At the architecture level,
our goal is to maximize the utilization of limited on-chip resources.
We develop highly e�cient hardware building blocks to support our
algorithmic optimizations. We develop a simpli�ed performance
model which captures the constraints of a given hardware device
such as external bandwidth, logic resources and on-chip memory.
The performance model leads to a reduced design space which is
explored using bounded parameter scan to realize a high perfor-
mance FPGA design for a CNN. We illustrate our methodology by
proposing two FPGA designs for AlexNet using throughput and
latency as performance metrics. Experimental results show that the
two designs achieve throughput of 163.4 GOPS and latency of 12.4
ms respectively, on the Intel HARP heterogeneous platform. Our
designs signi�cantly improve the state-of-the-art implementations
of AlexNet on FPGAs.

KEYWORDS
Convolutional Neural Networks; Fast Fourier Transform; FPGA;
Overlap and Add; Optimization

1 INTRODUCTION
Convolutional Neural Networks (CNNs) are gaining increasing
popularity in a variety of applications including computer vision,
signal processing and natural language processing [14, 24, 26]. To
achieve better accuracy, deeper and larger CNN models are being
explored. This leads to high throughput requirement [19]. To embed
CNNs into real time applications, single image classifcation time is

critical. This results in low latency requirement [4]. Furthermore,
with the progress in deep learning, there is increasing diversity
in terms of CNN models and accelerators. Therefore, a �exible
accelerator design for large scale CNNs to realize high throughput
and low latency becomes a crucial problem to address.

In recent years, many CNN accelerators have been implemented
on GPU [3, 13, 22], ASIC [10] and FPGA [20, 25, 27]. Energy ef-
�ciency, recon�gurability and unprecedented logic density make
FPGAs attractive for high performance CNN processing. Yet di�-
culties exist to fully make use of such platforms in deep learning
applications. The �rst challenge is to deal with the large problem
size. Motivated by the huge amount of operations required by spa-
tial convolution (the convolution that performs sliding window
operation of the kernel over the image), alternatives such as Wino-
grad transform [15] and frequency domain convolution [18] have
been proposed. Recent implementations of these algorithms have
shown promising results [5, 28]. The other challenge lies in large
variance of the parameters among di�erent convolution layers,
such as the image size, kernel size and number of feature maps. For
resource e�ciency, the same hardware module is reused for di�er-
ent layers. Yet some hardware modules don’t have the �exibilty to
perform well under the computational requirements of di�erent
CNN layers. A design containing such modules is very ine�cient,
because large amounts of runtime recon�guration will be required
by the many layers in a deep CNN. In addition, the design space of
feasible hardware designs over all the layers can be huge. Limited
design space exploration in [16] takes as long as 5 hours on two
desktops.

In this work, we improve the performance of CNNs running
on FPGAs by identifying designs that perform well on all convo-
lution layers. We propose an optimization �ow with algorithm-
architecture co-design, based on convolution in frequency domain.
To deal with the variance of image sizes and kernel sizes, we propose
a dual operation of Overlap and Add (OaA) [12], called Concatenate
and Pad (CaP). We prove that frequency domain convolution using
CaP-OaA performs equally well as the native frequency domain
convolution in terms of number of operations. Yet the CaP-OaA
approach needs no hardware recon�guration for di�erent layers,
while the native frequency domain convolution incurs signi�cant
recon�guration overhead for every layer. We further propose a
hybrid algorithm which combines OaA and CaP-OaA with the na-
tive frequency domain convolution. The hybrid algorithm is able
to speci�cally optimize either throughput or latency for a given
CNN. To address the variance in the number of feature maps, we
go into the architecture level by proposing an e�cient design space

exploration algorithm. We �rst develop high performance hard-
ware modules to support our hybrid convolution algorithm, and
derive an analytical performance model for our architecture. Our
design space exploration algorithm is based on the observation that
optimal con�guration of a single layer is a good indication for the
optimal con�guration of the entire network. Thus the design space
for a complete CNN can be bounded by the local optimum of each
individual layer.

The main contributions of this work are:
• We analyze the complexity of frequency domain convolu-

tion using Overlap and Add (OaA) speci�cally in the CNN
context. We propose a dual operation of OaA called Con-
catenate and Add (CaP), and design a hybrid algorithm
that combines OaA, CaP and the native frequency domain
convolution.

• We show that the hybrid algorithm signi�cantly reduces
the computation complexity for a wide range of CNN mod-
els. Compared with spatial convolution, it results in 57.5%
reduction in the number of operations for AlexNet, without
needing for runtime recon�guration.

• We derive a comprehensive performance model which
takes into account details of the CNN and hardware con-
straints such as peak bandwidth to external memory, and
available on-chip memory, logic and DSP resources. We
propose a methodology to signi�cantly reduce the design
space of this performance model.

• We develop a highly-optimized hardware design, with each
individual modules in the form of parameterized soft IP
cores. The building blocks such as run-time con�gurable
2D FFT module can be easily con�gured for di�erent CNNs
and FPGAs.

• We implement our design on the Intel HARP heteroge-
neous platform, where the FPGA is responsible for our hy-
brid algorithm, and the CPU performs other light-weight
operations such as overlapping and padding.

• We demonstrate our design methodology by developing
two designs for AlexNet, one optimized for high through-
put and the other for low latency respectively. The designs
show throughput of 163.4 GOPS and latency of 12.4ms on
the Intel HARP platform [1].

2 BACKGROUND AND RELATEDWORK
State-of-the-art convolutional neural networks for image classi-
�cation can achieve very high accuracy over a thousand input
categories [14, 24]. A CNN is formed by stacking various layers
together. A typical design includes four types of layers: convolution
layers, recti�ed linear unit (ReLU) layers, pooling layers and fully
connected layers. Convolution layers extract features out of the in-
put 2D images. Pooling layers enable the network to gradually shift
its focus from local features to global features. ReLU layers add non-
linearity into the network. Finally, the partially processed features
are fed into fully connected layers to complete the classi�cation.

2.1 Convolution in Frequency Domain
Let the input matrix to a convolution layer be I , whose dimension
is fin × limд × limд ; the kernel of the layer be K , whose dimension

is fout × fin × lkern × lkern . The convolution layer does the con-
volution operation over the last two dimensions of I and K , and
accumulates over fin dimension. As a result, the output to that
layer is of dimension fout × l

′

imд × l
′

imд .
Spatial convolution basically performs sliding window opera-

tion. Alternatively, a more e�cient algorithm is by computing in
the frequency domain [18]. Convolution in the spatial domain is
equivalent to Hadamard product (◦) in the frequency domain. The
algorithm is summarized by Equation 1, where F is Fourier trans-
form, and F−1 denotes inverse Fourier transform.

I ∗ K = F−1
(
F (I) ◦F (K)

)
(1)

There are two noteworthy points. First of all, typical convolu-
tion is companied by stride S . Striding is applied directly to the
sliding window in spatial convolution, and can be achieved in the
frequency domain by subsampling the output matrix after the in-
verse Fourier transform. Secondly, the I and K matrix need to be
padded to the same size before the Fourier transform. This ensures
that the Hadamard product is valid. Since the input images to the
�rst few convolution layers are quite large, computing FFT on the
full I matrix is not always preferable. We analyze the frequency
domain convolution with various image sizes in Section 3.

