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Abstract

We propose a learning-based approach to efficiently and re-
liably route data to a mobile sink in a wireless sensor field.
Specifically, we consider a mobile sink that does not know
when to query or does not need to query. Furthermore, the
sink moves in a certain pattern within the sensor field. Such
a sink passively listens for incoming data that distant seur
sensors unilaterally push towards it. Unlike traditionalut-
ing mechanisms, our technique takes the time-domain explic
itly into account, with each node involved making the dedcisi
“at this time what is the best way to forward the packet to the
sink?”. In the presented schenmogles (nodes in the vicinity of
the sink) learn its movement pattern over time and staéillyic
characterize it as a probability distribution function. Mag
obtained this information at the moles, our scheme uses rein
forcement learning to locate the sink efficiently at any poin
time.

1. Introduction

The classical view of a wireless sensor network involves
one or more stationary base-stations/sinks gatheringaate

the sink does not know when to query and so it does not is-
sue queries. Instead, it listens passively for data pusked b
source sensors towards it. Such situations are repreisentat
of a class of real-life situations that are characterizeddy-
requirement of disseminating queries and uninformed reobil
sinks. The example below illustrates such situations.

Consider a forest patrol that makes periodic patrols along
certain paths in the forest. These patrols aim at preventing
poaching and monitoring endangered wildlife. Howeverrthei
efficacy is limited because they cannot cover the entire area
assigned to them. This problem can be solved to an extent by
deploying a wireless sensor network that senses unusugkeve
in the area (incoming poachers or endangered animals)- Info
mation about these events needs to get routed to the moving
patrol. The naive way of doing it is to route to a stationary
base-station at the periphery of the network and then djrect
transmit to the sink. However this is not always desirable be
cause of energy and delay constraints. Another method is to
flood the network but this can result in unacceptable wastage
of energy.

Instead, a better approach is to route data to the patrol (mo-
bile sink) while it ison the move Note that the patrol does
not know when to query. Periodic query might not be fea-
sible due to the energy cost as well as the time lag incurred

a network of sensors. These sinks are usually multiple hops in receiving information. The main reason for energy ineffi-

away from the sources of data and this gives rise to one of
the fundamental operations in the network - routing of data t

ciency of periodic querying is the fact that unusual evergs a
not likely to happen very often. In such situations, it isides

the sink. Routing schemes for wireless sensor networks needable for the mobile sink to passively listen for incomingadat

to consider four important factors - energy cost, robusthes
throughputand delay. Most current solutions try to strikag
ance between all the four factors but they are designed ynainl

from the sources. This is equivalent to source sensashing
data towards the sink. In this case, routing can exploitaice f
that patrols move in a certain pattern that can be charaeteri

for stationary sinks. We consider the case where a sink moves by some spatio-temporal relation. Over time, the network ca
within the sensor field. We assume that there is an inherent learn this pattern and then by adding a temporal dimension to
pattern to the sink’s movement. This pattern might change in the routing decision, data can be pushed towards the moving
time but it is assumed that every new pattern is sustained for patrol with a degree of confidence about its energy efficiency
a significant period of time. This pattern could be character and delivery guarantees.

ized by temporary local variability but the approach présén The approach proposed in this paper, which we call Hybrid
accounts for them. An application-oriented assumptiohas t Learning-Enforced Time Domain Routing (HLETDR), makes



use of the underlying pattern in the sink’s movement to dis-
covergood data delivery paths. We defimaolesto be the
nodes that lie in the vicinity of the path that the sink takés

a source, the first being the local grid square of the sink’s cu
rent location and the second being the dissemination nddes a
grid points. TTDD promises to be more energy efficient than

assumed that a mole can somehow detect the presence of theseveral data dissemination protocols such as DirectediDiff

sink near itself. Every mole characterizes the sink’s prese
in its vicinity as a probability distribution over the tounic-
tion of the sink. The objective of HLETDR is to route data

