This paper includes an errata for the Delay Efficient Sleep Scheduling (DESS) problem presented in [1]. This errata corrects our main complexity result mentioned in [1]. We first define the decision problem G-DESS which is a more general case of DESS.

Definition 1: G-DESS (G, S, k, Δ) : Given a graph $G=$ (V, E), a set S of pairs $\left(s_{i}, t_{i}\right)$ such that $s_{i}, t_{i} \in V$, number of slots k, and a positive number Δ, does there exist a slot assignment function $f: V \rightarrow[0, \cdots k-1]$, such that $\max _{i}\left\{d_{f}\left(s_{i}, t_{i}\right)\right\}=\Delta$?

We now prove the main complexity result:
Theorem 1: G-DESS (G, S, k, Δ) is NP-Complete.
Proof: Given the slot assignment function f, one can compute the shortest delay path from each node to all the other nodes in polynomial time. Moreover, there are only a polynomial number of such nodes. The maximum delay among all the pairwise $s_{i} \rightarrow t_{i}$ paths should then be compared against Δ. All these steps can be done in polynomial time. Thus $\operatorname{G-DESS}(G, S, k, \Delta) \in N P$.

To prove that G-DESS (G, S, k, Δ) is NP-Hard, we propose the following polynomial time reduction from 3-CNF-SAT to G-DESS.

Consider a 3-CNF formula F consisting of n variables and m clauses i.e. $F=C_{1} \bigwedge C_{2} \bigwedge \cdots C_{m}$, where each $C_{i}=$ $l_{i 1} \bigvee l_{i 2} \bigvee l_{i 3}$ and $l_{i j} \in\left\{x_{1}, \overline{x_{1}}, \cdots x_{n}, \overline{x_{n}}\right\}$.

Construct the following graph $G=(V, E)$:

1) For each clause C_{i}, add nodes s_{i}, t_{i} to V. For each variable x_{i}, add nodes X_{i}, X_{i}^{\prime} to V.
2) For each variable x_{i}, add $\left(X_{i}, X_{i}^{\prime}\right)$ to E.
3) For each clause C_{i}, if literal x_{j} is present in clause C_{i}, add $\left(s_{i}, X_{j}\right)$ and $\left(X_{j}^{\prime}, t_{i}\right)$ to E. If literal $\overline{x_{j}}$ is present in clause C_{i}, add $\left(s_{i}, X_{j}^{\prime}\right)$ and $\left(X_{j}, t_{i}\right)$ to E.
4) $\forall i<n$ add an edge $\left(t_{i}, t_{i+1}\right)$ to E.

Fig. 1. Reduction from 3-CNF-SAT to G-DESS $(G, S, 3,3)$. Here, $F=$ $\left(x_{1} \bigvee \overline{x_{2}} \bigvee \overline{x_{3}}\right) \bigwedge\left(\overline{x_{1}} \bigvee x_{2} \bigvee x_{3}\right) \bigwedge\left(x_{1} \bigvee x_{2} \bigvee x_{3}\right)$. The satisfying assignment is $x_{1}=0, x_{2}=0$ and $x_{3}=1$.

Let number of slots $k=3, \Delta=3$ and $S=$ $\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots\left(s_{n}, t_{n}\right)\right\}$. Note that in the constructed graph, the number of hops between any s_{i} and t_{i} is also 3 . An example reduction in shown in figure 1 .

We first prove that if the given formula is satisfiable, there exists a slot assignment function f such that $\operatorname{G-DESS}(G, S, 3,3)$ is true. i.e. there exists an slot assignment function such that $\max _{i}\left\{d_{f}\left(s_{i}, t_{i}\right)\right\}=3$.

For every variable, if x_{j} is true in the satisfying assignment, let $f\left(X_{j}\right)=0$ and $f\left(X_{j}^{\prime}\right)=1$. If x_{j} is false, let $f\left(X_{j}\right)=0$ and $f\left(X_{j}^{\prime}\right)=2$.
i.e. if x_{j} is true, $d_{f}\left(X_{j}, X_{j}^{\prime}\right)=1$ and $d_{f}\left(X_{j}^{\prime}, X_{j}\right)=2$, otherwise $d_{f}\left(X_{j}, X_{j}^{\prime}\right)=2$ and $d_{f}\left(X_{j}^{\prime}, X_{j}\right)=1$.