2.2 Overlap and Add (OaA)
To avoid the operation on a large matrix, the idea is to divide the
original image matrix into smaller tiles. After performing frequency
domain operation on each tile with the kernel, the resulting tiles
are combined to form the �nal output [2].

The following describes the basic procedures of computing FFT
using Overlap and Add (OaA) technique. Given an limд ×limд input
image I and an lkern × lkern kernel K , we convolve them using N
point 2D FFT units (subject to N > lkern). First, we divide I into
tilesT ini, j of size lt ile × lt ile (where lt ile + lkern − 1 = N). Then after
zero padding to size N ×N , we can compute the intermediate output
tiles using Equation 2. To get the �nal matrix R, we move the output
tiles T outi, j so that pixel (0, 0) of each tile is overlapped with pixel
(i · lt ile , j · lt ile) of R. Each pixel in R is the sum of corresponding
pixels in Ri, j . The operation is summarized by Equation 3.

T outi, j = F−1
(
F (T ini, j) ◦F (K)

)
(2)

R[p][q] =
∑
i, j

(
T outi, j [p − i · lt ile][q − j · lt ile]

)
where




0 6 p − i · lt ile < lt ile

0 6 q − j · lt ile < lt ile

(3)

In the above equations, the square brackets [∗][∗] indicates the
pixel index within the 2D matrix and all indices i, j,p,q starts from
0.

The Overlap and Add technique together with convolution in
frequency domain reduces the complexity of spatial convolution
from O(l2imд · l

2
kern) to O(l2imд · log lkern) [12] for a single frame.

Further analysis of such complexity in the CNN context will be
conducted in Section 3.

Table 1: AlexNet Speci�cation

Layer Image Size Kernel Size Input Features

CONV1 224 × 224 11 × 11 3 (RGB)

CONV2 55 × 55 5 × 5 96

CONV3 27 × 27 3 × 3 256

CONV4 13 × 13 3 × 3 384

CONV5 13 × 13 3 × 3 384

2.3 CNN Models
ImageNet competition in recent years has produced many well-
designed CNNs for image classi�cation [14, 24]. Popular designs
use multiple convolution layers which gradually extract features
from local to global scale when proceeding to deeper layers. The
computation is conducted on data of high dimensions (images:
Batch× fin ×limд ×limд ; kernels: fout × fin ×lkern ×lkern), where
Batch speci�es the size for batch processing. From the speci�cations
shown in Table 1 , we observe how the network extracts out more
and more features when images are transformed to lower and lower
resolution.

2.4 CNN Accelerators
To speedup the inferencing of large scale CNNs, much e�ort has
been spent with the help of dedicated hardware accelerators. Projects
in [16, 23, 25, 27] target at spatial convolution. They optimize the
hardware by applying techiniques such as loop tiling/unrolling and
data mapping. Little optimization is done from the computation
complexity point of view, and the design space of their designs can
be huge. On the other hand, works in [5, 9, 28] attempt to apply
Winograd transform or frequency domain convolution to reduce
the number of operations. The promising results shown by them
inspire further study into these algorithms. Our work proceeds
from [28] to further optimize frequency domain convolution on
FPGAs with a novel algorithm-architecture co-design.

3 ALGORITHM LEVEL OPTIMIZATION
Performing convolution in frequency domain will reduce the com-
putation complexity from O

(
l2imд ·l

2
kern · fin · fout

)
to O

(
l2imд · fin ·

fout + l2imд · log limд · (fin + fout)
)

for inference [18]. This analysis
is based on the assumption that the FFT size is equal to the image
size, and FFT is conducted on the entire input image. We refer to the
convolution under such assumption as the native frequency domain
convolution. We should note that the above complexity equation
sets the theoretical lower bound, under the assumption hard to be
satis�ed by realistic hardware. Generally, variance in the image
sizes is very large for di�erent layers, and the target hardware does
not have such high �exibility for FFT of various sizes. E�cient FFT
hardware designs such as the radix-x based architecture [11] can
only support limited number of distinct FFT sizes (e.g., sizes of x i)
under reasonable amount of runtime recon�guration. In addition,
even if the hardware is able to support all the FFT sizes required by

di�erent layers, using such hardware results in low resource e�-
ciency, since the gap between the maximum and minimum image
sizes is very large. The problem of hardware runtime in�exibility is
addressed by the OaA technique, as tiling mitigates image scaling
across layers. Although recent FPGA implementation of CNNs us-
ing OaA has shown good performance [28], a detailed analysis of
this technique speci�cally in the CNN context is needed to optimize
the implementation.

This section proposes two general algorithmic optimizations
which reduce the computation complexity of frequency domain
convolution at low hardware cost. Starting from theOaA complexity
analysis when applied to CNN, we �rst propose a hybrid algorithm
combining frequency domain convolution with and without OaA.
We show that this approach performs well for both large and small
images, and requires only small FFT sizes. Then we further improve
the algorithm’s �exibility and performance by proposing a dual
operation of OaA, which we call Concatenate and Pad (CaP). Due
to the limited number of FFT sizes supported in hardware, we
propose a second hybrid algorithm combining OaA and OaA-CaP
with the native frequency domain convolution. It achieves further
computation complexity reduction and hardware simpli�cation
without requiring any FFT hardware recon�guration. The proposed
algorithm is a key component in our algorithm-architecture co-
design.

3.1 Optimization for Images of Di�erent Scales
Image scaling is common in CNNs. Table 1 shows that from the �rst
convolution layer to the last, images shrink more than 17 times in
AlexNet. The kernel sizes are reduced accordingly. Previous study
[28] dealt with images of di�erent scales by partitioning the large
images using OaA. We further analyze the computation complexity
of the OaA approach when applied to CNNs, and show how FFT of
small sizes can reduce the number of operations signi�cantly for
all convolution layers.

By using OaA, we perform FFT, Hadamard product and IFFT
on each input tile. Following the notation in Section 2.2, the total
number of operations needed by convolving a full image can be
calculated as:

(4)
Ototal =

(
Ot ile,F FT +Ot ile,Hadamard +Ot ile, I F FT

+Ot ile,OaA
)
·
⌈ limд + lkern − 1

N − lkern + 1
⌉2

where:
Ot ile,F FT = C1 · N 2 · logN · fin
Ot ile, I F FT = C2 · N 2 · logN · fout
Ot ile,Hadamard = C2 · N 2 · fin · fout
Ot ile,OaA = C3 · N · (lkern − 1)fout

And C∗ are constants for the cost of addition or multiplication.
Previous work [12, 28] note that this equation is asymptotically

bounded by O(l2imд · logN), and considers it to be superior to
the native FFT whose complexity is O(l2imд · log limд). We argue
that this conclusion is valid only for single frame convolution and
does not apply to CNNs when fin , fout come into picture. Most of
the time except for the �rst layer, fin , fout are at least as large as
N or limд , so for the domain of the CNN problem, Ot ile,F FT and

1 2 3 4 5

Convolution layers

0

1

2

3

4

G
ig

a
O

pe
ra

tio
ns Spatial

FFT-hybd
OaA-16
OaA-32
OaA-64
OaA-128

Figure 1: AlexNet: E�ect of FFT size on total number of oper-
ations. “FFT-hybd" is produced by the hybrid algorithm us-
ing native FFT convolution and FFT convolution with OaA.