towards the sink in an energy efficient and robust way. Here,

sion [4], GRAB [6] etc. However, it does not make any as-

sumptions on the mobility pattern of the sink. For the spe-
cific scenario that we consider in this paper, we show that our
learning-based approach yields much better energy effigien

each node that either generates the data or receives it from a A Reinforcement-based approach to data gathering was
neighboring node, makes a decision depending on the currentproposed in Directed Diffusion [4], a data-centric disseani

local time as to which node to forward the data to. We say

that these decisions are made in time-domain. Ultimatety da

reaches a mole which subsequently delivers it to the sink.
Upon receiving data, a mokeinforcesthe route taken de-

tion scheme primarily meant for stationary sinks. It uses at
tribute based naming to match data to sensor nodes. It is spe-
cially designed to enable in-network data processing.dss
reinforcement scheme to locally select neighbors from twhic

pending on a goodness value associated with it. This value to receive high-rate data originating somewhere downstrea

is calculated by the mole using probabilistic local infotina

Initially, the sink floods the query to the entire network €/dt-

about when the mobile sink is expected to make an appearancetributes in the query identify destination sensors. Thesece

in its vicinity. The reinforcement propagates to the soumce

in the process, sets up gradients that enable a temporahdime
sion to the routing decision problem. Over time this disttéul
algorithm is expected to converge to an efficient routesd$et-
routes in terms of energy cost and delay.

sensors on obtaining data, flood the network with low-rate
data. This data will reach the sink from multiple neighbors.
The sink in turn reinforces the neighbor it wants to recea&ad
from. This reinforcement is recursively applied right doten
the source sensors. From then on, high-rate data dissesinat

The remainder of this paper is organized as follows. The along this reinforced path. This adds tremendous robustnes
related work is presented in section 2. We then present our to data dissemination because of allowance for negative rei
approach in section 3 which describes the scheme and psesent forcement and local repair. The reinforcement decisiontean

extensive simulations results followed by discussion. Ausd
conclude the paper in section 4.

2. Related Work

The problem of routing to mobile sink been addressed in
some recent papers (see [1], [2], [3]). The authors of [1} pro

based on observed latency or some form of discretionary-prio
ity. Note that Directed Diffusion uses reinforcement tcesél
a preferable path from a set whereas HLETDR uses reinforce-
ment to locate the sink as well as to arrive at an efficient.path
Our reinforcement-based scheme is closest in spirit to
[5] which proposes a reinforcement learning-based efficien
qguerying mechanism LEQS for sensor networks. In this
scheme, the object being queried for is assumed to have an

pose an asynchronous data dissemination protocol SEAD for ynderlying probabilistic spatial description that is leed over

mobile sinks in a sensor network. SEAD constructs and main-

tains a data dissemination tree from source nodes to nuailtipl
mobile sinks. A sink that wants to join the tree selects ontsof

time. It is shown that this in-network learning helps reduce
energy expenditure significantly over time. In the scenario
considered in our work, the sink has an underlyspatio-

neighboring sensor nodes and sends a join query to the sourcqemporaldescription.

of the tree. The scenario that we are considering is difteren
from this because here, the sink is not explicitly queryiog f

3. HLETDR: Hybrid Learning-Enforced Time

the data. Secondly, none of these schemes uses learnied-bas
techniques to try and learn the movement pattern of the sink.
The authors of [2] propose a three-tier architecture com-
posed of a top tier of WAN connected devices, a middle tier of Consider a random deployment of sensor nodes in an area
mobile transport agents (MULES) and a bottom tier made of of interest. The sensor nodes are capable of sensing one or
fixed wireless sensor nodes. The MULES perform a random more phenomena and processing this information. The objec-
walk on the sensor field, collecting data from the nodes and de tive of each node is to send this information to a mobile sink
livering it to the sink. The underlying assumption here igtth ~ over multiple hops. The sink might not be able to cover the
the MULES cover the entire region in a finite time duration, so entire region because of several limitations. We consider t
that data can be delivered to the sink in bounded time delay. specific case where there is an inherent pattern to the sink’s
TTDD (Two-Tier Data Dissemination) proposed in [3], movement through the sensor field with allowance for some
aims to provide scalable and efficient data delivery to neobil variance. We assume that the sink does not explicitly query
sinks. Upon detecting a stimulus, each source sensor proac-for the data collected by the sensor nodes. The problemsn thi
tively builds a data dissemination grid and sets up forwegdi ~ set up can be described as follows:
information at the sensors closest to grid points, calledain- Is it possible for source sensors to learn an efficient way to
ination nodes. A query from a sink traverses two tiers tolleac route data to the mobile sink in a distributed fashion ?