Since the formula is satisfiable each clause C_{i} will have at least one true literal. Pick one of these true literals. If this literal is x_{j}, let $f\left(s_{i}\right)=2$ and $f\left(t_{i}\right)=2$, then $d_{f}\left(s_{i} \rightarrow t_{i}\right)=$ $d_{f}\left(s_{i}, X_{j}\right)+d_{f}\left(X_{j}, X_{j}^{\prime}\right)+d_{f}\left(X_{j}^{\prime}, t_{i}\right)=1+1+1=3$. If the literal is $\overline{x_{j}}$, let $f\left(s_{i}\right)=1$ and $f\left(t_{i}\right)=1$, then $d_{f}\left(s_{i} \rightarrow t_{i}\right)=$ $d_{f}\left(s_{i}, X_{j}^{\prime}\right)+d_{f}\left(X_{j}^{\prime}, X_{j}\right)+d_{f}\left(X_{j}, t_{i}\right)=1+1+1=3$.

Thus there exists a slot assignment function such that $\max _{i}\left\{d_{f}\left(s_{i}, t_{i}\right)\right\}=3$.

We next prove that if there exists an f such that $\mathrm{G}-\operatorname{DESS}(G, S, 3,3)$ is true, then the given formula is satisfiable.

Consider each clause C_{i}. There exists a path $s_{i} \rightarrow t_{i}$, such that $d_{f}\left(s_{i}, t_{i}\right)=3$. There are two possibilities for this path:

1) The path is $s_{i} \rightarrow X_{j} \rightarrow X_{j}^{\prime} \rightarrow t_{i}$ for some variable x_{j}. Thus x_{j} is present in clause C_{i}. Moreover, since $d_{f}\left(s_{i}, t_{i}\right)=3$, it must be the case that the delay along each of these edges is 1 . In this case, let $x_{j}=$ true.
2) The path is $s_{i} \rightarrow X_{k}^{\prime} \rightarrow X_{k} \rightarrow t_{i}$ for some x_{k}. In this case $\overline{x_{k}}$ is present in C_{i}. Moreover, since $d_{f}\left(s_{i}, t_{i}\right)=3$, it must be the case that the delay along each of these edges is 1 . In this case, let $x_{k}=$ false.
We now show that this proposed truth assignment is satisfying and consistent.

For each clause C_{i}, one of the above 2 possibilities exist. For the first possibility, a literal x_{j} is present in C_{i} and we assign x_{j} to be true. For the second possibility, a literal $\overline{x_{k}}$ is present in C_{i} and we assign x_{k} to be false. Thus in either case, each clause has at least one true literal and hence the proposed truth assignment is satisfying.

To prove consistency of the truth assignment, for a given variable x_{i}, consider any 2 source destination pairs $\left(s_{j}, t_{j}\right)$ and $\left(s_{k}, t_{k}\right)$ that use X_{i} and X_{i}^{\prime} as intermediate vertices on their shortest delay path. We claim that both these shortest delay paths must traverse the edge $\left(X_{i}, X_{i}^{\prime}\right)$ in the same direction. i.e. their shortest delay paths are either $s_{j} \rightarrow X_{i} \rightarrow X_{i}^{\prime} \rightarrow t_{j}$ and $s_{k} \rightarrow X_{i} \rightarrow X_{i}^{\prime} \rightarrow t_{k}$ respectively or $s_{j} \rightarrow X_{i}^{\prime} \rightarrow X_{i} \rightarrow$ t_{j} and $s_{k} \rightarrow X_{i}^{\prime} \rightarrow X_{i} \rightarrow t_{k}$ respectively. If this was not the case, without loss of generality assume that one of the shortest delay paths is $s_{j} \rightarrow X_{i} \rightarrow X_{i}^{\prime} \rightarrow t_{j}$ and the other is $s_{k} \rightarrow X_{i}^{\prime} \rightarrow X_{i} \rightarrow t_{k}$. Since both paths have a delay of 3 , it must be the case that $d_{f}\left(X_{i}, X_{i}^{\prime}\right)=d_{f}\left(X_{i}^{\prime}, X_{i}\right)=1$. However for $k=3$ slots, there exists no slot assignment that gives a unit delay along each direction for any edge $(z, w) \in G$. Thus, all source destination pairs $\left(s_{j}, t_{j}\right)$ that use the edge (X_{i}, X_{i}^{\prime}) for the shortest delay path must traverse the edge in the same direction i.e. either $s_{j} \rightarrow X_{i} \rightarrow X_{i}^{\prime} \rightarrow t_{j}$ or $s_{j} \rightarrow X_{i}^{\prime} \rightarrow X_{i} \rightarrow t_{j}$. In the first case, the variable x_{i} is assigned true and in the second, x_{i} is assigned false. Thus, the proposed truth assignment is consistent.

I. Acknowledgements

We thank Matthew J. Miller from University of Illinois for pointing out errors in the proof of NP-Completeness in [1].

REFERENCES

[1] G. Lu, N. Sadagopan, B. Krishnamachari and A. Goel, "Delay Efficient Sleep Scheduling in Wireless Sensor Networks," in IEEE Infocom, 2005.