Ot ile, I F FT are much less thanOt ile,Hadamard (logN � fin , fout).
Thus, the complexity of OaA when applied to CNN should instead
be O(l2imд · fin · fout). Equation 4 can be approximated as:

O
approx
total ≈ C2 · fin · fout ·

(
limд + lkern − 1
1 − (lkern − 1)/N

)2
(5)

The domain of N is: lkern − 1 < N 6 limд + lkern − 1.
Note that ∂O

∂N = −C4 · N
(N−lkern+1)3

; Thus we observe that:
(1) number of operations decreases as N increases; (2) the ben-
e�t of increasing N diminishes when N becomes su�ciently larger
than (lkern − 1). By Observation (1), N should not fall in the left end
region of its domain. By Observation (2), N should not be in the right
end region. In this case, there is little bene�t to increase N to match
the image size when limд is very large. Thus, it can be concluded
that the middle ground between (lkern − 1) and (limд + lkern − 1)
is the most suitable region for N .

The motivation for OaA is to avoid using large-size FFT when
dealing with large images. Thus, for small images, we can simply
apply native frequency domain convolution. Then the number of
operations equals toC2 · fin · fout · (N ′)2, where N ′ is the smallest
FFT size such that N ′ > limд + lkern − 1. We can use the hybrid
algorithm that uses the frequency domain convolution with OaA,
as well as the native frequency domain convolution.

Figure 1 illustrates our analysis for AlexNet. By using the OaA
technique, FFT with small variance in sizes can process quite well
images of di�erent scales. The green line shows the performance
of the hybrid frequency domain algorithm. The �rst two layers use
OaA based convolution for 32, 16 points, and the last three layers
use native frequency convolution for 32, 16, 16 points respectively.
Compared with spatial convolution, our approach reduces the num-
ber of operations by 50.6%, using only two small FFT sizes of 16
and 32.

This section proposes an optimization by applying OaA in the
CNN context. The optimization greatly relieves the recon�gura-
tion requirement for FFT hardware, while preserving the native
frequency domain convolution’s advantage in terms of compu-
tation complexity. We will show in the next section our second
optimization, which further reduces the number of operations and
completely eliminates the need for hardware recon�guration.

3.2 Optimization for Exploiting Limited
Number of FFT Sizes

The analysis of Section 3.1 on both OaA based and the native FFT ne-
glects the wasted computation incurred by image padding to match
FFT sizes. However, this may result in sub-optimality implemen-
tations due to the limitations of realistic FFT hardware. Without
reasonable amount of recon�guration, high performance FFT hard-
ware is only able to support limited number of di�erent FFT sizes.
As an example, consider the case of radix-4 FFT design. The FFT
sizes of 4, 16, 64, 256 need to handle images of any sizes ranging
from ten to several hundred.

The key problem is mismatch between image sizes and FFT
sizes. Since we have little control over the FFT sizes under the
hardware constraints, we address this problem by changing image
sizes through input data reshaping.

Algorithm 1 Operations by a convolution layer
1: procedure ConvLayer
2: . I is the input image array
3: . K is the kernel array
4: for ib = 1 to Batch do
5: for iout = 1 to fout do
6: for iin = 1 to fin do
7: T in[ib][iout][iin]← I [ib][iin] ∗ K[iout][iin]
8: end for

9: T out [ib][iout]←
fin∑
j=1

T in[ib][iout][j]

10: end for
11: end for
12: end procedure

The operation of the CNN can be summarized by Algorithm 1.
The operation under concern is the convolution in line 7. For the
nested loop, we would like to manipulate one of the Batch, fout ,
fin dimensions so that limд of image I can be resized. Index ib
takes e�ect on I and is independent of K , so Batch is the appro-
priate dimension. We refer to the manipulation of Batch and limд
dimensions as the reshaping of input data.

We propose a dual operation of OaA, Concatenate and Pad (CaP),
and apply it together with OaA to have the �exibility on the limд
dimension. We need to ensure that reshaping does not a�ect the
output result of convolution, and introduces negligible overhead.

We de�ne the CaP operation as follow. Given a set of d2 images
I of equal size limд × limд , we arrange the images in a d × d mesh,
with x pixels of zero value between the vertically or horizontally
adjacent images. CaP outputs a large image ICaP by concatenating
I and the zero pixels in between. x is de�ned as the size of zero
padding. Figure 2 illustrates such process. The following theorem
shows that by choosing appropriate x , we can produce the correct
output of convolution:

Theorem 3.1. For a given kernel K of size lkern × lkern , the
convolution using K on a set of images I is identical to performing
convolution using K on ICaP i� the padding x is at least lkern − 1.

Proof. The proof of xmin = lkern − 1 can be done from the
perspective of spatial or frequency domain convolution. We prove

2

3

4

!"#$

1

1

4

2

3

!"#$%&'

()*

Figure 2: Illustration of the CaP algorithm.

the theorem by OaA in frequency domain to illustrate the dual
operation.

De�ne 	 as the partition operation by OaA. 	(I , lt ile) outputs
a set of tiles after partitioning I into lt ile × lt ile tiles T . De�ne
⊕k as the concatenation operation. ⊕k (I) outputs a large image by
concatenating the 2D mesh of {I } with k pixels of margin between
adjacent images; ⊕−k (I) outputs an image by concatenating the
2D mesh of I with k pixels of overlap between adjacent images.
De�ne Tp as the matrix by zero-padding T with p pixels after the
last pixels along the two dimensions.

Performing convolution after CaP can be expressed by the fol-
lowing set of equations:

ICaP = ⊕x (I)

{Ix } = 	limд+x (ICaP)

T =F−1
(
F ((Ix)lkern−1) ◦F (Kx+limд−1)

)
=Ix ∗ K = (I ∗ K)x = T x

∗

ICaP ∗ K = ⊕−(lkern−1) (T) = ⊕−(lkern−1)(T x
∗)

= ⊕x−(lkern−1) (T∗)

= ⊕x−(lkern−1) (I ∗ K)

From the ⊕x−(lkern−1) operator in the last step, it can be con-
cluded that convolution on ICaP is identical to convolution on the
set of I , i� x − (lkern − 1) > 0. Thus, the minimum value of x to
avoid aliasing between adjacent images is (lkern − 1).

�

Based on Theorem 3.1, we can CaP the images from a batch so
that input of Batch× fin × fout × l2imд is reshaped to Batch

d2 × fin ×

fout × (lCaPimд)
2, where lCaPimд = d · limд + (d − 1) · lkern , and d is

referred to as the Batch folding factor. We can then apply the OaA
technique on ICaPimд to complete the convolution. Abbreviate FFT
based convolution with OaA as OaA, and FFT based convolution
with CaP and OaA as CaP-OaA. We analyze in a convolution layer,
how much improvement can be brought by CaP-OaA compared
with OaA and the native approach. We assume that the hardware
supports the following FFT sizes:N = [N1,N2, ...,Nm], where N1 <
N2 < ... < Nm . Theorem 3.2 evaluates the optimal complexity for
CaP-OaA. Let Ki =

limд+lkern−1
Ni−(lkern−1) .