Domain Routing



We show that answer to the above question is yes. More With local time-domains, if a packet gets delayed at a

specifically, if there is a subset of nodes through whoseitici downstream node, then the upstream neighbor selects the
the mobile sink passes periodically (moles), then for edch o best possible forwarding neighbor for tharrent time-
these moles, we can construct a function that represents the domain. In this way time-domain routing can be consid-
likelihood that the sink is in its vicinity in a given time itval. ered as best effort in time.

This information can then be leveraged to find efficient reute
to the mobile sink using reinforcement leaning.
We now describe our approach in detail in the following

3. Helps locate the sink as a function of time by adding a
temporal dimension to the routing problem

sections. Let S be the set of neighbors of node If W,,(k,t;) de-
notes the weight associated with a neighbat time-domain
3.1. Methodology t;, the forwarding probability>, (k, t;) for that neighbor at;

is calculated as follows:

Every node in the field maintains weights which are used to
calculate the forwarding probabilities to each of its nbigts. P, (k,t;) = MW cs 1)
Every node can be a data source as well as a relay node. The 22 Wi, ti)
goal is to forward data such that the path leads to a mole in  Initially, each node assigns equal weights to all its neigh-
whose vicinity the mobile sink in located. This path shoutd b bors. Data from a source node performs a random walk based
efficient and also dynamically transmuting in order to actou  on the forwarding probabilities calculated as above. Wreta d
for sink movement and random delays in the network. finally reaches a mole, the mole reinforces the path takescbas

In other words, the problem is essentially that of locating on agoodness valughich is calculated using local informa-
the moving sink efficiently even under indeterministic gsla tion of the sink’s location available to the mole.
and high speed of the sink. This implies that routing deasio It is assumed that each mole maintains a mean and variance
based on a global estimate of the sink’s position at a given of the arrival time of the sink in its vicinity. This could bede
time are likely to fail. Hence, HLETDR makes all decisions by calculating simple running averages or by obtaining expo
locally based on local time. If a node has data that needs to nentially weighted running averages which allows us to give
be forwarded, then the probability of selecting a neighlsor i more importance to recent events. This becomes important in
determined by the likelihood of this neighbor being on a good the scenarios where the mobility pattern of the sink chatmes
path to the sink at that moment of time. Every node involved a new one. Because of severe space constraints, maintaining

in successive propagation of data recursively followsltigsl time-series data of sink arrivals at the moles in order ttecol
decision making process at the time instant in which it has to a distribution of arrival times is prohibitively expensivehis
forward data. is the rationale behind maintaining only the mean and vadan

Since we assume that the sink has an underlying pattern to  Given this setup, the goodness estimator at every mole as-
its motion, we define gour as the smallest time duration after  sumes the arrival times within a tour to have a Gaussian-distr
which the pattern repeats itself. Then the timeline assgenb  bution with a mean and variance as obtained above. When data
node can be divided into chunks (domains). Ifthe tour darati  arrives at a mole, it calculates the goodness value as fsllow
is T time units and there are time-domains, then each time- ~ Suppose: and o are the mean and standard deviation asso-
domain lasts for% time units and the time-line is said to be ciated with the arrival time of the sink at a mole. If the data
“m-granular”. Note that this granularity determines thatest arrives at the mole at some timgthen the goodness valde
complexity of the routing table at any node. For example, if is calculated as:

a node hasV neighbors, then the complexity of the routing

. oy t+B0 e
table isO(mN). Intuitively, there would a trade-off between G — / 1 = @)
the accuracy of sink’s location information and the tinreeli t—Bo V2mo?
granularity.

