
	

	

	

	

	

Common Knowledge and Sequential Team Problems 
 

Authors: Ashutosh Nayyar and Demosthenis Teneketzis 
 
 

Computer Engineering Technical Report Number CENG-2018-02 
 

 

 

 

 

 

 

 

 

 

 

Ming Hsieh Department of Electrical Engineering – Systems 
University of Southern California 

Los Angeles, California 90089-2563 
 

November, 2018 



1

Common Knowledge and Sequential Team

Problems
Ashutosh Nayyar and Demosthenis Teneketzis

Abstract

We consider a general sequential team problem based on Witsenhausen’s intrinsic model. Our

formulation encompasses all teams in which the uncontrolled inputs can be viewed as random variables on

a finite probability space, the number of control inputs/decisions is finite and the decisions take values

in finite spaces. We define the concept of common knowledge in such teams and use it to construct

a sequential decomposition of the problem of optimizing the team strategy profile. If the information

structure is classical, our common knowledge based decomposition is identical to classical dynamic

program. If the information structure is such that the common knowledge is trivial, our decomposition is

similar in spirit to Witsenhausen’s standard form based decomposition [16]. In this case, the sequential

decomposition is essentially a sequential reformulation of the strategy optimization problem and appears

to have limited value. For information structures with non-trivial common knowledge, our sequential

decomposition differs from Witsenhausen’s standard form based decomposition because of its dependence

on common knowledge. Our common knowledge based approach generalizes the common information

based methods of [12]–[14].

I. INTRODUCTION

This paper deals with the problem of decentralized decision-making. Such problems arise in any system

where multiple agents/decision-makers have to take actions/make decisions based on their respective infor-

mation. Examples of such systems include communication and power networks, sensing and surveillance

systems, networked control systems and teams of autonomous robots. We focus on problems that are:

(i) Cooperative, i.e., problems where different decision-makers share the same objective. Such problems

are called Team Problems [3], [6], [7], [10], [11], [15], [20], [21]; (ii) Stochastic, i.e., problems where

stochastic models of uncertainties are available and the goal is to minimize the expected value of the

system cost; (iii) Sequential, i.e., problems where the decision-makers act in a pre-determined order that

is independent of the realizations of the uncertain inputs or the choice of the decision strategy profile.

Further, this order satisfies a basic causality condition: the information available to make a decision does
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not depend on decisions to be made in the future. Decentralized decision-making problems with the

above characteristics are referred to as sequential team problems.

Sequential team problems can be categorized based on their information structures. Classical infor-

mation structures have the perfect recall property, that is, the information available to make a decision

includes all the information available to make all past decisions. The classical dynamic program based

on Markov decision theory provides a systematic way of solving sequential team problems with classical

information structure [8], [18]. This method allows us to decompose the problem of finding optimal

strategies for all agents into several smaller problems which must be solved sequentially backwards in

time to obtain optimal strategies. We refer to this simplification as a sequential decomposition of the

problem.

When the information structure is not classical, a general sequential decomposition is provided by

Witsenhausen’s standard form based method [16]. The idea of the standard form approach is to consider

the optimization problem of a designer who has to select a sequence of decision strategies, one for each

agent. The designer knows the system model (including the system cost function) and the probability

distributions of uncertain inputs but does not have any other information. The designer sequentially

selects a decision strategy for each agent. The designer’s problem can be shown to be a problem with

(trivially) classical information structure. This approach can be used to decompose the designer’s problem

of choosing a sequence of decision strategies into several sub-problems that must be solved sequentially

backwards in time. In each of these sub-problems, the designer has to optimize over one decision

strategy (instead of the whole strategy profile). This approach for obtaining a sequential decomposition

of sequential team problems has been described in detail in [16] and [9].

In this paper, we provide a new sequential decomposition for sequential team problems. Our approach

relies on the idea of common knowledge in sequential team problems. In response to the sequential

nature of the team problems we study, our definition of common knowledge is itself sequential, that is, it

changes for each decision to be made. At any given time, common knowledge represents the information

about uncertain inputs and agents’ decisions that is available to all current and future decision-makers. We

show that decision-makers can use this common knowledge to coordinate how they make decisions. Our

methodology provides a sequential decomposition for any sequential team problem with finitely many

decision-makers and with finite probability and decision spaces. We can make three observations about

our common knowledge based decomposition: (i) If the underlying information structure is classical, our

sequential decomposition reduces to the classical dynamic program. (ii) For information structures with

non-trivial common knowledge, our sequential decomposition differs from Witsenhausen’s standard from

based decomposition because of its dependence on common knowledge. The use of common knowledge
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allows our sequential decomposition to have simpler sub-problems than those in Witsenhausen’s standard

form approach. (iii) For information structures with trivial common knowledge (see Section V), our

decomposition is similar in spirit to Witsenhausen’s standard form based decomposition [16]. In this

case, the sequential decomposition is essentially a sequential reformulation of the strategy optimization

problem and appears to have limited value.

The common knowledge approach described in this paper generalizes the common information method

of [12]. The common information method has been used in [13] and [14] for studying delayed history

sharing and partial history sharing models in decentralized control. In contrast to the common information

based methods of [13], [14], the common knowledge approach of this paper does not require a part

of agents’ information to be nested over time. Further, in some cases, it can produce a sequential

decomposition that is distinct from, and simpler than, the common information based decomposition.

We will adopt Witsenhausen’s intrinsic model [1], [17], [18] to present our results for general sequential

team problems. Models similar to the intrinsic model have been presented in [19]. The intrinsic model

encompasses all systems in which (1) the uncontrolled inputs can be viewed as random variables defined

on a probability space (⌦,F ,P); (2) the number of decisions to be taken is finite (T ), (3) the t-th decision

can be viewed as an element of a measurable space (Ut,Ut) in which all singletons are measurable; and

(4) the decision strategy for the t-th decision can be viewed a measurable function from the measurable

space (⌦ ⇥ U1 ⇥ ... ⇥ UT ,Jt) to the measurable space (Ut,Ut), where Jt ⇢ F ⌦ U1 ⌦ . . . ⌦ UT is

a sigma-algebra that denotes the maximal information (knowledge) that can be used to select the t-th

decision.

A. Organization

The paper is organized as follows. We describe the intrinsic model, information structures and the

observations that generate a decision-maker’s information sigma-algebra in Section II. We present the

dynamic program for classical information structures in Section III. We define common knowledge for

sequential team problems and use it to derive a sequential decomposition in Section IV. We compare

common knowledge based sequential decomposition with the classical dynamic program and with Wit-

senhausen’s standard form in Section V. We compare our common knowledge approach with the common

information approach used in prior work in Section VI. We discuss the impact of sequential orders on

common knowledge in Section VII. We conclude in Section VIII.
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B. Notation

We denote random variables by capital letters and their realizations by corresponding small letters.

Some random variables are denoted by small Greek letters (e.g., �, ! ) and we use ~ or ^ to denote

a particular realization (as in �̃, !̂). For any variable ⇤, we use ⇤1:t as a shorthand for (⇤1, ⇤2, . . . , ⇤t).

For sets A1, . . . , At, A1:t denotes the product set A1 ⇥ . . .⇥At. R is the set of real numbers and B(R)

is the Borel sigma-algebra on R. If A1, . . . , Ak form a partition of a set ⌦, then �(A1, . . . , Ak) denotes

the sigma-algebra generated by this partition.

II. THE INTRINSIC MODEL

Consider a stochastic system with finitely many decisions/control inputs. The decisions are denoted

by Ut, t = 1, 2, . . . , T, and take values in measurable spaces (Ut,Ut), t = 1, 2, . . . , T, respectively.

All uncontrolled inputs to the stochastic system are modeled as a random vector ! = (!1,!2, . . . ,!N )

taking values in a measurable space (⌦,F). A probability measure P on (⌦,F) specifies the probability

distribution of the random vector ! . The components of ! are referred to as the primitive random

variables of the system.

A. Decision Strategies

For t = 1, 2, . . . , T , we define U1:t as the vector (U1, U2, . . . , Ut) and U�t as (U1, . . . , Ut�1, Ut+1, . . . , UT );

we also define the product measurable space (U1:t,U1:t) as

U1:t := U1 ⇥ · · ·⇥ Ut, U1:t := U1 ⌦ · · ·⌦ Ut. (1)

It is convenient to think of each of the T decisions being chosen by a distinct decision-maker (DM)1.

The information available to the t�th decision maker (DM t) may depend on the realization of ! and

the decisions made by other decision-makers. In the intrinsic model [1], [17], [18], this information is

represented by a sigma-algebra Jt ⇢ F ⌦ U1:T . The decision Ut is chosen according to

Ut = gt(!, U1:T ), (2)

where gt is a measurable function from the measurable space (⌦ ⇥ U1:T ,Jt) to the measurable space

(Ut,Ut) [1], [17], [18], that is,

gt : (⌦⇥ U1:T ,Jt) 7! (Ut,Ut). (3)

The function gt is called the decision strategy of the t�th decision maker and the collection of all T

decision strategies g = (g1, g2, . . . , gT ) is called the decision strategy profile.

1The fact that some of the decision-makers (DMs) may be the same physical entity is of no relevance for our purposes.
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B. Cost Function and Optimization Problem

The performance of the stochastic system is measured by a cost function c : (⌦⇥U1:T ,F ⌦ U1:T ) 7!

(R,B(R)). We can now formulate the following optimization problem.

Problem 1. Given the probability model (⌦,F ,P) for the random vector !, the measurable decision

spaces (Ut,Ut), t = 1, . . . , T , the sigma-algebras Jt ⇢ F ⌦U1:T and a cost function c : (⌦⇥U1:T ,F ⌦

U1:T ) 7! (R,B(R)), find a decision strategy profile g = (g1, . . . , gT ), with gt : ⌦ ⇥ U1:T 7! Ut being

Jt/Ut measurable for each t, that achieves

inf
g

E[c(!, U1, . . . , UT )] exactly or within ✏ > 0,

where Ut = gt(!, U1:T ) for each t.

Remark 1. A choice of strategy profile for the stochastic system creates a system of closed loop equations:

ut = gt(!̃, u1:T ), t=1,. . . ,T, (4)

for each realization !̃ of the random vector !. In general, there may exist !̃ 2 ⌦ for which this system

of equations does not have a unique solution. In that case, the optimization problem is not well-posed.