Theorem 3.2. The minimum computation complexity of CaP ap-
plied to a CNN isC2 · fin · fout ·K2

m ·N
2
m , whereC2 is some constant. To

achieve such complexity, the Batch folding factor should be a multiple
of Nm−(lkern−1)

gcd (limд+lkern−1,Nm−(lkern−1)) .

Proof. Based on Equation 4, the complexity of CaP-OaA ap-
proach averaged for a single image is:

OCaP−OaA =C2 · fin · fout ·
⌈ lCaPimд + lkern − 1
Ni − (lkern − 1)

⌉2
·
N 2
i

d2

=C2 · fin · fout ·
⌈
d · Ki

⌉2
·
N 2
i

d2

(6)

The minimum computation complexity can thus be obtained by
the following inequality:

OCaP−OaA > C2 · fin · fout · K2
i · N

2
i > C2 · fin · fout · K2

m · N
2
m

We can set d as a multiple of Nm−(lkern−1)
gcd (limд+lkern−1,Nm−(lkern−1))

to eliminate the ceiling function, and choose Ni = Nm . Then
min{OCaP−OaA} = C2 · fin · fout · K2

m · N
2
m .

Thus, Omin
CaP−OaA = C2 · fin · fout · K2

m · N
2
m . �

Corollary 3.3. The computation complexity of CaP-OaA is al-
ways no higher than OaA. The minimum ratio of CaP-OaA’s number

of operations over OaA’s number of operations ismaxi
(Km
dKi e

·
Nm
Ni

)2
.

Corollary 3.4. The computation complexity of CaP-OaA is lower
than native FFT if Nl

Nm
> Kl (where Nl denotes the minimum FFT size

such that Nl > limд + lkern − 1). The minimum ratio of CaP-OaA’s
number of operations over native frequency domain convolution’s

number of operations is
(Km ·Nm

Nl

)2
.

The corollaries can be easily proven by directly comparing the
optimal CaP-OaA complexity with the optimal OaA complexity and
the optimal native approach complexity. For OaA, since we have
no further information to evaluate the e�ect of the ceiling function,
we need to calculate dKi e · Ni for all Ni 6 limд + lkern − 1.

Figure 3 shows the e�ect of including CaP in the frequency do-
main convolution. We compare the algorithm of CaP-OaA, with the
hybrid algorithm using native approach and OaA. We plot under
two di�erent FFT constraints. The blue points are under the assump-
tion of N = {4, 16, 64, 256}. The red dots show the performance in
the case of more hardware support, N = {4, 8, 16, 32, 64, 128, 256}.
The kernel size is assumed to be 3 × 3. There are very few points
where CaP-OaA is slightly worse than the native approach. Most
of the time, for both FFT sequences, the extra �exibility brought by
CaP bene�ts the computation complexity signi�cantly.

One additional bene�t of applying CaP-OaA is that it makes
one-size FFT su�cient for all layers. Images in deeper layers can
be CaP-transformed to eliminate the domain constraint of N 6
limд + lkern − 1 discussed in Section 3.1. Evaluation on AlexNet
shows that the CaP-OaA technique reduces 57.5% of computation
compared with spatial convolution, using only one-size FFT of size
32.

0 30 60 90 120 150 180 210 240

Image Size

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n
in

C
om

pu
ta

tio
n

C
om

pl
ex

ity
by

C
aP

FFT Seq 1
FFT Seq 2

Figure 3: E�ect of CaP optimization. y axis is calculated by dividing the number of operations of CaP-OaA by the number of
operations of the hybrid algorithm discussed in Section 3.1.

3.3 Discussion on the Various Optimization
Techniques

The various optimization techniques discussed so far can be viewed
in a uni�ed way. By setting Batch folding factor to 1, Cap-OaA
reduces to OaA. By setting N = limд + lkern − 1, OaA reduces to
the native frequency domain convolution. Note that, there is no
pre-processing overhead incurred by OaA or CaP. CaP completely
eliminates the need to recon�gure hardware when processing dif-
ferent layers.

We can perform optimization by an hybrid algorithm that com-
bines all the three techniques: native approach, OaA and CaP-OaA.
The three algorithms can be applied separately on di�erent lay-
ers. Signi�cant reduction in computation complexity can thus be
achieved for arbitrary CNNs with very little hardware.

We should also notice that CaP is based on batch processing. In
this case, although throughput is further optimized, latency may
be compromised. Thus, using hybrid algorithm that uses OaA and
native algorithm can result in a low latency design, while further
inclusion of CaP-OaA can result in a high throughput design.

4 SYSTEM ARCHITECTURE
This section gives an overview of the architecture design on FPGA
to perform the hybrid algorithm for frequency domain convolution.
The architecture consists of three main modules to perform FFT,
Hadamard product and IFFT operations on the image and kernel
data.

4.1 Streaming 2D FFT Module
The 2D FFT on an N ×N matrix involves two phases of computation.
In the �rst phase, we perform N -point 1D FFT on the N rows of
the input matrix. In the second phase, we perform N -point 1D FFT
on the N columns of phase 1’s output matrix. Matrix transpose
operation is involved between the two phases. We design resource
e�cient hardware for both the 1D FFT and the matrix transpose
operation.

The radix-x N -point streaming 1D FFT architecture consists of
logx N computation stages. To meet the bandwidth requirement of
input data, we can fold each stage fF FT times so that input paral-
lelism of stage 0 is decreased from N words to N /fF FT . Streaming
permutation of sizemi = N

x i−1 is required between stages i and (i+1)
to support folding [6]. Thus, the total memory consumption by the
permutation network for the logx N stages is: 2N + ∑

mi ≈ 3N ,
where the 2N term is due to the bit-reversal in the last stage [7].

To perform the matrix transpose of size N × N between the two
phases of 2D FFT, we utilize the Streaming Permutation Network
(SPN) proposed in [8]. The SPN can perform arbitrary stride per-
mutation by the in-place permutation in time algorithm. The SPN
only requires size N × N single-port memory.

Our proposed streaming 2D FFT module consists of PF FT units
of N × N 2D FFT. Each 2D FFT unit can be folded q2DF FT times
so that it contains N /q2DF FT pipelines of N -point 1D FFT. Each
1D FFT pipeline can also be folded q1DF FT times so that the data
parallelism of each pipeline is N /q1D . The total data parallelism to
the 2D FFT module is PF FT ·N 2

q1DF FT ·q2DF FT
.

4.2 Multiply-and-Accumulate Module
The Hadamard product is performed by the Multiply-and-Accumulate
(MAC) module. Inputs to the MAC module are the kernel and image
tiles after the Fourier transform. Outputs of the MAC are the resul-
tant tiles after the Hadamard product computation. The Pimд image
tiles and Pkern kernel tiles fed into the MAC module in one cycle
should have the same index in the fin dimension. Then after fin
cycles, the accumulator can complete the reduction on dimension
fin . Data parallelism of Pimд · Pkern ·N

2 is required to support the
full permutation of the set of Pimд image tiles and the set of Pkern
kernel tiles. If input is available every cycle, the output rate of the
MAC module is Pimд ·Pkern tiles per fin cycles. The required input
rate for image tiles is Pimд tiles per fout /Pkern cycles. Thus, the
ratio of the input and output rate is fin/fout . We can easily verify
that the MAC module design is work optimal.