whereg is a tunable parameter.
The goodness valug calculated at a mole not only gives
the probability of the sink being in its vicinity but also g&

1. Eliminates the need for explicit time synchronization: the notion of how far away the sink possibly is. Lower the
Each node now needs to make a forwarding decision in Probability, farther away the sink is and vice versa. Thele
its local time-domain, which need not be same as others. Parametep} can be selected based on the following criteria. If
The only loose requirement in terms of time synchroniza- data arrives exactly at the mean time of arrival of the sinént
tion is for each node to have a consistent notion of a tour. the goodness value for the path taken should be very high and
yet, not 1 (to account for incidental non-arrival). To give a
2. Makes routing decisions robust to random delays (cu- goodness of about 0.9545 to such a pathan be taken to be
mulative transmission delays, MAC contention etc.) in 2. g determines the level of accuracy about the sink’s position
the network: As pointed out earlier, random delays in thatis desired at the mole. For example, if the storage dgpac
the network can make global routing decision erroneous. at a mole is not a constraint,can be set to a high value which

This division of timeline into domains at the nodes serves
three purposes:



would imply that data can be stored at the mole until the sink
arrives in its vicinity.

Note that if a mole does not have enough storage capac-
ity to hold the expected amount of traffic or the variance in
the mobility pattern is very high, mole-to-mole data propa-
gation is performed until a rendezvous point with a sink is
reached (upon which the sink receives the data). It miglt als
be needed if the sink is expected to take a very long time to
reach that mole and the data has a time constraint attached.

Once calculated, the reinforcement paraméteropagates
downstream to the source of the data along the same path taken
from source to mole. Along the way, every intermediate node
updates the weights for its upstream neighbor based onthe re
inforcement parameter.

The design of the weight update scheme is critical to the
success of HLETDR. Intuitively, optimistic update methods
are required because reinforcement is essentially aandi-
error based search of the solution space. We considered four
different update schemes and found that conservative epdat
schemes might not be able to locate the sink at all and if they
are able to locate it, the learning process is very long. Thus
in the update schemes that we propose, if the goodness value
is high, then the weight of the upstream neighbor is incr¢ase
aggressively. If it is low, then weights are decreased aggre
sively.

Specifically, the update process at each node can be de-
scribed as: 2

Perform Negative Reinforcement) < G < a

No Reinforcement a<G<b

Perform Positive Reinforcementd < G < 1
3)

The thresholds andb can be selected based on empirical
observations. In our simulations we choasandb after em-
pirically observing that at least one path was able to lottate
sink with high probability if multiple flows are initiated iev-
ery time-domain. The “No Reinforcement” area has the effect g
of hysteresis; it is required because the update schemes are
designed to be aggressive. Having this region avoids usnece
sary crossovers to the opposite update type i$ close to the
threshold.

Fig. 1 shows the basic mechanism of HLETDR update
process at work at nod® for time domaint;. Data packets
originating at Sourcé initially perform a random walk based
on the forwarding probabilities obatained from the weights
When these finally reach a mol& (Y, Z in fig. 1), goodness
values are calculated using the learnt distribution antissrk
along the reverse path as shown by the dashed curves. At ev-
ery intermediate node (such &sn fig. 1), the weights for the

Update=

neighbors 4, B, C' in fig. 1) are modified based on the update 4.

scheme. Now we describe the update schemes considered.
3.2. Update Schemes

1. Additive Increase Additive Decrease (AIAD)
This is a conservative scheme where a constant value

At Mole Y,
G>b

No Reinforcement
No Change in W ¢(C, t;)

Positive Reinforcement
\  Increase W x(B, t))
\

Negative Reinforcement
Decrease W (A, t;)