However, when properties C [17] or CI [1] hold, the above system of equations has a unique solution.

Properties C and CI trivially hold for the sequential information structures we investigate in this paper.

C. Information Structures

The sigma algebras J1, . . . ,JT together specify the information available for making each of the T

decisions and are referred to as the information structure of the problem. Information structures are

classified according to the relationships among the sigma algebras J1, . . . ,JT and F ⌦ U1 ⌦ . . .⌦ UT .

Sequential and Non-sequential Information Structures: We say that the information structure is se-

quential if there exists a permutation p : {1, 2, . . . , T} 7! {1, 2, . . . , T} such that for t = 1, . . . , T,

Jp(t) ⇢ F⌦Up(1) ⌦ Up(2) ⌦ · · ·⌦ Up(t�1)⌦

{;,Up(t)}⌦ . . .⌦ {;,Up(T )}. (5)

Otherwise, the information structure is said to be non-sequential.

The sequence p(1), .., p(T ) can be interpreted as time and (5) as a causality condition. Note that for a

sequential system there may be more than one permutation satisfying the causality condition (5). In the
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following sections, without loss of generality, we will let p be the identity map, that is, p(t) = t.

Sequential information structures are further classified as:

1) Static: If Jt ⇢ F ⌦ {;,U1:T } for all t.

2) Classical: If Jt ⇢ Jt+1 for t = 1, . . . , T � 1.

3) Quasi-classical (partially nested): Recall that for sequential information structures

Jt ⇢ F ⌦ U1 ⌦ · · ·⌦ Ut�1 ⌦ {;,Ut}⌦ . . . {;,UT }. (6)

For s < t, we say that the decision Us does not affect the information of the t�th decision maker

if

Jt ⇢ F⌦U1 ⌦ · · ·⌦ Us�1 ⌦ {;,Us}⌦

Us+1 ⌦ · · ·⌦ Ut�1 ⌦ {;,Ut}⌦ . . . {;,UT }. (7)

If (7) is not true, we say that the decision Us affects the information of the t�th decision maker.

An information structure is Quasi-classical (partially nested) if Js ⇢ Jt for every s, t (with s < t)

such that Us affects the information of the t�th decision maker.

4) Non-classical: An information structure that does not belong to the above three categories is called

non-classical.

D. Finite Spaces Assumption

In the rest of the paper, we will assume that the random vector ! takes values in a finite set and that

the decision spaces are finite.

Assumption 1. ⌦ and Ut, t = 1, . . . , T, are finite sets. Further, F = 2⌦ and Ut = 2Ut , for t = 1, . . . , T .

E. Information Sigma Algebra and Generating Observations

Consider a sigma-algebra Jt ⇢ F ⌦ U1:T representing the information available to a decision-maker.

Consider a collection of variables Za, Zb, . . . , Zk defined as functions from ⌦⇥U1:T to spaces Za, . . . ,Zk

respectively,

Zi = ⇣i(!, U1:T ),

where ⇣i : ⌦⇥ U1:T 7! Zi, i = a, b, . . . , k. (8)
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We will call Zi = ⇣i(!, U1:T ) an observation and ⇣i as its observation map. For a realization !̃ and u1:T ,

zi = ⇣i(!̃, u1:T ) is the corresponding realization of the observation Zi. We will denote by �(Za, . . . , Zk)

the smallest sigma algebra contained in F ⌦U1:T with respect to which the observation maps ⇣a, . . . , ⇣k

are measurable.

We say that observations Za, . . . , Zk generate the sigma-algebra Jt if

�(Za, . . . , Zk) = Jt.

III. DYNAMIC PROGRAM FOR CLASSICAL INFORMATION STRUCTURES

Consider a sequential stochastic system with classical information structure, that is, a system in which

the information sigma algebras of the decision-makers are nested over time: Jt ⇢ Jt+1, t = 1, . . . , T �1.

Lemma 1. There exist observations Zt = ⇣t(!, U1, . . . , Ut�1), t = 1, . . . , T, with Zt taking values in a

finite set Zt, such that �(Z1:t) = Jt. The variables Z1:t will be collectively referred to as the observations

available to the t-th decision maker. Further, any Jt/Ut measurable decision strategy can be written as

Ut = gt(Z1:t).

Proof. The proof follows from standard properties of finite and nested sigma algebras. A formal argument

is given in Appendix A.

Note that the observations of Lemma 1 depend on past decisions and not on future decisions. We can

now re-state Problem 1 for a classical information structure under Assumption 1 as follows.

Problem 2. Given observations Zt = ⇣t(!, U1, . . . , Ut�1) taking values in Zt for t = 1, . . . , T, find a

decision strategy profile g = (g1, . . . , gT ), where gt maps Z1:t to Ut for each t, that achieves

inf
g

E[c(!, U1, . . . , UT )] exactly or within ✏ > 0,

where Ut = gt(Z1:t) for each t.

A. Classical Information Structure with Observed Decisions

Corresponding to the classical information structure of Problem 2 , we consider an expanded informa-

tion structure where, for all t, the t�th decision maker observes Z1:t as well as the past decisions U1:t�1.

Thus, the decision strategy at time t in the expanded information structure is a function of Z1:t, U1:t�1.

Any strategy profile in the original information structure remains a valid strategy profile in the expanded

information structure. Therefore, any achievable expected cost in the original information structure is

achievable in the expanded information structure. The following lemma states that the converse is true
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as well, that is, any achievable expected cost in the expanded information structure is achievable in the

original information structure.

Lemma 2. For any strategy profile in the expanded information structure, there exists a strategy profile

in the original information structure with the same expected cost.

Proof. See Appendix B.

Lemma 2 implies that the optimal expected cost under the original and the expanded information

structures are the same. Therefore, we can find optimal strategies in the expanded information structure

and use them to construct optimal strategies in the original information structure. In the rest of this

section, we will focus on the expanded information structure where past decisions are observed by each

decision-maker.

Remark 2. In case Zt includes Ut�1 for each t > 1, the information expansion described above is

redundant.

B. Strategy-independent beliefs on ⌦

Consider a time instant t and a realization z1:t, u1:t�1 of Z1:t, U1:t�1. We say that the realization

z1:t, u1:t�1 is feasible if there exists !̂ 2 ⌦ with P(!̂) > 0 such that ⇣k(ŵ, u1:k�1) = zk for k = 1, . . . , t.

For a given feasible realization z1:t, u1:t�1, we define a probability distribution on ⌦ as follows:

⇡t(!̃|z1:t, u1:t�1) :=

P(!̃)
tQ

k=1
1{⇣k(!̃,u1:k�1)=zk}

X

!̂


P(!̂)

tQ
k=1

1{⇣k(!̂,u1:k�1)=zk}

� , (9)

8!̃ 2 ⌦.

It is easy to verify that ⇡t(·|z1:t, u1:t�1) is indeed a probability distribution on ⌦, that is,

⇡t(!̃|z1:t, u1:t�1) � 0 and
X

!̃2⌦
⇡t(!̃|z1:t, u1:t�1) = 1.

Remark 3. ⇡t is DM t’s posterior belief on random vector ! given z1:t under the open loop control

sequence u1:t.

C. Strategy-induced beliefs on ⌦

Consider any arbitrary strategies gt(Z1:t, U1:t�1), t = 1, . . . , T, in the expanded information structure.

The strategy profile g1, . . . , gT creates a joint probability distribution on !, U1:T , Z1:T which we denote
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by Pg(w̃, u1:T , z1:T ). Focusing on the first t decisions, g1, . . . , gt induce a joint probability distribution

on !, U1:t, Z1:t+1 which we denote by Pg1:t(w̃, u1:t, z1:t+1). This distribution can be explicitly written as

Pg1:t(!̃, z1:t+1, u1:t)

= P(!̃)
tY

k=1

⇥
1{⇣k(!̃,u1:k�1)=zk}1{gk(z1:k,u1:k�1)=uk}

⇤
⇥

1{⇣t+1(!̃,u1:t)=zt+1}. (10)

From the joint distribution Pg(w̃, u1:T , z1:T ), we can construct conditional probabilities (e.g., Pg(!̃|z1:t, u1:t�1))

using Bayes’ rule. The following lemma identifies a crucial property of such conditional probabilities.

Lemma 3 (Strategy-independence of belief). Consider any arbitrary strategies gt(Z1:t, U1:t�1), t =

1, . . . , T, in the expanded information structure. Then,

Pg(!̃|Z1:t, U1:t�1) = ⇡t(!̃|Z1:t, U1:t�1), Pg� almost surely.

That is, for any realization z1:t, u1:t�1 such that Pg(z1:t, u1:t�1) > 0,

Pg(!̃|z1:t, u1:t�1) = ⇡t(!̃|z1:t, u1:t�1),

where ⇡t is defined in (9).

Proof. The proof follows from a straightforward application of Bayes’ rule and (10).

Lemma 3 is a crucial lemma for classical information structures. Consider the t�th decision maker.

Based on the realization of its information and the strategy profile in operation, it can form a conditional

belief on the uncertainty in the system. Lemma 3 states that irrespective of the strategy profile being

used, DM t will have the same belief for the same realization of its information.

D. Sequentially dominant strategies and the Dynamic Program

For strategies g1, g2, . . . , gT of the T decision-makers, define J(g1, g2, . . . , gT ) as the expected cost

under these strategies. That is,

J(g1, g2, . . . , gT ) := Eg1,...,gT [c(!, U1, . . . , UT )],

where Eg1,...,gT denotes that the expectation is with respect to the joint probability distribution Pg1,...,gT (!̃, z1:T , u1:T ).

We say that a strategy g⇤T is a sequentially dominant strategy2 for DM T if for any strategies

g1, g2, . . . , gT ,

J(g1, g2, . . . , gT ) � J(g1, . . . , gT�1, g
⇤
T ).

2For DM T , sequentially dominant strategy is simply a dominant strategy.
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Given a sequentially dominant strategy g⇤T for DM T , we say that g⇤T�1 is a sequentially dominant

strategy for DM T � 1, if for any strategies g1, g2, . . . , gT�1,

J(g1, g2, . . . , gT�1, g
⇤
T ) � J(g1, . . . , gT�2, g

⇤
T�1, g

⇤
T ).