Im
age Buffer

Kernel Buffer

2D
FFT

2D
IFFT

M
ACMAC

FPGA

CPU

DRAM

Figure 4: Overall System Design

Table 2: Summary of Resource Consumption and Through-
put

2D FFT MAC

Logic 2 · logx N · (N
q1DF FT

− 1) ·
N

q2DF FT
· PF FT · L

Pimд · Pkern · N
2 · L

Memory (2 · 3N
f2DF FT

+N 2) ·PF FT ·D ——

Throughput PF FT ·N 2

q1DF FT ·q2DF FT
Pimд ·Pkern ·N

2/fin

We can also fold the MAC module by qMAC so that the granu-
larity is not an entire N 2 matrix. The data parallelism after folding
is Pimд · Pkern · N

2/qMAC .

4.3 Overall System Design
The full system design is shown in Figure 4. The FFT modules in
dashed lines before the kernel bu�ers will be discussed in Section 5.1.
The images tiles are processed by the 2D FFT module before they
are stored in the image bu�er. The output tiles are transformed
back to spatial domain by the 2D IFFT modules before they are
written to external memory. We use double bu�ering technique to
hide the memory latency of image and kernel tiles.

The resource consumption and throughput for the FFT and MAC
modules are summarized in Table 2. Constant L refers to the logic
consumption for one complex number adder and multiplier.D refers
to the memory consumption for one complex number.

5 ARCHITECTURE LEVEL OPTIMIZATION
In this section, we proceed to the optimization at the architecture
level so that we can perform the most e�cient mapping for our op-
timized algorithm, given any CNN and target FPGA. The challenges
are two-folded. On the one hand, the various kinds of hardware
modules as well as the ample resources on chip create a huge design

space to explore. On the other hand, since the same hardware is
deployed for accelerating all the convolution layers of a CNN, it is
non-trivial to identify a global optimal con�guration for the entire
CNN.

As a simple example, we consider the input/output rate require-
ment for an arbitrary architecture designed for the convolution
layer. If the input data is of shape fin × limд × limд and the output
is of shape fout × l

′

imд × l
′

imд , then regardless of the underlying
hardware, the required ratio of input to output data rate should be
approximately fin/fout . However, such ratio di�ers greatly across
layers. For AlexNet, there is a 30x variation between the �rst and
the last layer.

Given the complexity of the problem, we derive an analytic per-
formance model for the architecture described in Section 4. We
formulate our problem as a non-linear optimization problem and
propose a technique to greatly reduce the design space to be ex-
plored.

5.1 Data Flow
There have been much discussion on how to design the data �ow
so that memory reuse or locality can be exploited to a maximum
extent. Unlike the case of spatial convolution where memory access
pattern in the deep nested loop is complicated, our approach using
frequency domain convolution simpli�es the memory design by
the feature of the algorithm. CaP and OaA are analogous to the
loop tiling and unrolling [16] in spatial convolution. Using these
techniques, we can scale up or down the tile and image sizes based
on the available hardware resources. The key di�erence from spa-
tial convolution is the Hadamard product. It conducts element-wise
operation on the matrices, meaning that all the loop carried depen-
dencies are automatically eliminated. This property ensures that
massive parallelism can be exploited on the FPGA device.

The priority for designing our data �ow is to exploit as much
parallelism as possible for the MAC module. During inference, the
kernel data is unchanged, one option is to directly store the kernels
in frequency domain and transfer them to FPGA. This saves FFT
computation on the kernel data. Thus, we have more hardware
resource budget for the MAC module to improve the overall system
throughput. However, the above approach has negative impact on
the system bandwidth. Suppose the convolution in frequency do-
main uses N -point FFT. Then if we transfer to hardware the kernels
in frequency domain, instead of the original kernels in spatial do-
main, the total data communication on kernels will increase from
O(l2kern) to O(N 2). Depending on the value of N , lkern and the
hardware bandwidth, logic resource, either kind of kernel data �ow
can be more suitable. Thus, there is an optional FFT module before
the kernel bu�er in Figure 4. In terms of data reuse, we use the im-
age oriented design so that image reuse is maximized. To consume
one image bu�er, we reload the kernel bu�er several times to make
a full pass of the kernel data.

5.2 Analysis of IO and Computation Cost
The analysis in this section is based on the assumption that kernels
in frequency domain are loaded on FPGA. Then we don’t have
the kernel FFT modules. The analysis in this section can be easily
modi�ed for the other kernel data �ow.

We consider the time period in which one image bu�er is con-
sumed completely. We call this one round of computation. The peak
throughput of the FFT, MAC and IFFT modules can be found in
Table 2. We denote the peak throughput asTF FT ,TMAC andTI F FT
(the equations for them are summarized in Table 2).

The full external bandwidth (Bsys) is shared by FFT module
(BF FT), kernel bu�er (Bkern) and IFFT module (BI F FT). The amount
of data transferred to FFT is DF FT = Mimд , and the amount of data
to kernel bu�er is Dkern = fin · fout · N

2, based on our data reuse
scheme. The IFFT module produces DI F FT = fout

fin
· Dimд amount

of output.
The IO time t IOround is determined by the largest time needed by

DF FT ,Dkern andDI F FT . Since data is streamed from MAC, IFFT to
external memory, we deal with DI F FT later in the computation cost
calculation. The bandwidth BF FT and Bkern should be assigned
based on the workload DF FT , Dkern as well as the peak throughput
of the subsequent FFT module. This is shown in Equation 7.

BF FT =min
{ DF FT
DF FT + Dkern

(Bsys − BI F FT),TF FT
}

Bkern =(Bsys − BI F FT) − BF FT
(7)

The IO time is calculated as: t IOround = DF FT
BF FT >

Dkern
Bkern

.
The computation time tcomp

round is de�ned as the time period for
consuming one image bu�er by the MAC and IFFT module. It is
bounded by the peak throughput of the two modules, as well as
the time for loading the image bu�er. The throughput or output
bandwidth of the MAC and IFFT module is shown by Equation 8.

BI F FT = min
{
DI F FT

t IOround

,TMAC ,TI F FT

}
(8)

By using Equation 7 as well as the relation among t IOround , DF FT
and DI F FT , we express Equation 8 in the following way:

BI F FT = min
{
TMAC ,TI F FT ,

fout
fin

TF FT ,
Q

1 +Q Bsys
}

(9)

where Q = fout
fin
·

Mimд

Mimд+fin ·fout ·N 2 .
Equation 9 shows how the system throughput would be deter-

mined by the various hardware resources and the CNN speci�cation.
TMAC , TF FT , TI F FT , Bsys and Mimд captures the hardware con-
straints of logic resources, external bandwidth and on-chip memory.
fin , fout and N reveal the impact of CNN speci�cation on the hard-
ware performance. The problem is that for di�erent convolution
layers, fin , fout , N di�ers. We can use the CaP-OaA technique dis-
cussed in Section 3 to reduce or even remove the variance of N . We
will deal with the variance of fin and fout in Section 5.3.

The computation time for one round is given by: tcomp
round = DI F FT

BI F FT .
In the above design, the image bu�er consuming rate never ex-

ceeds the producing rate. Thus, the total time of a round is tround =
t
comp
round . For the double-bu�ering to completely hide the memory

latency, min
{
TMAC ,TI F FT

}
6 min

{ fout
fin

TF FT ,
Q
1+Q Bsys

}
has to

be satis�ed.
For the other kind of design containing the kernel FFT module,

corresponding changes need to be made for the above equations.For

example, Dkern is changed to fin · fout · l
2
imд . We can derive its

performance model using the similar idea as the above discussion.