\
\
e Source

At Mole X,G<a

Figure 1. An illustration of the working of
HLETDR showing the update process

(equal to the initial weigh#1/) is added to the current
weight to get the updated weight under positive reinforce-
ment and vice versa. Specifically, updated weights are
given by:

Weoa + Wy Positive Reinforcement
Whew =< Wala No Reinforcement
Wola — Wy Negative Reinforcement

(4)

. Additive Increase Multiplicative Decrease (AIMD)

This scheme conservatively increases weights on positive
reinforcement and aggressively reduces on negative rein-
forcement. Updated weights are given by:

Woa + Wy Positive Reinforcement
Whew = VV[;old No Reinforcement
old

Negative Reinforcement

(5)

. Multiplicative Increase Multiplicative Decrease (MIMD)

In this scheme, positive reinforcement causes the weight
of the upstream neighbor to be doubled and negative rein-
forcement causes the weight to be halved. The key insight
that led to this scheme is that the bias introduced by any
reinforcement scheme should be such that the random-
ness in the network does not nullify the benefits of that
bias. Updated weights are given by:

2Weoa Positive Reinforcement
Whaew =< Woa  No Reinforcement (6)
Wola

Negative Reinforcement

Distance Biased Multiplicative Update (DBMU)

This is similar to MIMD except that the degree of rein-
forcement is not the same across all nodes. The nearer an
intermediate node is to the mole, the larger is the degree.
This is designed to be more aggressive than pure MIMD.
Apart from the insight that led to MIMD, the other key
insight that led to this scheme is that nodes closer to the



mole are better indicators of the “goodness” of the path sink for a given time-domain. In our simulations, we takethi
taken; nodes near the source are likely to be part of many to be the number of sink tours after which the mean length of
paths irrespective of those paths being good or bad. So the paths (in terms of hop-count) taken by data packets for a fixed
consequence of the local decision-making process at ev- time-domain stabilizes. We find the convergence for a time-
ery node in a path must be felt more strongly at the nodes domain is dependent on the update scheme used, the density
near the mole than at the nodes near the sourcksithe of the field and the number of data flows initiated at the source
distance (measured in terms of hop-count) of an interme- within that time-domain.
diate node from the source, then the updated weight for  The second metric is the mean cost of the set of paths after
the upstream neighbor is given by: convergence. This is an indicator of the efficiency of thettou
ing scheme and is found to be dependent on the update scheme
and the node density.

V/(d+3)Woia  Positive Reinforcement In order to compare the performance of the update schemes

Wiow =< Wold No Reinforcement in terms of these two parameters, the mean tour duration was
\/% Negative Reinforcement taken as 100 sec and time-domain size was fixed at 20 sec. A

7) randomly chosen source node near the bottom-right corner of

the field detects an event at the start of its third time-domiai
therefore initiates data flows (taken to be 10 packets pej tou
in that time-domain that carry out a random walk indepen-
dently based on the forwarding probabilities calculatedais

the weights. Looping of these flows is avoided by having dis-
tinct flow ids and marking out nodes that have already been
visited once. When a flow reaches a mole, the update scheme
is used to modify the weights of the nodes involved in the path
rFthis list is progressively built in the forward path).

The term+/(d + 3) makes sure that even in the worst
case, MIMD is performed. At nodes one hop away from
source, this becomesand is even more for nodes farther
away from the source.

Note that updates are performed only for the neighbor
through which the reinforcement arrived; other neighboes a
not affected by the nature of reinforcement performed. &his
because a good reinforcement on one neighbor does not mea
that other neighbors should be negatively reinforced and vi

versa. 3.3.1 Experimentson convergencetimes:

3.3. Simulation Experiments, Results and Discussion Fig. 2 shows the mean cost of path with tours for AIAD and
AIMD update schemes in the setup described above. It can be
Discrete event based simulations were performed to com- seen that while AIMD performs better than AIAD in terms of
pare these update schemes. A packet level simulator was writ cost, both the schemes do not show convergence even after 50
ten in C++ that abstracts away the MAC layer to a pair of trans- tours. While they do manage to locate the sink using an ap-
mit and receive functions that have a random delay attached proximate set of paths, this set is not stable; hence oails
to account for MAC contentions. The link layer also intro- in the mean cost.
duces a transmission delay on every packet depending on its
size and bandwidth of the link. The network layer uses these
two functions to transmit and receive packets. The protsabil
tic forwarding process and the weight update process are the
chief functions of this layer. The packet size is set to 1 K& an
bandwidth is taken as 1 Kbps. The simulation maintains local
time-line at every node for use in the routing decision mgkin
process. All nodes were randomly placed in a 200m X 100m
square region. An approximate trajectory was assignecdeto th
sink along a diagonal of the square. All nodes whose com-
munication and coverage range overlapped with the trajgecto

Mean Cost of Path Taken (hops)

0 5 10 15 20 25 30 35 40 a5 50

were desighated as moles. The radio model chosen was the Number of Tours
connectivity within Rnodel whereR was taken as 10m. Since _ _ )
the sink mobility model is outside the scope of this work, it Figure 2. Mean cost of the path obtained using

is assumed that the moles have a distribution of arrivalgime ~ AlAD and AIMD updates over tours. Node den-
at hand which is characterized by a mean and variance and is sity = 200.
assumed to be Gaussian.

There are two main metrics of interest for comparing the
update schemes. The first is th@envergence timevhich is an Fig. 3 and Fig.4 indicate the performance of MIMD and
indicator of the amount of time taken by the learning process DBMU for the same setup, albeit for 3 different node densitie
to arrive at an approximate stable set of paths to the mobile They bring out the following facts:



~= 100 Nodes 3.3.2 Effect of Number of Packets sent per tour:
—— 300 Nodes

Fig. 5 brings out the impact of the number of simultaneous

] packets sent within the time-domain on the convergence time

for MIMD and DBMU. It is observed that for a fixed density,

if the number of packets sent within a time-domain increases

then the convergence time decreases. This happens for both

the schemes. This happens because when multiple packets are

1 sent, a larger part of the network is searched within tha¢tim
domain. This implies that HLETDR performs very well for

o : N S = » events that generate multiple packets for a sustained amoun

of time.

Mean Cost of Path Taken (hops)
N
3

Figure 3. Mean cost of the path obtained using
MIMD updates over tours.
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Figure 5. Comparison of the number of tours
s : N = % required to converge to a path for MIMD and

DBMU for varying number of packets. Number
of Nodes = 100.

Figure 4. Mean cost of the path obtained using
DBMU updates over tours.

. . ) 3.3.3 Multiple Source Scenarios:
1. The fact that convergence is taking place, even at differ-

ent densities, as indicated by the horizontal section of the Table 1 captures the impact of multiple sources on convergen
plots. After this point, all subsequent packets generated time when they all generate data at the same time. The value
in that time-domain (irrespective of the tour number) are chosen is the highest time taken among all sources. Two sce-
able to find their way to the moving sink efficiently using  narios are considered. First, where the sources are auster
the same or similar paths. spatially and second, where they are dispersed.

2. Different densities show not only different convergence

times (number of tours for convergence), but also differ- Table 1. Comparison of convergence times (in
ent path lengths after convergence. This trend prevails  number of tours) for multiple sources (both clus-
over all update schemes used. tered and dispersed)

3. The convergence time for DBMU is the quickest and the Sources| 11 21 3] 41 5
convergence time also scales better with increasing den- Clustered| 121101 9 | 8 | 8
Sity. Dispersed| 12 | 16 | 14 [ 11| 12

4. In the first few tours the mean path length experiences
high oscillations, though there is a downward trend. This A Table 1 shows, when multiple sources are clustered and
is because the search process eliminates bad routes fromgénerate data at the same, the convergence time decreases.
the solution space in spite of the effect of randomness in This is because nearby multiple sources increase the ityens
the network. As more packets are sent, the biases get Of parallel search of the network; the routing table statengt

stronger and this results in the downward trend. point of time can be favorably used by peer and subsequent
packets. If the sources are well dispersed, then the reiefor

Based on these observations, MIMD and DBMU were cho- ments act independent of each other. However, with inangasi
sen as the update schemes in the remaining experiments. number of sources, regardless of their position in the fiblel,



resultant reinforcements begin to complement each otter an
hence a decreasing trend sets in.