We can now define sequentially dominant strategies recursively: Given sequentially dominant strategies

g⇤k+1, g
⇤
k+2, . . . , g

⇤
T for DM k+1 to DMT respectively, we say that g⇤k is a sequentially dominant strategy

for DM k if for any strategies g1, g2, . . . , gk,

J(g1, g2, . . . , gk, g
⇤
k+1, . . . , g

⇤
T ) � J(g1, . . . , gk�1, g

⇤
k, g

⇤
k+1, . . . , g

⇤
T ).

Lemma 4. Suppose g⇤1, . . . , g
⇤
T are sequentially dominant strategies as defined above. Then, (g⇤1, . . . , g

⇤
T )

is an optimal strategy profile.

Proof. The proof follows directly from the definition of sequentially dominant strategies.

For a classical information structure with observed decisions, sequentially dominant strategies can be

found by a dynamic program. In the following theorem, we use E⇡k to denote that the expectation is

with respect to the belief ⇡k defined in Section III-B.

Theorem 1. For a sequential team problem that has a classical information structure with observed

decisions,

1) Define value functions Vk(z1:k, u1:k�1) recursively as follows:

VT (z1:T , u1:T�1) :=

min
uT2UT

E⇡T [c(!, u1 . . . , uT )|z1:T , u1:T�1],

Vk(z1:k, u1:k�1) :=

min
uk2Uk

E⇡k [Vk+1(z1:k, Zk+1, u1 . . . , uk)|z1:k, u1:k�1], (11)

k = T �1, . . . , 2, 1, where Zk+1 = ⇣k+1(!, u1:k) and the expectations are with respect to strategy-

independent beliefs on ! (as defined in (9)) .

2) Further, define

g⇤T (z1:T , u1:T�1) :=

argminuT2UTE⇡T [c(!, u1 . . . , uT�1, uT )|z1:T , u1:T�1]

g⇤k(z1:k, u1:k�1) :=

argminuk2UkE⇡k [Vk+1(z1:k, Zk+1, u1 . . . , uk)|z1:k, u1:k�1], (12)
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k = T � 1, . . . , 2, 1.

The strategies g⇤T , . . . , g
⇤
1 are sequentially dominant strategies for DM T to DM 1 respectively. Conse-

quently, (g⇤1, . . . , g
⇤
T ) is an optimal strategy profile.

Proof. The theorem can be proved using a standard dynamic programming argument [8] with Sk =

(Z1:k, U1:k�1) as the state at time k. We provide an alternative proof in Appendix E that highlights the

role of strategy-independent beliefs in finding sequentially dominant strategies.

E. Non-classical Information Structure and Absence of Sequentially Dominant strategies

Consider a simple sequential problem with two DMs. ! takes values in the measurable space (⌦ =

{0, 1},F = 2⌦) with equal probabilities. The decision spaces of the two DMs are U1 = {0, 1} and

U2 = {0, 1, 2} respectively. The decision spaces are associated with sigma algebras U1 = 2U1 and

U2 = 2U2 respectively. The cost function is c(!, U1, U2) = (!+U1�U2)2. We consider two information

structures:

1) Classical case: Consider the classical information structure:

J1 = 2⌦ ⇥ {;,U1}⇥ {;,U2}, (13)

J2 = 2⌦ ⇥ 2U1 ⇥ {;,U2}. (14)

In other words, DM 1’s strategy can be any function of !, while DM 2’s can be any function of

! and U1.

The expected cost E[(! + U1 � U2)2] is clearly non-negative. Moreover, irrespective of DM 1’s

strategy, DM 2 can achieve the optimal cost (equal to 0) by using the strategy

U2 = g⇤2(!, U1) = ! + U1.

The strategy g⇤2 defined above is a (sequentially) dominant strategy for DM 2. Thus, we have

determined an optimal strategy for the last DM without any consideration of the strategy(ies) used

by DM(s) who acted before. This sequential strategy dominance is the fundamental reason why

Theorem 1 allows us to sequentially find optimal strategies in a backward inductive manner for

classical information structures.

2) Non-classical case: Consider now the non-classical information structure:

J1 = 2⌦ ⇥ {;,U1}⇥ {;,U2}, (15)

J2 = {;,⌦}⇥ 2U1 ⇥ {;,U2}. (16)

In other words, DM 1’s strategy can be any function of !, while DM 2’s can be any function U1.
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Consider now two possible strategy pairs:

U1 = g⇤1(!) = !, U2 = g⇤2(U1) = 2U1,

U1 = h⇤1(!) = 1� !, U2 = h⇤2(U1) = 1.

It is easy to verify that both strategy pairs achieve the optimal expected cost equal to 0 whereas

strategy pairs (g⇤1, h
⇤
2) and (h⇤1, g

⇤
2) result in positive expected costs. This illustrates that neither g⇤2

or h⇤2 are sequentially dominant strategies for DM 2. In fact, for any strategy � of DM 2, at least

one of J(g⇤1,�) and J(h⇤1,�) is positive. This implies that there is no sequentially dominant strategy

for DM 2. Therefore, we can not fix DM 2’s strategy without taking into account the strategy of

the DM who acted before. Thus, we cannot expect to obtain a sequential decomposition for this

problem of the kind in Theorem 1 where we could obtain the last DM’s strategy without considering

the strategies of earlier DMs. This lack of sequential strategy dominance is the fundamental reason

why the results of Theorem 1 do not extend to general non-classical information structures.

IV. COMMON KNOWLEDGE AND SEQUENTIAL TEAM PROBLEMS

For classical information structures, Theorem 1 provides a sequential decomposition for obtaining

an optimal strategy profile. Since Theorem 1 is limited to classical information structures, we need a

new methodology to obtain a similar decomposition for non-classical information structures. We will

use common knowledge to construct such a decomposition. We will refer to this decomposition as the

common knowledge based dynamic program.

A. Common Knowledge in Sequential Problems

Recall that the information of the t�th decision maker is characterized by Jt ⇢ F⇥U1⇥ · · ·⇥Ut�1⇥

{;,Ut} ⇥ . . . {;,UT } ⇢ F ⇥ U1:T . We define the common knowledge at time t as the intersection of

sigma algebras associated with DM t and with decision-makers that have yet to make their decision.

That is, we define

Ct :=
T\

s=t

Js. (17)

Common knowledge was first defined in [2] in the context of static decision problems. A related

definition of “common information” and “private information” for static decision problems was presented

and discussed in [4], [5].
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Lemma 5 (Properties of Common Knowledge).

1) Coarsening property: Ct ⇢ Jt.

2) Nestedness property: Ct ⇢ Ct+1.

3) Common observations: There exist observations Z1, Z2, . . . , ZT , with Zt taking values in a finite

measurable space (Zt, 2Zt) and

Zt := ⇣t(!, U1, . . . , Ut�1), (18)

such that �(Z1:t) = Ct. These variables will be referred to as common observations.

4) Private Observations: There exist observations Y1, Y2, . . . , YT , with Yt taking values in a finite

measurable space (Yt, 2Yt) and

Yt := ⌘t(!, U1, . . . , Ut�1), (19)

such that �(Z1:t, Yt) = Jt. These variables will be referred to as private observations. Further,

any Jt/Ut measurable decision strategy can be written as

Ut = gt(Z1:t, Yt).

Proof. See Appendix C.

Remark 4. The proof of the Lemma 5 also describes a method of constructing the common and private

observations. Without loss of generality, we will assume that Yt is the set of first |Yt| positive integers,

that is, Yt = {1, 2, . . . , |Yt|}.

We can now state Problem 1 for a general information structure under Assumption 1 in terms of

common and private observations as follows.

Problem 3. Given common observations Zt = ⇣t(!, U1, . . . , Ut�1), taking values in Zt for t = 1, . . . , T,

and private observations Yt = ⌘t(!, U1, . . . , Ut�1), taking values in Yt for t = 1, . . . , T, find a decision

strategy profile g = (g1, . . . , gT ), where gt maps Z1:t ⇥ Yt to Ut for each t, that achieves

inf
g

E[c(!, U1, . . . , UT )] exactly or within ✏ > 0,

where Ut = gt(Z1:t, Yt) for each t.

B. Common Knowledge based Dynamic Program

We now proceed as follows:
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1) First, we formulate a new sequential decision-making problem from the point of view of a coordina-

tor whose information at time t is described by the common knowledge sigma algebra Ct = �(Z1:t)

at time t.

2) Next, we show that for any strategy profile in Problem 3, we can construct an equivalent strategy

in the coordinator’s problem that achieves the same cost (with probability 1). Conversely, for any

strategy in the coordinator’s problem we can construct an equivalent decision strategy profile in

Problem 3 that achieves the same cost (with probability 1).

3) Finally, we obtain a dynamic program for the coordinator’s problem. This provides a sequential

decomposition for Problem 3 due to the equivalence between the two problems established in Step

2.

We elaborate on these steps below.

Step 1: We consider the following modified problem. We start with the model of Problem 3 and

introduce a coordinator who has the following features:

1) The coordinator’s information at time t is characterized by the sigma algebra Ct = �(Z1:t).

2) At each time t, the coordinator’s decision space is the set of all functions from the space of DM

t’s private observation, Yt, to DM t’s decision space Ut. Note that the space of all function from

Yt to Ut can be identified with the product space U|Yt|
t = Ut ⇥ . . . ⇥ Ut (where the number of

terms in the product is |Yt|). In case Yt is a singleton, U|Yt|
t = Ut. In the rest of this section, we

will simply say that the coordinator selects an element from the set U|Yt|
t .

We use �t to denote the element from the set U|Yt|
t selected by the coordinator at time t. Clearly, �t

is a tuple of size |Yt|. For y = 1, . . . , |Yt|, �t(y) is denotes the yth component of this tuple.

Interpretation of �t: �t(y) is to be interpreted as the decision prescribed by the coordinator to the t�th

decision-maker if its private observation takes the value y. Thus, �t can be seen as a prescription to the

t�th decision-maker that specifies for each value of DM t’s private observation a prescribed decision.