5.3 Design Space Exploration
The processing of a convolution layer involves several rounds. Total
time for processing a convolution layer is given by:

tlayer = fin ·
(l∗imд)

2

Mimд
· tround =

fout · (l∗imд)
2

BI F FT
(10)

where l∗imд is image size after the padding or Batch folding
operation by the hybrid algorithm discussed in Section 3.

The goal of our architecture optimization is to identify the con�g-
uration of di�erent modules so that throughput or latency regarding
the entire CNN is optimized. We de�ne tCNN as the time to process
a single image by all convolution layers. For batch processing in
the case of CaP-OaA, tCNN is averaged over the d2 images in ICaP .
Thus, regardless of the metric being throughput or latency, we
minimize tCNN . We formulate an optimization problem as follow:

minimize
H

∑
layer i

t ilayer

subject to LOGICF FT ,MAC, I F FT 6 LOGICsys
MEMORYF FT ,MAC, I F FT 6 MEMORYsys

where the set of architectural parameters H includes N , q1DF FT ,
q1DI F FT ,q2DF FT ,q2DI F FT , PF FT , PI F FT ,Mimд ,Mkern , Pimд , Pkern ,
qMAC . The parameters are de�ned in Section 4 and 5.

LOGICF FT ,MAC, I F FT andMEMORYF FT ,MAC, I F FT refer to the
logic or on-chip memory consumption by the FFT, MAC, IFFT mod-
ules. The terms LOGICsys and MEMORYsys refer to the available
logic and on-chip memory on the FPGA board.

The design space is of very high dimension. We can remove
two variables by the following observation: (1) N can be chosen
by our algorithm level optimization; (2) Mkern does not a�ect the
performance because of the image oriented data reuse; (3) Pimд ,
Pkern always appear in the form of Pimд · Pkern , The design space
now consists of 9 variables.

The main di�culty in further simpli�cation of this optimization
problem is the min operation in the BI F FT term. This min function
captures what kind of hardware resource is the bottleneck of our
design. The reason why we can not evaluate the min function is
that, for di�erent convolution layers, the bottleneck can be di�erent.
In other words, if our target is to optimize a single layer only, the
design space will be much smaller. For a single layer optimization
problem, we can prove by contradiction that there exists an optimal
con�guration where all the hardware resources are fully utilized,
such that:

BI F FT = TMAC = TI F FT = fout
fin

TF FT = Q

1 +Q Bsys (11)

Thus, the original optimization problem now contains three more
equality constraints. The number of free variables in the design
space is reduced from 9 to 6. The new design space is de�ned by
H′ = {MF FT , Pimд ,q1DF FT ,q1DI F FT ,q2DF FT ,q2DI F FT }.

For the optimization problem on a complete CNN, we can use the
optimum of a single convolution layer as an indication. Based on
Equation 9 and Table 2, we observe how di�erent hardware modules
or resource become the performance bottleneck when fin and fout
vary with the convolution layers. For the �rst few layers when fin ,
fout are both small and the ratio fout /fin is large,TMAC , foutfin

TF FT

and Q
1+Q Bsys are of higher value. In this case, TI F FT will be the

bottleneck. Similarly, for deeper layers, the bottleneck may change
to other hardware modules.

We propose an e�cient design space exploration algorithm for a
complete CNN, by bounding the design space de�ned byHwith the
optimum for each single layer. The single layer optimum is obtained
by exploring the design space de�ned by H′. The procedure is
shown by Algorithm 2.

Algorithm 2 Design Space Exploration with Indication
1: procedure DesignSpaceExploration
2: . Conduct design space exploration on a complete CNN.
3: . OPT stores the optimum for single layer.
4: . OPT [i] ∈ H
5: OPT []← NULL
6: for i = 0 to Layer l do
7: Perform design space exploration over H′
8: OPT [i]← optimum for layer i
9: end for

10: . Ranдe[d] stores the range of value for dimension d
11: Ranдe[]← NULL
12: for d = 0 to Dimension D do
13: Ranдe[d]← [mini {OPT [i][d]},maxi {OPT [i][d]}]
14: end for
15: Design space exploration of the entire CNN with the design

space bounded by Ranдe[].
16: end procedure

The key to our algorithm is that it transforms a large design space
exploration problem into limited number of sub-problems of much
smaller sizes. The design space exploration algorithm implemented
in C++ executes in several minutes on a desktop platform.

6 EXPERIMENTS
6.1 Experimental Setup
We choose the Intel Heterogeneous Research Platform (HARP) [1]
as our primary experimental platform. The target platform with
integrated CPU and FPGA is shown in Figure 5. Intel HARP is a
pre-production of Intel QuickAssist QPI FPGA Platform where Intel
Xeon E5-2600 v2 processor and Altera Stratix V FPGA are integrated.
The data communication between CPU and FPGA is through a
coherent shared memory workspace. The DRAM access granularity
for FPGA is one cache line width, which is 64 bytes. The CPU
and FPGA communicate through Intel QuickPath Interconnection
(QPI) [29] with 6.4 GT/s theoretical bandwidth1. The measured
peak bandwidth from the shared memory to FPGA is 5GB/s . The

1Giga Transactions per second

Main memory

FPGA

...Core Core

On-chip cache hierarchy

Coherent memory
interface

BRAM

Coherent memory
interface

LUTs

...

System
InterfaceOn-chip

Interconnection

CPU

Other I/O devices

Figure 5: Target architecture integrating general purpose
processors and FPGA

Altera Stratix V FPGA in HARP has 234720 ALMs and 256 DSP
blocks. The FPGA on-chip memory is of size 6.25MB.

In our experiment, we distribute the workload between CPU and
FPGA as follows. The FPGA performs the FFT, Hadamard product
and IFFT operations for the input image tiles and the kernel tiles.
The CPU is responsible for other light-weight operations including
partitioning the images into tiles and combining the tiles into the
�nal output, according to the the OaA and CaP algorithm discussed
in Section 3.

6.2 Low Latency or High Throughput Design
Based on our algorithm-architecture co-design, we propose two im-
plementations of AlexNet on the HARP platform. The low-latency
design chooses 64-point FFT for the �rst two layers, and 16-point
FFT for the last three layers. It uses the hybrid algorithm described
in Section 3.1. The high-throughput design chooses 64-point FFT
for all the �ve layers. It uses the hybrid algorithm described in
Section 3.2. The data precision is 16-bit �xed point. To save external
memory bandwidth, we use the design containing kernel 2D FFT
modules. Two sets of hardware con�guration H are generated by
our architectural design space exploration algorithm, as shown in
Table 4. The data parallelism of the kernel 2D FFT module is 4. For
the two con�gurations, the high throughout design requires con�g-
uration 1, and the low latency design requires both con�guration 1
and 2. The low latency design switches between the two di�erent
con�gurations by runtime recon�guration. The radix-4 FFT design
explained in Section 4.1 can change between 16-point and 64-point
without too much overhead in time or hardware resource. In our
design, it is realized by bypassing the last stage of the 64-point 1D
FFT pipeline. For the MAC module, note that in Table 4, the data
parallelism of MAC for the two con�gurations are the same. Thus,
the only thing to do for MAC module recon�guration is to change
the memory read locations into the image and kernel bu�ers. Note
that no runtime recon�guration is involved in the high throughput
design. This is one bene�t of using the CaP algorithm.