Fig. 6 helps visualize flows from three close-by sensors. All

three sensors share a path to the sink and during path forma-

tion, reinforcements resulting from all the three sourca®s-c
plement each other. Individual flows join the path at some
point and this enables the possibility of in-network preieg
and data aggregation.

Lo

Figure 6. Path formation using DBMU under mul-
tiple nearby sources. Number of Nodes = 300.

3.3.4 NodeFailure Scenarios:

HLETDR is inherently extremely robust to node failures. .Fig

7 shows that HLETDR is able to recover and find an alternate
path very quickly under node failures. In the experiment tw
nodes were failed after Tour 19 along the original converged
path and the recovery process was observed for differerd nod
densities. The spike in the mean path lengths (shown by the
vertical dashed line) indicates that an alternate high-gath

is being used; yet the continuing learning process enahts f
convergence to a new set of stable paths within 2 tours. Table
2 compares the recovery performance of MIMD and DBMU
under varying number of node failures.

—e— 100 Nodes
—e— 200 Nodes
—<4 300 Nodes

Mean Cost of Path (hops)

20 22

Number of Tours

Figure 7. Recovery process under node failure
for DBMU for different node densities. Packets
sent per tour = 10.

It is seen that DBMU's recovery time is much faster than
MIMD.

3.3.5 Comparison with Shortest Path:

Fig. 8 compares the path for MIMD and DBMU after conver-
gence with the theoretically obtained shortest path usiiig D
stra’s algorithm for different node densities. It is seeat filor

low densities, the obtained paths are close to optimal. How-
ever, for higher densities, the obtained path length arkerig
This can be explained by noting that if the communication
range is fixed, the average number of neighbors per node in-
creases linearly with the node density. Thus, the solutiacs

for a random walk based method increases as well and can
converge to a sub-optimal solution. However, it is more appr
priate to scale down the communication radius appropyiatel
with increasing node densities such that the average nuohber
neighbors remains same. This is more so because in a realis-
tic scenario, the neighborhood table space for a node wauld b
bounded. Thus, we also plot the shortest path lengths in Fig.
8 for scaled down radius and find that they are close to MIMD
and DBMU path-lengths.

Table 2. Comparison Recovery Time (in number
of tours) for MIMD and DBMU under varying de-
gree of node failures. Node density:200

Node Failures| 1 | 2| 3|4 |5
MIMD 2(2|3|5]|6
DMBU 1122|133

16

14 +

12 M

N
)

D SP (fixed R)
W SP (scaled R)
OMIMD
ODBMU

Mean Cost of Path (hops)

o N A o ®

75 100 200

Number of Nodes

300

Figure 8. Comparison of the cost of the path ob-
tained using MIMD and DBMU with the shortest
paths with fixed and scaled down radius

3.3.6 Comparison with TTDD:

Fig. 9 shows the relative performance of HLETDR with re-
spectto TTDD [3], a sink oriented data dissemination (SODD)
scheme also described in [3] and flooding. In SODD, the sink



floods the whole network with its location information to eon As part of future work, we would like to come up with
struct forwarding gradients towards it. Sources then ekpli mechanisms that converge to paths that are closer to the the-
route data along these gradients towards the sink. Thet® cos oretically optimal paths. We plan to study different stitis
were obtained by using the analytical expressions for commu cal learning schemes that the moles can use to come up with
nication overhead derived in [3]. It is assumed that all pé&k probability distributions. The impact of different sink b

are unit length and the number of nodes is 200. Transmission ity models is another interesting extension. Finally, weuldo

of a packet consumes equal energy over all links in the net- like to obtain analytical expressions for our protocol'sfpe
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