Given the prescription �t from the coordinator and the private observations Yt of DM t, the decision

taken by the t�th decision maker can be written as

Ut = �t(Yt). (20)

Procedure for selecting prescriptions: The coordinator chooses its prescription at time t, �t, as a

function of the realization of the common observations up until time t. That is, the coordinator uses a

sequence of functions  := ( 1, 2, . . . , T ), where

 t : Z1:t 7! U|Yt|
t , (21)
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to choose the prescription. The sequence of functions  := ( 1, 2, . . . , T ) is referred to as the

coordinator’s strategy. If the realization of common observations by time t is z1:t, the prescription

chosen using the strategy  is  t(z1:t).

The optimization problem for the coordinator is to find a strategy  that achieves

inf
 

E[c(!, U1, . . . , UT )] exactly or within ✏ > 0,

where Ut = �t(Yt) and �t =  t(Z1:t).

Step 2: The key idea of this step is to establish an equivalence between Problem 3 and the coordinator’s

problem defined above. Consider a strategy profile g = (g1, g2 . . . , gT ) in Problem 3. Under this strategy

profile, Ut = gt(Z1:t, Yt), t = 1. . . . , T . This strategy profile induces a joint probability distribution on

!, U1:T , Y1:T , Z1:T . We denote this distribution by Pg(!̃, u1:T , y1:T , z1:T ).

We will now construct a strategy for the coordinator using the strategy profile g. Recall that DM t’s

strategy in Problem 3, gt, maps Z1:t ⇥ Yt to Ut. We will think of gt as a collection of partial functions

from Yt to Ut, one for each z1:t 2 Z1:t. For each z1:t, the corresponding partial function from Yt to Ut

can be identified with an element of the set U|Yt|
t .

The main idea of constructing the coordinator’s strategy from g is the following: for each time t,

1) For each realization z1:t of common observations, gt(z1:t, ·) : Yt 7! Ut. This mapping from Yt to

Ut can be identified with an element in the product space U|Yt|
t .

2) For each realization z1:t of common observations, the coordinator will select the prescription (that

is, an element from U|Yt|
t ) identified with the mapping gt(z1:t, ·) : Yt 7! Ut.

3) With a slight abuse of notation, we can describe the coordinator’s strategy as

 t(z1:t) := gt(z1:t, ·).

The above expression is to be interpreted as follows: Recall that  t(z1:t) is an element of U|Yt|
t , that

is, it is a tuple of size |Yt|. The above expression says that for y = 1, . . . , |Yt|, the yth component

of  t(z1:t) is given by gt(z1:t, y).

The coordinator’s strategy defined above induces a joint probability distribution on !, U1:T , Y1:T , Z1:T .

We denote this distribution by P (!̃, u1:T , y1:T , z1:T ).

Lemma 6. The probability distributions Pg and P are identical, that is, for any !̃, u1:T , y1:T , z1:T ,

P (!̃, u1:T , y1:T , z1:T ) = Pg(!̃, u1:T , y1:T , z1:T ).
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Consequently,

E [c(!, U1, . . . , UT )] = Eg[c(!, U1, . . . , UT )]

Proof. See Appendix D.

We now go in the reverse direction: given a strategy for the coordinator � = (�1,�2, . . . ,�T ), we will

construct a strategy profile h = (h1, . . . , hT ) in Problem 3. The main idea of constructing h from � is

the following: for each time t,

1) For each realization z1:t of common observations, �t(z1:t) is an element of U|Yt|
t , that is, it is a

tuple of size |Yt|.

2) For each realization z1:t of common observations and realization yt of the private observation in

Problem 3, DM t’s decision is the yt�th component of �t(z1:t).

3) With a slight abuse of notation, we can describe DM t’s strategy as

ht(z1:t, ·) := �t(z1:t).

The above expression is to be interpreted as follows: for y = 1, . . . , |Yt|, ht(z1:t, y) is the yth

component of �t(z1:t).

The following lemma can be established using an argument identical to the one used to prove Lemma

6.

Lemma 7. The probability distributions Ph and P� are identical, that is, for any !̃, u1:T , y1:T , z1:T ,

Ph(!̃, u1:T , y1:T , z1:T ) = P�(!̃, u1:T , y1:T , z1:T ).

Consequently,

Eh[c(!, U1, . . . , UT )] = E�[c(!, U1, . . . , UT )]

Lemmas 6 and 7 imply that we can first find an optimal strategy for the coordinator and then use it

to construct optimal strategies in Problem 3.

Step 3: The key idea of this step is to show that the problem of finding an optimal strategy for the

coordinator is a sequential decision-making problem with a classical information structure.
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Recall that the coordinator at time t knows Z1:t and selects �t. Also recall that for each time t, we

have

Zt = ⇣t(!, U1:t�1) (22)

Yt = ⌘t(!, U1:t�1) (23)

Ut = �t(Yt). (24)

By eliminating Y1:T and U1:T from the above system of equations, we can construct functions ⇥1,⇥2, . . . ,⇥T

such that

Zt = ⇥t(!, �1:t�1), t = 1, . . . , T. (25)

Similarly eliminating U1:T from the cost, we can construct function C such that

c(!, U1:T ) = C(!, �1:T ). (26)

With these transformations, the coordinator’s problem can now be written as follows.

Problem 4. Given observations Zt = ⇣t(!, �1, . . . , �t�1) taking values in Zt for t = 1, . . . , T, find a

strategy  = ( 1, . . . , T ) for the coordinator, where  t maps Z1:t to U|Yt|
t for each t, that achieves

inf
 

E[C(!, �1, . . . , �T )] exactly or within ✏ > 0,

where �t =  t(Z1:t) for each t.

Comparing Problem 4 with Problem 2, it is evident that Problem 4 is a sequential decision-making

problem with classical information structure with the prescription �t as the coordinator’s decision and

Z1:t as its information at time t. Hence, we can use the analysis of Section III (in particular, Lemma 2

and Theorem 1) to find an optimal strategy for the coordinator.

As in Section III, we say that the realization z1:t, �̃1:t�1 of the coordinator’s observations and decisions

is feasible if there exists !̂ 2 ⌦ with P(!̂) > 0 such that ⇥k(ŵ, �̃1:k�1) = zk for k = 1, . . . , t. For a

given feasible realization z1:t, �̃1:t�1 in the coordinator’s problem, the strategy-independent belief on ⌦

is given as

⇡t(!̃|z1:t, �̃1:t�1) :=

P(!̃)
tQ

k=1
1{⇥k(!̃,�̃1:k�1)=zk}

X

!̂


P(!̂)

tQ
k=1

1{⇥k(!̂,�̃1:k�1)=zk}

� . (27)

We can now use the dynamic program of Theorem 1 for the coordinator’s problem and obtain the

following result.
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Theorem 2. For the coordinator’s problem (Problem 4), an optimal strategy is given by the following

dynamic program:

1) Define value functions Vk(z1:k, �̃1:k�1) recursively as follows:

VT (z1:T , �̃1:T�1) :=

min
�̃T2U|YT |

T

E⇡T [C(!, �̃1 . . . , �̃T )|z1:T , �̃1:T�1],

Vk(z1:k, �̃1:k�1) :=

min
�̃k2U|Yk|

k

E⇡k [Vk+1(z1:k, Zk+1, �̃1 . . . , �̃k)|z1:k, �̃1:k�1], (28)

k = T � 1, . . . , 2, 1, where Zk+1 = ⇥k+1(!, �̃1:k) and the expectations are with respect to

coordinator’s strategy independent beliefs on ! (as defined in (27)).

2) The optimal strategy for the coordinator as a function of its observations and past decisions is

given as

 ⇤
T (z1:T , �̃1:T�1) :=

argmin
�̃T2U|YT |

T
E⇡T [C(!, �̃1 . . . , �̃T )|z1:T , �̃1:T�1],

 ⇤
k(z1:k, �̃1:k�1) :=

argmin
�̃k2U|Yk|

k
E⇡k [Vk+1(z1:k, Zk+1, �̃1 . . . , �̃k)|z1:k, �̃1:k�1], (29)

k = T � 1, . . . , 2, 1.

The dynamic program of Theorem 2 identifies an optimal strategy for the coordinator as a function

of its common observations and past prescriptions. We can construct an equivalent strategy � for the

coordinator by eliminating past prescriptions in a manner identical to Lemma 2 so that for each t,

�t = �t(Z1:t) =  ⇤
t (Z1:t, �1:t�1).

Construction of optimal strategies in Problem 3: We can now construct an optimal strategy profile

in Problem 3 (without the coordinator) using the construction of Lemma 7: For each realization z1:t of

common observations and realization yt of the private observation in Problem 3, DM t’s decision is the

yt�th component of �t(z1:t) and we denote this by

h⇤t (z1:t, ·) := �t(z1:t), t = 1, . . . , T. (30)

Because � is an optimal strategy for the coordinator, Lemmas 6 and 7 imply that h⇤ = (h⇤1, . . . , h
⇤
T ) is

an optimal strategy profile for the DMs in Problem 3.
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Remark 5. It should be clear that the constructed strategy h⇤t in (30) uses both common and private

observations to decide DM t’s decision. For each realization z1:t of the common observations at time t,

the partial function h⇤t (z1:t, ·) : Yt 7! Ut is precisely the prescription the coordinator would have selected

under its optimal strategy if it observed z1:t. One could say that in Problem 3, DM t first uses its common

observations to figure out the prescription the coordinator would have selected had it been present and

then uses its private observation to pick the prescribed action under the coordinator’s prescription.

C. Discussion

Theorem 2 provides a sequential decomposition for the coordinator’s problem and, due to the equiv-

alence established in Lemmas 6 and 7, for Problem 3 with a general (in particular, non-classical)

information structure. We call this decomposition the common knowledge based dynamic program. It is

important to emphasize some key differences between the common knowledge based dynamic program

and the dynamic program for classical information structures given in Theorem 1: (i) At time k, the

dynamic program in Theorem 1 involves a minimization over the set of decisions available to DM k,

namely Uk. The decomposition in Theorem 2, on the other hand, involves a minimization over the space

of functions from Yk to Uk. (ii) For each realization of DM k’s observations, the minimizing decision

in Theorem 1 is an optimal decision for DM k for that realization of observations. In the decomposition

of Theorem 2, for each realization of the common observations at time k, the minimizing �̃k identifies

an optimal mapping from private observation to decision for DM k.