6.3 Performance Evaluation
We compare our work with the state-of-the-art AlexNet implemen-
tations on FPGAs, as shown in Table 3. We report the throughput
and latency for all the �ve convolution layers of AlexNet. The host

Table 3: Comparison with Other AlexNet Implementations on FPGAs

DATE’16 [21] FPGA’16 [25] FPL’16 [17] FPGA’17 [28] Our Design
Low Latency High Throughput

FPGA Virtex-7 VC707 Stratix-V GSD8 Stratix-V GXA7 Stratix-V GXA7 Stratix-V GXA7 Stratix-V GXA7
Frequency (MHz) 160 – 100 200 200 200

Precision Fixed 32-bit Fixed 8-16 bits Fixed 8-16 bits Floating 32-bit Fixed 16-bit Fixed 16-bit
DSP Utilization 2688 (96%) 234 (91.4%) 256 (100%) 224(87.5%) 232(90.6%) 256 (100%)

Logic Utilization 45K (9%) 152K (65%) 121K (52%) 201K (86%) 200K (85%) 199K (85%)
On-chip RAM 543 (53%) 1744 (71%) 1552 (61%) 2000 (80%) 2143 (85%) 2130 (85%)
Latency (ms) – 20.1 12.75 40.81 12.4 51.2

Throughput (GOPS) 147.82 72.4 114.5 83.0 117.7 163.4

Table 4: Hardware Con�guration of the Two Designs

Conf. Mimд (MB) PMAC ·N 2
qMAC

PF FT ·N 2
q1DF FT ·q2DF FT

PI F FT ·N 2
q1DI F FT ·q2DI F FT

1 2.4 1·642
4

1·642
32·16

1·642
64·16

2 2.4 4·162
1

1·162
8·4

1·162
16·4

CPU computes concurrently with FPGA for other operations in-
volved in the CNN. The CPU processing time completely overlaps
with the processing time of the FPGA.

The performance of our two designs is as expected. The low la-
tency design achieves latency of 12.4ms , which is lower than all the
other implementations listed in Table 3. The high throughput design
achieves throughput of 163.4 GOPS , which is the best among all the
listed implementations. The performance improvement comes from
the two-level optimization discussed in the previous sections. The
algorithmic optimization reduces the required number of opera-
tions, and the architectural optimization identi�es the most suitable
con�guration of the hardware modules. The architectures of the
high throughput and the low latency designs are very similar. The
same hardware can be reused by the two designs with optional
runtime recon�guration of the 2D FFT modules.

To get deeper understanding of our implementation, we analyze
the experiment data based on Equation 9. Table 5 shows the FPGA
throughput for each convolution layer in the case of the low latency
design. The middle columns show the peak throughput achievable
given the hardware con�guration of FFT, MAC, IFFT, and the peak
bandwidth to external memory.

Table 5: Analysis on the Bottleneck of Our System (Low La-
tency Design). Unit of the values: ComplexWord/Sec

TMAC TI F FT
fout
fin

TF FT
Q
1+Q Bsys Bottleneck

CONV1 341.3 8.0 128.0 6.1 Bsys
CONV2 10.7 8.0 10.7 4.2 Bsys
CONV3 4.0 8.0 6.0 3.2 Bsys
CONV4 2.7 8.0 4.0 1.9 Bsys
CONV5 2.7 8.0 2.7 1.8 Bsys

From Table 5, we conclude that the external bandwidth is the
bottleneck of the system. This observation is veri�ed by the mea-
sured latency. The single image classi�cation latency should be at
least the data transfer time of image data, kernel data and output
data. The time tmem can be easily calculated by dividing the total
amount of data with the peak memory bandwidth. The measured
latency of 12.4ms is very close to tmem , meaning that our design
saturates the memory bandwidth. Given a system with higher ex-
ternal memory bandwidth, the performance of our design can be
further improved.

7 CONCLUSION
In this paper, we presented a novel algorithm-architecture co-design
methodology to improve the latency or throughput of large scale
CNNs on FPGAs. Our design was based on two observations on
state-of-the-art CNNs – large variance in image sizes limд , and large
variance in the number of feature maps fin and fout . Our algorithm
optimization was based on the OaA technique applied to frequency
domain convolution. To address the variance of limд , we proposed
a dual operation of OaA called Concatenate and Pad (CaP). This
technique reduces the computation complexity of convolution, and
eliminate the hardware overhead for runtime recon�guration. To
address the variance of fin and fout , we proposed a system design
to support our algorithmic optimization. We further formulated
the analytical performance model for our system. We derived an
e�cient design space exploration algorithm by reducing the number
of variables using the optimum related with a single convolution
layer.

We demonstrated our co-design methodology by implement-
ing two designs of AlexNet on the Intel HARP platform. Our low-
latency implementation achieved latency of 12.4ms , and our high-
throughput implementation achieved throughput of 163 GOPS . Our
implementations outperform state-of-the-art implementations of
AlexNet on FPGAs signi�cantly.

In the future, we will further generalize the co-design methodol-
ogy to support wider range of CNNs and FPGAs. We will implement
techniques such as layer partitioning to handle the cases where
on-chip memory is not large enough for a large fin value. We will
also compare our work with GPU and multi-core implementations.

REFERENCES
[1] 2015. Intel Inc. Xeon+FPGA Platform for the Data Center. (2015). https://www.

ece.cmu.edu/calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
[2] 2017. Overlap-add method. (2017). "https://en.wikipedia.org/wiki/Overlap-add_

method"
[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Gregory S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, San-
jay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard,
Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. CoRR abs/1603.04467 (2016). http://arxiv.org/abs/1603.04467

[4] B. Ahn. 2015. Real-time video object recognition using convolutional neural
network. In 2015 International Joint Conference on Neural Networks (IJCNN).
1–7. DOI:https://doi.org/10.1109/IJCNN.2015.7280718

[5] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, and Gordon R.
Chiu. 2017. An OpenCL™Deep Learning Accelerator on Arria 10. (2017), 55–64.
DOI:https://doi.org/10.1145/3020078.3021738

[6] R. Chen, H. Le, and V. K. Prasanna. 2013. Energy e�cient parameterized FFT ar-
chitecture. In 2013 23rd International Conference on Field programmable Logic
and Applications. 1–7. DOI:https://doi.org/10.1109/FPL.2013.6645545

[7] R. Chen, N. Park, and V. K. Prasanna. 2013. High throughput energy e�cient
parallel FFT architecture on FPGAs. In 2013 IEEE High Performance Extreme
Computing Conference (HPEC). 1–6. DOI:https://doi.org/10.1109/HPEC.2013.
6670343

[8] Ren Chen, Sruja Siriyal, and Viktor Prasanna. 2015. Energy and Memory
E�cient Mapping of Bitonic Sorting on FPGA. In Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA ’15). ACM, New York, NY, USA, 240–249. DOI:https://doi.org/10.1145/
2684746.2689068

[9] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi. 2016. Caf-
feinated FPGAs: FPGA Framework For Convolutional Neural Networks. ArXiv
e-prints (Sept. 2016). arXiv:cs.CV/1609.09671

[10] Clément Farabet, Berin Martini, Polina Akselrod, Selçuk Talay, Yann LeCun,
and Eugenio Culurciello. 2010. Hardware accelerated convolutional neural
networks for synthetic vision systems. In Proceedings of 2010 IEEE International
Symposium on Circuits and Systems. IEEE, 257–260.