We believe that the existence of a dynamic program in general sequential teams is an interesting result

for the following reason: Given such a dynamic program, one can then start investigating whether the

specific form of the information and cost structure in the given team problem may be exploited to simplify

it. We believe this has to be done on a case-by-case basis as in classical dynamic program.

Finally, we can make a brief comment about the computational benefit of the common knowledge based

dynamic program over a brute force search over all strategy profiles. Let |Zt| = z, |Yt| = y and |Ut| = u.

Then, the number of possible strategy profiles for the team is
QT

k=1 u
zky. In the common knowledge

based dynamic program, the minimization at time k is over a set of size uy. The total number of such

minimization problems to be solved in the dynamic program is
PT

k=1 z
kuy(k�1). Thus, the approximate

complexity of the dynamic program can be taken to be uy
PT

k=1 z
kuy(k�1). Note that the time index

appears as exponent of an exponent in the brute force complexity whereas it appears as an exponent in

the dynamic program complexity. This indicates computational benefits from the dynamic program.

Remark 6. Assumption 1 is important for the analysis presented in Section IV. For a general sequential

November 27, 2018 DRAFT



20

team with infinite spaces, one may need additional technical conditions to ensure that common and

private observations of Lemma 5 can be constructed and that the coordinator’s strategies are well-defined

measurable functions.

D. Example

Consider a team problem with two decision-makers. The probability space we will consider is: ⌦ =

{1, 2, 3, 4, 5},F = 2⌦ with equal probabilities for all outcomes in ⌦. The decision spaces of the two

decision-makers are finite sets U1 and U2 respectively, each associated with the respective power-set

sigma-algebra. The objective is to find strategies for the two DMs to minimize the expected value of

c(!, U1, U2). We consider the following information structure:

J1 = �({1, 2}, {3, 4}, {5})⇥ {;,U1}⇥ {;,U2}, (31)

J2 = �({1, 3}, {2, 4}, {5})⇥ 2U1 ⇥ {;,U2}. (32)

This information structure is non-classical since J1 6⇢ J2. As discussed before, we cannot obtain a

classical dynamic program for such an information structure. Is there another way to obtain a sequential

decomposition for this information structure? Our results in Section IV provide a positive answer to this

question. For this example, this common knowledge based sequential decomposition can be obtained as

follows:

(i) The common knowledge sigma-algebras are:

C1 =
2\

s=1

Js, C2 = J2. (33)

(ii) We can now define common observations Z1, Z2 and private observations Y1, Y2 such that Ct = �(Z1:t)

and Jt = �(Yt, Z1:t) for t = 1, 2. Each observation (common or private) is a function from ⌦⇥U1⇥U2

to a (suitably chosen) finite set. For our example, the following definitions will meet the requirements:

Z1 = ⇣1(!, U1, U2) = ⇣1(!) := 1{!2{5}}, (34)

Z2 = ⇣2(!, U1, U2) = ⇣2(!, U1) :=

8
>>><

>>>:

(1, U1) if ! 2 {1, 3},

(2, U1) if ! 2 {2, 4},

(5, U1) if ! 2 {5},

(35)

Y1 = ⌘1(!, U1, U2) = ⌘1(!) := 1{!2{3,4}},

Y2 = ⌘2(!, U1, U2) := 0. (36)
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(iii) In addition to the common and private observations, our sequential decomposition makes use of

prescriptions that map private observations to decisions. For our example, we will use the prescription

at t = 1: �1 : {0, 1} 7! U1. The space of all prescriptions can be written as U1 ⇥ U1.

(iv) Based on common observations and prescriptions, we define the following beliefs on !:

⇡1(!̃|Z1 = 1) =

8
<

:
1 if !̃ = 5,

0 if !̃ 6= 5
(37)

⇡1(!|Z1 = 0) =

8
<

:
1/4 if ! 6= 5,

0 if ! = 5
(38)

For each function �̃1 : {0, 1} 7! U1, define

⇡2(!̃|Z1 = 1, Z2 = (5, u1), �̃1) :=

8
<

:
1 if !̃ = 5,

0 if !̃ 6= 5
(39)

For i = 1, 2,

⇡2(!̃|Z1 = 0, Z2 = (i, u1), �̃1) (40)

:=
1{⇣2(!̃,�̃1(⌘1(!̃)))=(1,u1)}X

!̂ 6=5

⇥
1{⇣2(!̂,�̃1(⌘1(!̂)))=(i,u1)}

⇤ (41)

if !̃ 6= 5; ⇡2(!̃|Z1 = 0, Z2 = (i, u1)) := 0 if !̃ = 5.

(iv) We can now define value functions based on common observations and prescriptions:

V2(z1:2, �̃1) := min
u22U2

E⇡2 [c(!, �̃1(Y1(!)), u2)|z1:2, �1],

V1(z1) := min
�̃12U1⇥U1

E⇡1 [V2(z1, Z2, �̃1)|z1], (42)

where the expectations at t = 2, 1 are with respect to the beliefs defined in (37)-(40). Our result in Section

IV show that optimal strategies for the two DMs can be obtained from the value functions defined above

in a straightforward manner. Thus, even though the information structure of the team was non-classical,

we can still obtain a sequential decomposition of the strategy optimization problem.

V. COMPARISON WITH CLASSICAL DYNAMIC PROGRAM AND WITSENHASUEN’S STANDARD FORM

The analysis of Section IV and Theorem 2 apply to all sequential team problems under Assumption

1. We consider two special cases below.

November 27, 2018 DRAFT



22

A. Classical information structure

We show that Theorem 2 is equivalent to the classical dynamic program of Theorem 1 when the

sequential team problem has a classical information structure. The nestedness of information sigma-

algebras in classical information structures (i.e., Jt ⇢ Jt+1 for all t) implies that the common knowledge

sigma-algebra at time t is the same as Jt:

Ct :=
T\

s=t

Js = Jt. (43)

We can construct common observations as in Lemma 5 such that Ct = �(Z1:t). Since Ct = Jt, the private

observation can be defined as a constant

Yt := ⌘t(!, U1, . . . , Ut�1) := 1. (44)

The implication of (43) is that the coordinator’s information at time t is the same as DM t’s information.

Moreover, since Yt is a constant, the coordinator’s decision space U|Yt|
t = Ut. The prescription �t is simply

the decision to be taken at time t. Thus, in the classical information structure case, the coordinator

prescribes decisions to DM t based on the observations Z1:t.

Substituting �t = Ut and using the fact that |Yt| = 1 for all t, it is easy to check that the result of

Theorem 2 reduces to the result of Theorem 1. Thus, the dynamic program of Theorem 1 for classical

information structures can be viewed as a special case of the common knowledge based dynamic program

of Theorem 2.

B. Trivial common knowledge

In some information structures, the common knowledge among agents may just be the trivial sigma

algebra:

Ct :=
T\

s=t

Js = {;,⌦⇥ U1:T }. (45)

In this case, the common observations of Lemma 5 can be defined as constants:

Zt := ⇣t(!, U1, . . . , Ut�1) := 1, (46)

and the private observation at time t describes all the information of DM t. The coordinator’s prescription

at time t can be interpreted as DM t’s strategy — it provides a decision for each possible realization of

DM t’s observations. Moreover, since the common observations are constants, the coordinator’s problem

can be viewed as an open loop control problem with the associated dynamic program given by Theorem

2. This is similar to the sequential decomposition of team problems in [16].
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VI. CONNECTIONS WITH THE COMMON INFORMATION APPROACH

In the intrinsic model, the information of DM t is represented by a sigma-algebra Jt ⇢ F ⌦ U1:T .

Alternatively, the information of DM t could be described in terms of observations it has access to.

Consider a team problem where for each t DM t has access to the following observations: Z̃1:t, and Ỹt.

For each t, Z̃t and Ỹt are functions of !, U1:t�1. We will refer to Z̃1:t as the common information at

time t and Ỹt as the private information at time t.

Given the above information structure, we can follow the steps of Section IV-B, using Z̃1:T , Ỹ1:T instead

of the common and private observations Z1:T , Y1:T described in Lemma 5, to construct a coordinator’s

problem. The coordinator now knows the common information Z̃1:t at time t and selects prescriptions

that map the private information Ỹt to decision Ut. Since this new version of the coordinator’s problem is

still a sequential decision-making problem with classical information structure, we can find its dynamic

program in the same way as in Section IV-B. Such an approach for sequential team problems that uses

common information among decision-makers to construct the coordinator’s problem and its associated

dynamic program was described in [12]. It was used in [13] and [14] for studying delayed history sharing

and partial history sharing models in decentralized stochastic control problems.

We can make the following observations about the relationship between the common information

approach summarized above and the common knowledge based approach of this paper:

Firstly, the common information approach for sequential teams requires the information structure

described above: for each t DM t has access to Z̃1:t, and Ỹt. Thus, it requires that there is a part

of the decision-makers’ information that is nested over time. If no such part exists, one can still use

the common information approach by creating degenerate observations Z̃t = 0 for each t. As mentioned

earlier, the common knowledge approach of this paper applies to any sequential information structure.

Secondly, the common information based dynamic program may be different from the common knowl-

edge based dynamic program obtained in Section IV-B. To see why, note that the sigma-algebras associated

with DM t in the above information structure is Jt = �(Z̃1:t, Ỹt) and the common knowledge sigma-

algebra at time t is Ct =
TT

s=t Js. It is straightforward to see that the common information at time

t, Z̃1:t, is measurable with respect to Ct. In other words, �(Z̃1:t) ⇢ Ct. However, it may be the case

that �(Z̃1:t) is a strict subset of Ct (see the first example in Section VI-A). Thus, the coordinator based

on common knowledge may be more informed (i.e, it may be associated with a larger sigma-algebra)

than a coordinator based only on common information. This difference between the two coordinators’

information implies that the associated dynamic programs may be different.

Furthermore, the common information based dynamic program may be computationally more demand-
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ing than its common knowledge based counterpart. To see why, recall that we construct common and

private observations in the common knowledge approach to ensure that �(Z1:t) = Ct and �(Z1:t, Yt) = Jt.