[11] Mario Garrido, J. Grajal, M. A. Sánchez, and Oscar Gustafsson. 2013. Pipelined
Radix-2K Feedforward FFT Architectures. IEEE Trans. Very Large Scale Integr.
Syst. 21, 1 (Jan. 2013), 23–32. DOI:https://doi.org/10.1109/TVLSI.2011.2178275

[12] Tyler Highlander and Andres Rodriguez. 2016. Very E�cient Training of Convo-
lutional Neural Networks using Fast Fourier Transform and Overlap-and-Add.
CoRR abs/1601.06815 (2016). http://arxiv.org/abs/1601.06815

[13] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Ca�e: Convolutional
Architecture for Fast Feature Embedding. In Proceedings of the 22Nd ACM
International Conference on Multimedia (MM ’14). ACM, New York, NY, USA,
675–678. DOI:https://doi.org/10.1145/2647868.2654889

[14] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. 2012. Imagenet clas-
si�cation with deep convolutional neural networks. In Advances in Neural
Information Processing Systems. 1097–1105.

[15] Andrew Lavin. 2015. Fast Algorithms for Convolutional Neural Networks. CoRR
abs/1509.09308 (2015). http://arxiv.org/abs/1509.09308

[16] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. 2017. Optimizing Loop
Operation and Data�ow in FPGA Acceleration of Deep Convolutional Neural
Networks. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’17). ACM, New York, NY, USA, 45–54.
DOI:https://doi.org/10.1145/3020078.3021736

[17] Yufei Ma, N. Suda, Yu Cao, J. s. Seo, and S. Vrudhula. 2016. Scalable and modu-
larized RTL compilation of Convolutional Neural Networks onto FPGA. In 2016
26th International Conference on Field Programmable Logic and Applications
(FPL). 1–8. DOI:https://doi.org/10.1109/FPL.2016.7577356

[18] Michaël Mathieu, Mikael Hena�, and Yann LeCun. 2013. Fast Training of
Convolutional Networks through FFTs. CoRR abs/1312.5851 (2013). http:
//arxiv.org/abs/1312.5851

[19] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fow-
ers, Karin Strauss, and Eric Chung. 2015. Accelerating Deep Con-
volutional Neural Networks Using Specialized Hardware. (Febru-
ary 2015). https://www.microsoft.com/en-us/research/publication/
accelerating-deep-convolutional-neural-networks-using-specialized-hardware/

[20] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng
Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang. 2016.
Going Deeper with Embedded FPGA Platform for Convolutional Neural Net-
work. In Proceedings of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA ’16). ACM, New York, NY, USA, 26–
35. DOI:https://doi.org/10.1145/2847263.2847265

[21] A. Rahman, J. Lee, and K. Choi. 2016. E�cient FPGA acceleration of Con-
volutional Neural Networks using logical-3D compute array. In 2016 Design,
Automation Test in Europe Conference Exhibition (DATE). 1393–1398.

[22] Dominik Scherer, Hannes Schulz, and Sven Behnke. 2010. Accelerating Large-
scale Convolutional Neural Networks with Parallel Graphics Multiprocessors. In
Proceedings of the 20th International Conference on Arti�cial Neural Networks:
Part III (ICANN’10). Springer-Verlag, Berlin, Heidelberg, 82–91. http://dl.acm.
org/citation.cfm?id=1886436.1886446

[23] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and H.
Esmaeilzadeh. 2016. From high-level deep neural models to FPGAs. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–
12. DOI:https://doi.org/10.1109/MICRO.2016.7783720

[24] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional
Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).
http://arxiv.org/abs/1409.1556

[25] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma,
Sarma Vrudhula, Jae-sun Seo, and Yu Cao. 2016. Throughput-Optimized
OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Net-
works. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’16). ACM, New York, NY, USA, 16–25.
DOI:https://doi.org/10.1145/2847263.2847276

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2014. Going Deeper with Convolutions. CoRR abs/1409.4842 (2014).
http://arxiv.org/abs/1409.4842

[27] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’15). ACM, New York, NY, USA, 161–
170. DOI:https://doi.org/10.1145/2684746.2689060

[28] Chi Zhang and Viktor Prasanna. 2017. Frequency Domain Acceleration of
Convolutional Neural Networks on CPU-FPGA Shared Memory System. (2017),
35–44. DOI:https://doi.org/10.1145/3020078.3021727

[29] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and Robert J Safranek. 2010.
Intel® quickpath interconnect architectural features supporting scalable sys-
tem architectures. In High Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on. IEEE, 1–6.

https://www.ece.cmu.edu/calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://www.ece.cmu.edu/calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
"https://en.wikipedia.org/wiki/Overlap-add_method"
"https://en.wikipedia.org/wiki/Overlap-add_method"
http://arxiv.org/abs/1603.04467
https://doi.org/10.1109/IJCNN.2015.7280718
https://doi.org/10.1145/3020078.3021738
https://doi.org/10.1109/FPL.2013.6645545
https://doi.org/10.1109/HPEC.2013.6670343
https://doi.org/10.1109/HPEC.2013.6670343
https://doi.org/10.1145/2684746.2689068
https://doi.org/10.1145/2684746.2689068
http://arxiv.org/abs/cs.CV/1609.09671
https://doi.org/10.1109/TVLSI.2011.2178275
http://arxiv.org/abs/1601.06815
https://doi.org/10.1145/2647868.2654889
http://arxiv.org/abs/1509.09308
https://doi.org/10.1145/3020078.3021736
https://doi.org/10.1109/FPL.2016.7577356
http://arxiv.org/abs/1312.5851
http://arxiv.org/abs/1312.5851
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
https://doi.org/10.1145/2847263.2847265
http://dl.acm.org/citation.cfm?id=1886436.1886446
http://dl.acm.org/citation.cfm?id=1886436.1886446
https://doi.org/10.1109/MICRO.2016.7783720
http://arxiv.org/abs/1409.1556
https://doi.org/10.1145/2847263.2847276
http://arxiv.org/abs/1409.4842
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/3020078.3021727

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Convolution in Frequency Domain
	2.2 Overlap and Add (OaA)
	2.3 CNN Models
	2.4 CNN Accelerators

	3 Algorithm Level Optimization
	3.1 Optimization for Images of Different Scales
	3.2 Optimization for Exploiting Limited Number of FFT Sizes
	3.3 Discussion on the Various Optimization Techniques

	4 System Architecture
	4.1 Streaming 2D FFT Module
	4.2 Multiply-and-Accumulate Module
	4.3 Overall System Design

	5 Architecture Level Optimization
	5.1 Data Flow
	5.2 Analysis of IO and Computation Cost
	5.3 Design Space Exploration

	6 Experiments
	6.1 Experimental Setup
	6.2 Low Latency or High Throughput Design
	6.3 Performance Evaluation

	7 Conclusion
	References