Thus, we have that �(Z̃1:t) ⇢ �(Z1:t) but �(Z̃1:t, Ỹt) = �(Z1:t, Yt). This implies that the private

observations Yt can take values in a smaller space than the original private information Ỹt. This, in

turn, implies that, the prescriptions in the common knowledge dynamic program take values in a smaller

space (U|Yt|
t ) than the space of prescriptions in the common information dynamic program (U|Ỹt|

t ). Thus,

the common information approach may result in a more complicated dynamic program than that resulting

from the common knowledge approach.

Finally, we note that if the observations in common information were all constants (or if there were

no common information), then �(Z̃1:t) = {;,⌦ ⇥ U1:T } and the common information based dynamic

program will be identical to Witsenhausen’s sequential decomposition [16]. Such an instance is presented

in the second example of Section VI-A below.

A. Examples

1. To illustrate the difference between common information and common knowledge, we consider a

team problem with two decision-makers. The probability space is: ⌦ = {1, 2, 3},F = 2⌦ with equal

probabilities for all outcomes in ⌦. The information structure is given in terms of the observations each

decision-maker has access to.

(i) DM 1 knows X̃1
1 = 1{!=1} and X̃2

1 = 1{!2{1,2}}.

(ii) DM 2 knows X̃1
1 = 1{!=1} and X̃2

2 = 1{!=3}.

We can identify the common information at t = 1 to be Z̃1 = X̃1
1 .

The common-knowledge sigma-algebra at t = 1 is given as C1 = �(X̃1
1 , X̃

2
1 ) \ �(X̃1

1 , X̃
2
2 ). It is easy

to see that C1 = 2⌦ ⇥ {;,U1} ⇥ {;,U2}. A common observation at t = 1 that generates this common

knowledge sigma algebra can be written as Z1 = !. Clearly, a coordinator who knows Z1 is more

informed than a coordinator who knows only Z̃1. In other words, �(Z̃1) is a strict subset of �(Z1).

2. To illustrate that the common information based dynamic program may be different from the

one obtained using common knowledge, we consider a team problem with three decision-makers. The

probability space is: ⌦ = {1, 2, 3, 4, 5},F = 2⌦ with equal probabilities for all outcomes in ⌦. The

decision spaces of the three decision-makers are finite sets U1,U2 and U3 respectively, each associated

with the respective power-set sigma-algebra. The objective is to find strategies for the DMs to minimize

the expected value of c(!, U1, U2, U3). The information structure is given in terms of the observations

each decision-maker has access to.
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(i) DM 1 knows

X̃1 :=

8
>>><

>>>:

1 if ! 2 {1, 2},

3 if ! 2 {3, 4},

5 if ! 2 {5}.

(ii) DM 2 knows

X̃2 :=

8
>>><

>>>:

1 if ! 2 {1, 3},

2 if ! 2 {2, 4},

5 if ! 2 {5}.

(iii) DM 3 knows X̃1 and

X̃3 :=

8
>>><

>>>:

1 if ! 2 {1, 4},

2 if ! 2 {2, 5},

3 if ! 2 {3}.

For this information structure there is no common information at t = 1, 2. In particular, there is no

observation Z̃1 that is available to all three DMs and there is no observation Z̃2 that is available to DMs

2 and 3. The private informations are Ỹ1 = X̃1, Ỹ2 = X̃2 and Ỹ3 = (X̃1, X3). Thus, the coordinator in

the common information approach for this example will have no observations and the resulting dynamic

program will be identical to Witsenhausen’s sequential decomposition.

If we consider the sigma-algebras �(X̃1),�(X̃2),�(X̃1, X̃3) associated with the DMs, then it can be

easily seen that the common knowledge sigma-algebras are non-trivial and given as:

(i) C1 = �(Z1), where Z1 = 1{!=5}. In other words, C1 = �({1, 2, 3, 4}, {5})⇥ {;,U1}⇥ {;,U2}.

(ii) C2 = �(X̃2). That is, C2 = �({1, 3}, {2, 4}, {5})⇥ {;,U1}⇥ {;,U2}.

(iii) C3 = �(X̃1, X̃3). In other words, C3 = 2⌦ ⇥ {;,U1}⇥ {;,U2}.

Thus, in this example, the coordinator in the common knowledge based dynamic program will have

non-trivial observations and the corresponding dynamic program will be distinct from Witsenhausen’s

sequential decomposition.

VII. SEQUENTIAL ORDERS AND COMMON KNOWLEDGE

In Section II-C, we mentioned that an information structure is sequential if there exists a permutation

p : {1, 2, . . . , T} 7! {1, 2, . . . , T} such that

Jp(t) ⇢ F⌦Up(1) ⌦ Up(2) ⌦ · · ·⌦ Up(t�1) ⌦ {;,Up(t)}⌦

. . .⌦ {;,Up(T )}. (47)
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In some cases, there may be more than one permutation that satisfies the above causality condition. Let

p, q be two distinct permutations satisfying the causality condition. Following the analysis of Section IV,

the two permutations would result in two different definitions of common knowledge: For the permutation

p, the common knowledge is

Cp
t :=

T\

s=t

Jp(s),

while for permutation q, the common knowledge is

Cq
t :=

T\

s=t

Jq(s).

The two versions of common knowledge would produce two different dynamic programs. In general,

it may not be clear apriori which permutation should be preferred for obtaining the dynamic program.

Suppose it is the case that for all time t, Cq
t ⇢ Cp

t . Because the common knowledge under permutation q

is a subset of the common knowledge under permutation p, the private observations under q may have

to take values in a larger space than the private observations under p. This, in turn, implies that, the

prescriptions in the dynamic program for permutation q take values in a larger space than the space

of prescriptions in the dynamic program obtained using permutation p. Thus, one could argue that the

permutation resulting in more common knowledge, that is the permutation p, should be preferred for

obtaining the sequential decomposition of the problem.

Consider, for example, the information structure of the second example in Section VI-A. Consider the

following two permutations of the three decision-makers: p = (DM 1, DM 2, DM 3) and q = (DM 2,

DM 1, DM 3). Both permutations will satisfy the causality condition. However, it is not the case that

the common knowledge sigma-algebras under one permutation are contained in the common knowledge

sigma-algebras under the other permutation for all t = 1, 2, 3. Let’s modify the observation of DM 2 in

this example to the following:

X̃2 :=

8
>>>>>><

>>>>>>:

1 if ! 2 {1, 2},

3 if ! 2 {3},

4 if ! 2 {4},

5 if ! 2 {5}.

For this modified example, it can be easily verified that for all time t = 1, 2, 3, Cq
t ⇢ Cp

t . Thus, in

this case the permutation p = (DM 1, DM 2, DM 3) should be preferred for obtaining the sequential

decomposition of the problem.
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VIII. CONCLUSION

We considered sequential team problems based on Witsenhausen’s intrinsic model. We started with the

case of classical information structures and presented the dynamic program for this case. We then defined

the concept of common knowledge in sequential team problems with general information structures. We

showed how common knowledge can be used to construct a sequential decomposition of sequential team

problems by means of an equivalent sequential decision-making problem that has a classical information

structure. This equivalent problem was formulated from the perspective of a coordinator who knows

the common knowledge. This common knowledge based sequential decomposition unifies the dynamic

programming results of classical information structures and Witsenhausen’s sequential decomposition

of general sequential problems. In addition to providing an analytical and computational benefit, the

development of sequential decomposition for problems with non-classical information structures opens

up the possibility of systematic methods to find structural results and information states for decision-

makers in such problems.
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APPENDIX A

PROOF OF LEMMA 1

Since Jt ⇢ F ⌦ U1:T is a finite sigma-algebra, it is completely characterized by a partition Pt :

{P 1
t , P

2
t , . . . , P

nt

t } of the finite set ⌦⇥ U1:T . Moreover, since

Jt ⇢ F ⌦ U1 ⌦ · · ·⌦ Ut�1 ⌦ {;,Ut}⌦ . . .⌦ {;,UT },

any set P k
t in the partition Pt is of the form

P k
t = A⇥B1 ⇥ . . .⇥Bt�1 ⇥ Ut ⇥ . . .⇥ UT ,

where A ⇢ ⌦, B1 ⇢ U1, . . . , Bt�1 ⇢ Ut�1.

Further, since Jt ⇢ Jt+1, the partition Pt+1 associated with Jt+1 is a finer partition than Pt. That is,

P k
t in the partition Pt can be written as union of sets from partition Pt+1:

P k
t = P k(1)

t+1 [ P k(2)
t+1 [ . . . [ P k(mk)

t+1 ,

for some indices k(1), . . . , k(mk). Define the observations Z1, . . . , ZT as follows:

1) Note that each set in the partition at time 1 is of the form:

P k
1 = A⇥ U1 ⇥ . . .⇥ UT ,

where A ⇢ ⌦. We define Z1 = ⇣1(!) as follows:

⇣1(!̃) = k if (!̃, u1:T ) 2 P k
1 8u1:T (48)

2) Recall that any set in the partition at time 1 can be written as union of some sets in partition at

time 2:

P k
1 = P k(1)

2 [ P k(2)
2 [ . . . [ P k(mk)

2 ,
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and that any set P j
2 is of the form:

P j
2 = A⇥B1 ⇥ U2 ⇥ . . .⇥ UT ,

where A ⇢ ⌦, B1 ⇢ U1. We define Z2 = ⇣2(!, U1) as follows:

⇣2(!̃, u1) = i,

if (!̃, u1:T ) 2 P k
1 and (!̃, u1, u2:T ) 2 P k(i)

2 8u2:T . (49)

3) Proceeding in the same manner, we note that any set in the partition at time t� 1 can be written

as union of some sets in partition at time t:

P k
t�1 = P k(1)

t [ P k(2)
t [ . . . [ P k(mk)

t ,

and that any set P j
t is of the form:

P j
t = A⇥B1 ⇥ . . .⇥Bt�1 ⇥ Ut ⇥ . . .⇥ UT ,

where A ⇢ ⌦, B1 ⇢ U1, . . . , Bt�1 ⇢ Ut�1. We define Zt = ⇣t(!, U1, U2, . . . , Ut�1) as follows:

⇣t(!̃, u1:t�1) = i, if (!̃, u1:t�2, ut�1:T ) 2 P k
t�1

and (!̃, u1:t�1, ut:T ) 2 P k(i)
t 8ut:T . (50)

We now argue that for any realization z1:t of Z1:t, the set

⇣�1(z1:t) :=

{(!̃, u1:T ) 2 ⌦⇥ U1:T | ⇣k(!̃, u1:k�1) = zk, k = 1, . . . , t} (51)

is either empty or equal to one of the sets in the partition Pt associated with the sigma-algebra Jt.

Suppose ⇣�1(z1:t) is not empty and includes (!̃, u1:T ). Since P1, . . . , Pt are partitions of ⌦⇥ U1:T , we

must have

(!̃, u1:T ) 2 P a(k)
k , k = 1, . . . , t, (52)

for some indices a(k), k = 1, . . . , t. Further, since the partitions get finer with time, we must that

P a(t)
t ⇢ P a(t�1)

t�1 ⇢ . . . ⇢ P a(1)
1 .

Consider any other vector (!̂, u1:T ) 2 P a(t)
t . Evaluating the maps ⇣1, . . . , ⇣t on this vector, we see that

⇣k(!̂, u1:k�1) = ⇣k(!̃, u1:k�1) = zk, k = 1, . . . , t.
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Further, if (!̂, u1:T ) /2 P a(t)
t , then let s  t be the smallest time index such that (!̂, u1:T ) /2 P a(s)

s . Then

⇣s(!̂, u1:T ) 6= ⇣s(!̃, u1:T ) = zs. Hence, (!̂, u1:T ) /2 ⇣�1(z1:t). Thus, we can conclude that ⇣�1(z1:t) is

either empty or equal to P a(t)
t for some index a(t).

Thus, the collection of non-empty inverse images {⇣�1(z1:t)}, for all possible realizations z1:t, is equal

to the collection the sets in partition associated with Jt: {P 1
t , P

2
t , . . . , P

nt

t }. Thus,

�(Z1:t) = Jt.

Finally, if f is a Jt/Ut measurable function, then it is completely characterized by the values it takes

for each set in the partition Pt. Since, the realization z1:t identifies a unique set in partition Pt, we can

define

gt(z1:t) :=

8
<

:
f(⇣�1(z1:t)), if ⇣�1(z1:t) 6= ;,

arbitrary if ⇣�1(z1:t) = ;

With the above definition, it is easy to check that for any (!̃, u1:T ), if the corresponding realization of

the observations is z1:t, then f(!̃, u1:T ) = gt(z1:t).

APPENDIX B

PROOF OF LEMMA 2

The proof uses a simple repeated substitution argument: Consider a strategy profile g1, . . . , gT in

the expanded information structure. Under this strategy we have the following T equations: Ut =

gt(Z1:t, U1:t�1), t = 1, . . . , T. We can eliminate U1:t�1 from each equation by repeated substitution to

obtain an equivalent system of equations: Ut = ht(Z1:t), t = 1, . . . , T. (For example, U1 = h1(Z1) :=

g1(Z1);U2 = h2(Z1, Z2) := g2(Z1, Z2, h1(Z1)) and so on.) It is straightforward to establish that for any

realization !̃ of the random vector !, the strategy profiles g1:T and h1:T generate the same realizations

of observations and decisions and hence incur the same cost.

APPENDIX C

PROOF OF LEMMA 5

Parts 1 and 2 follow directly from the definition of common knowledge in (17).

Because Ct, t = 1, . . . , T satisfy the nestedness property and Ct, being a subset of Jt satisfies

Ct ⇢ F ⌦ U1 ⌦ · · ·⌦ Ut�1 ⌦ {;,Ut}⌦ . . .⌦ {;,UT },

we can follow the construction of observations used in proving Lemma 1 to construct common observa-

tions Zt = ⇣t(!, U1, . . . , Ut�1) such that �(Z1:t) = Ct.
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To construct the private observation at time t, we consider the partitions Pt and Qt of the finite set

⌦⇥U1:T that generate Jt and Ct respectively. Since Ct ⇢ Jt, the partition Pt associated the Jt is a finer

partition than Qt. Thus, a set Qk
t in the partition Qt can be written as union of sets from partition Pt:

Qk
t = P k(1)

t [ P k(2)
t [ . . . [ P k(mk)

t ,

for some indices k(1), . . . , k(mk). We now define Yt = ⌘t(!, U1, U2, . . . , Ut�1) as follows:

⌘t(!̃, u1:t�1) = i,

if (!̃, u1:t�1, ut:T ) 2 Qk
t and (!̃, u1:t�1, ut:T ) 2 P k(i)

t 8ut:T . (53)

To prove that �(Z1:t, Yt) = Jt, we first define the inverse map

⇠�1(z1:t, yt) :=

{(!̃, u1:T ) 2 ⌦⇥ U1:T | ⇣k(!̃, u1:k�1) = zk, k = 1, . . . , t,

⌘t(!̃, u1:t�1) = yt}. (54)

We now argue that ⇠�1(z1:t, yt) is either empty or equal to one of the sets in the partition Pt associated

with the sigma-algebra Jt. Suppose ⇠�1(z1:t, yt) is not empty and includes (!̃, u1:T ). Since Qt, Pt are

partitions of ⌦⇥ U1:T , we must have

(!̃, u1:T ) 2 Qa
t , (!̃, u1:T ) 2 P b

t (55)

for some indices a, b. Further, we must have that

P b
t ⇢ Qa

t .

Consider any other vector (!̂, u1:T ) 2 P b
t . Since (!̂, u1:T ) must also belong to Qa

t and the partition

Qt generates �(Z1:t), it follows that (!̂, u1:T ) and (!̃, u1:T ) will produce the same realization of Z1:t,

that is,

⇣k(!̂, u1:k�1) = ⇣k(!̃, u1:k�1) = zk, k = 1, . . . , t.

Further, by definition, the private observation map ⌘t evaluated on (!̂, u1:T ) and (!̃, u1:T ) would give

the same value, that is,

⌘t(!̂, u1:t�1) = ⌘t(!̃, u1:t�1) = yt.

Finally, if (!̂, u1:T ) /2 P b
t , then it would necessarily result in a different realization of either the common

observations z1:t (if (!̂, u1:T ) /2 Qa
t ) or the private observation yt (if (!̂, u1:T ) 2 Qa

t , but (!̂, u1:T ) /2 P b
t ).
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Thus, we can conclude that ⇠�1(z1:t, yt) is either empty or equal to P b
t for some index b. Therefore,

the collection of non-empty inverse images {⇠�1(z1:t, yt)}, for all possible realizations of z1:t, yt, is equal

to the collection the sets in the partition associated with Jt: {P 1
t , P

2
t , . . . , P

nt

t }. Thus,

�(Z1:t, Yt) = Jt.

Finally, if f is a Jt/Ut measurable function, then it is completely characterized by the values it takes

for each set in the partition Pt. Since, the realization z1:t, yt identifies a unique set in partition Pt, we

can define

gt(z1:t, yt) :=

8
<

:
f(⇠�1(z1:t, yt)), if ⇠�1(z1:t, yt) 6= ;,

arbitrary if ⇠�1(z1:t, yt) = ;

With the above definition, it is easy to check that for any (!̃, u1:T ), if the corresponding realization of

the common and private observations is z1:t, yt, then f(!̃, u1:T ) = gt(z1:t, yt).

APPENDIX D

PROOF OF LEMMA 6

The probability distribution under g can be factorized as

Pg(!̃, u1:T , y1:T , z1:T ) = P(!̃)⇥
TY

k=1

⇥
1{⌘k(!̃,u1:k�1)=yk}1{⇣k(!̃,u1:k�1)=zk}1{gk(z1:k,yk)=uk}

⇤
(56)

Recall that  t(z1:t) is an element of U|Yt|
t , that is, it is a tuple of size |Yt|. Let us denote by  t(z1:t)(y)

the yth component of this tuple. The definition of  t(z1:t) implies that  t(z1:t)(y) = gt(z1:t, y).

The probability distribution P is

P (!̃, u1:T , y1:T , z1:T ) = P(!̃)⇥
TY

k=1

⇥
1{⌘k(!̃,u1:k�1)=yk}1{⇣k(!̃,u1:k�1)=zk}1{ k(z1:k)(yk)=uk}

⇤
(57)

Since for any time t and any y,  t(z1:t)(y) = gt(z1:t, y), it follows that

P (!̃, u1:T , y1:T , z1:T ) = P(!̃)⇥
TY

k=1

⇥
1{⌘k(!̃,u1:k�1)=yk}1{⇣k(!̃,u1:k�1)=zk}1{gk(z1:k,yk)=uk}

⇤

= Pg(!̃, u1:T , y1:T , z1:T ). (58)
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APPENDIX E

PROOF OF THEOREM 1

We will first identify a sequentially dominant strategy for DM T using the strategy-independent belief

⇡T (·|z1:T , u1:T�1) on ⌦.

Definition 1. Define

g⇤T (z1:T , u1:T�1) := argminuT2UTE⇡T [c(!, u1 . . . , uT�1, uT )|z1:T , u1:T�1], (59)

where E⇡T [c(!, u1 . . . , uT�1, uT )|z1:T , u1:T�1] is the expectation with respect to strategy-independent

beliefs on ! (as defined in (9)). Also define

VT (z1:T , u1:T�1) := min
uT2UT

E⇡T [c(!, u1 . . . , uT )|z1:T , u1:T�1]

= E⇡T [c(!, u1 . . . , uT�1, g
⇤
T (z1:T , u1:T�1))|z1:T , u1:T�1]. (60)

We will refer to the function VT (·) defined in (60) as the value function at time T .

Lemma 8. g⇤T is a sequentially dominant strategy for DM T .

Proof.

J(g1, g2, . . . , gT )

= Eg1,...,gT [c(!, U1, . . . , UT )]

= Eg1,...,gT [c(!, U1, . . . , UT�1, gT (Z1:T , U1:T�1))]

= Eg1,...,gT [Eg1:T c(!, U1, . . . , UT�1, gT (Z1:T , U1:T�1))|Z1:T , U1:T�1]

=
X

z1:T ,u1:T�1

Pg1:T�1(z1:T , u1:T�1)Eg1:T�1 [c(!, u1:T�1, gT (z1:T , u1:T�1))|z1:T , u1:T�1] (61)

=
X

z1:T ,u1:T�1

Pg1:T�1(z1:T , u1:T�1)E⇡T [c(!, u1:T�1, gT (z1:T , u1:T�1))|z1:T , u1:T�1] (62)

�
X

z1:T ,u1:T�1

Pg1:T�1(z1:T , u1:T�1)E⇡T [c(!, u1:T�1, g
⇤
T (z1:T , u1:T�1))|z1:T , u1:T�1] (63)

where we use the fact that g1:T�1 determine the distribution on Z1:T , U1:T�1 in (61), Lemma 3 in (62)

and the definition of g⇤T (z1:T , u1:T�1) in (63).

Repeating the above steps for g1, . . . , gT�1, g⇤T gives

J(g1, g2, . . . , g
⇤
T ) = Eg1,...,g⇤

T [c(!, U1, . . . , UT )]

=
X

z1:T ,u1:T�1

Pg1:T�1(z1:T , u1:T�1)E⇡T [c(!, u1:T�1, g
⇤
T (z1:T , u1:T�1))|z1:T , u1:T�1] (64)
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Combining (63) and (64) gives

J(g1, g2, . . . , gT ) � J(g1, . . . , gT�1, g
⇤
T ),

hence proving the lemma.

Because Lemma 8 establishes g⇤T as a dominant strategy for DM T , we can fix g⇤T as DM T ’s strategy

without compromising optimality. That is, there is an optimal strategy profile where DM T is using

strategy g⇤T .

Remark 7. The strategy independence of belief is crucial for proving that g⇤T is a dominant strategy. A

central difficulty in non-classical information structures is the non-existence of a dominant strategy at

the last stage.

Having found a dominant strategy at the last stage, we can essentially eliminate the last stage from

our decision problem and view T � 1 stage as the new last stage. After the T � 1 stage, DM T and

the stochastic system behave according to fixed functions and result in a cost that can be viewed as

depending only on ! and the decisions in the first T � 1 stages.

With the strategy of DM T fixed to g⇤T , we can express the expected cost of a strategy profile in terms

of value function at time T using the following lemma.

Lemma 9. For any g1, . . . , gT�1,

J(g1, . . . , gT�1, g
⇤
T ) = Eg1,...,gT�1,g⇤

T [c(!, U1, . . . , UT )] = Eg1,...,gT�1 [VT (Z1:T , U1:T�1)].

Proof. From (64), we know that

J(g1, g2, . . . , gT�1, g
⇤
T ) = Eg1,...,g⇤

T [c(!, U1, . . . , UT )]

=
X

z1:T ,u1:T�1

Pg1:T�1(z1:T , u1:T�1)E⇡T [c(!, u1:T�1, g
⇤
T (z1:T , u1:T�1))|z1:T , u1:T�1], (65)

Using the definition of VT (·) from (60), the right hand side in (65) can be written as
X

z1:T ,u1:T�1

Pg1:T�1(z1:T , u1:T�1)VT (z1:T , u1:T�1) = Eg1,...,gT�1 [VT (Z1:T , U1:T�1)], (66)
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which proves the lemma.

General Induction Step: We now proceed inductively by first assuming the following induction

hypothesis for DMs k+1 to DM T and then using it to prove the analogous statement for DMs k to T .

Induction Hypothesis: Suppose there exist sequentially dominant strategies g⇤k+1,g⇤k+2,. . . , g⇤T for DMs

k + 1 to T respectively and there exists a function Vk+1(Z1:k+1, U1:k) such that for any g1, . . . , gk,

J(g1, . . . , gk, g
⇤
k+1, . . . , g

⇤
T )

= Eg1,...,gk,g⇤
k+1,...,g

⇤
T [c(!, U1, . . . , UT )] = Eg1,...,gk [Vk+1(Z1:k+1, U1:k)]. (67)

The induction hypothesis implies that for any strategies g1, . . . , gT

J(g1, . . . , gT ) � J(g1, . . . , gk, g
⇤
k+1, . . . , g

⇤
T ).

We have already established the hypothesis for k + 1 = T in Lemmas 8 and 9 above.

We now focus on DM k. We say that hk is a sequentially dominant strategy for DM k if for any

strategies g1, g2, . . . , gk,

J(g1, g2, . . . , gk, g
⇤
k+1, . . . , g

⇤
T ) � J(g1, . . . , gk�1, hk, g

⇤
k+1, . . . , g

⇤
T ).

Definition 2. Define

g⇤k(z1:k, u1:k�1) := argminuk2UkE⇡k [Vk+1(z1:k, Zk+1, u1 . . . , uk)|z1:k, u1:k�1],

where Zk+1 = ⇣k+1(!, u1:k) and the expectation on the right hand side is with respect to strategy-

independent beliefs on ! (as defined in (9)). Also, define

Vk(z1:k, u1:k�1) := min
uk2Uk

E⇡k [Vk+1(z1:k, Zk+1, u1 . . . , uk)|z1:k, u1:k�1]. (68)

Lemma 10. g⇤k is a sequentially dominant strategy for DM k. That is, for any strategies g1, g2, . . . , gk,

J(g1, g2, . . . , gk, g
⇤
k+1, . . . , g

⇤
T ) � J(g1, . . . , gk�1, g

⇤
k, . . . , g

⇤
T ).

Proof. See Appendix F.
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Lemma 11. For any g1, . . . , gk�1,

J(g1, . . . , gk�1, g
⇤
k, . . . , g

⇤
T ) = Eg1,...,gk�1,g⇤

k,...,g
⇤
T [c(!, U1, . . . , UT )]

= Eg1,...,gk�1 [Vk(Z1:k, U1:k�1)]. (69)

Proof. See Appendix G.

The induction hypothesis and Lemma 10 shows that g⇤k, . . . , g
⇤
T are sequentially dominant strategies

for DMs k to T respectively. Lemma 11 shows that there exists a function Vk(Z1:k, U1:k�1) such that

for any g1, . . . , gk�1,

J(g1, . . . , gk�1, g
⇤
k, . . . , g

⇤
T ) = Eg1,...,gk�1,g⇤

k,...,g
⇤
T [c(!, U1, . . . , UT )]

= Eg1,...,gk�1 [Vk(Z1:k, U1:k�1)]. (70)

In other words, if the induction hypothesis is true for DMs k + 1 to T , then it must also hold for DMs

k to T . Since we have already established the induction hypothesis when k + 1 = T , it follows that it

is true for all k = T, . . . , 1. Hence, g⇤T , . . . , g
⇤
1 defined according to Definitions 1 and 2 are sequentially

dominant strategies for DMs T to 1 respectively.

APPENDIX F

PROOF OF LEMMA 10

We first note that Vk(z1:k, u1:k�1) can also be written as

Vk(z1:k, u1:k�1) :=

min
uk2Uk

E⇡k [Vk+1(z1:k, ⇣k+1(!, u1:k), u1 . . . , uk)|z1:k, u1:k�1], (71)
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Now,

J(g1, g2, . . . , gk, g
⇤
k+1, . . . , g

⇤
T ) = Eg1,g2,...,gk [Vk+1(Z1:k+1, U1:k)]

= Eg1,...,gk [Eg1:k [Vk+1(Z1:k+1, U1:k)|Z1:k, U1:k�1]

=
X

z1:k,u1:k�1

Pg1:k�1(z1:k, u1:k�1)⇥

Eg1:k [Vk+1(z1:k, ⇣k+1(!, u1:k�1, gk(z1:k, u1:k�1)), u1:k�1,

gk(z1:k, u1:k�1))|z1:k, u1:k�1] (72)

=
X

z1:k,u1:k�1

Pg1:k�1(z1:k, u1:k�1)⇥

E⇡k [Vk+1(z1:k, ⇣k+1(!, u1:k�1, gk(z1:k, u1:k�1)), u1:k�1,

gk(z1:k, u1:k�1))|z1:k, u1:k�1] (73)

�
X

z1:k,u1:k�1

Pg1:k�1(z1:k, u1:k�1)⇥

E⇡k [Vk+1(z1:k, ⇣k+1(!, u1:k�1, g
⇤
k(z1:k, u1:k�1)), u1:k�1,

g⇤k(z1:k, u1:k�1))|z1:k, u1:k�1] (74)

where we use the fact that g1:k�1 determine the distribution on Z1:k, U1:k�1 in (72), Lemma 3 in (73)

and the definition of g⇤k(z1:k, u1:k�1) in (74).

Repeating the above steps for g1, . . . , gk�1, g⇤k, . . . , g
⇤
T gives

J(g1, g2, . . . , gk�1, g
⇤
k, g

⇤
k+1, . . . , g

⇤
T )

= Eg1,g2,...,g⇤
k [Vk+1(Z1:k+1, U1:k)]

=
X

z1:k,u1:k�1

Pg1:k�1(z1:k, u1:k�1)⇥

E⇡k [Vk+1(z1:k, ⇣k+1(!, u1:k�1, g
⇤
k(z1:k, u1:k�1)), u1:k�1,

g⇤k(z1:k, u1:k�1))|z1:k, u1:k�1] (75)

Combining (74) and (75) establishes the result.
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APPENDIX G

PROOF OF LEMMA 11

From (75), we know that

J(g1, g2, . . . , gk�1, g
⇤
k, . . . , g

⇤
T )

=
X

z1:k,u1:k�1

Pg1:k�1(z1:k, u1:k�1)⇥

E⇡k [Vk+1(z1:k, ⇣k+1(!, u1:k�1, g
⇤
k(z1:k, u1:k�1)), u1:k�1,

g⇤k(z1:k, u1:k�1))|z1:k, u1:k�1]. (76)

Using the definition of Vk(·) from (68), the right hand side in (76) can be written as
X

z1:k,u1:k�1

Pg1:k�1(z1:k, u1:k�1)⇥ Vk(z1:k, u1:k�1)

= Eg1,...,gk�1 [Vk(Z1:k, U1:k�1)], (77)

which proves the lemma.
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