
Learning-Enforced Time Domain Routing to Mobile Sinks
in Wireless Sensor Fields

Pritam Baruah§ Rahul Urgaonkar†

Bhaskar Krishnamachari†§

Departments of Computer Science§ and Electrical Engineering-Systems†

University of Southern California
Los Angeles, CA 90089

baruah, urgaonka, bkrishna@usc.edu

Abstract

We propose a learning-based approach to efficiently and re-
liably route data to a mobile sink in a wireless sensor field.
Specifically, we consider a mobile sink that does not know
when to query or does not need to query. Furthermore, the
sink moves in a certain pattern within the sensor field. Such
a sink passively listens for incoming data that distant source
sensors unilaterally push towards it. Unlike traditional rout-
ing mechanisms, our technique takes the time-domain explic-
itly into account, with each node involved making the decision
“at this time what is the best way to forward the packet to the
sink?”. In the presented scheme,moles (nodes in the vicinity of
the sink) learn its movement pattern over time and statistically
characterize it as a probability distribution function. Having
obtained this information at the moles, our scheme uses rein-
forcement learning to locate the sink efficiently at any point of
time.

1. Introduction

The classical view of a wireless sensor network involves
one or more stationary base-stations/sinks gathering datafrom
a network of sensors. These sinks are usually multiple hops
away from the sources of data and this gives rise to one of
the fundamental operations in the network - routing of data to
the sink. Routing schemes for wireless sensor networks need
to consider four important factors - energy cost, robustness,
throughput and delay. Most current solutions try to strike abal-
ance between all the four factors but they are designed mainly
for stationary sinks. We consider the case where a sink moves
within the sensor field. We assume that there is an inherent
pattern to the sink’s movement. This pattern might change in
time but it is assumed that every new pattern is sustained for
a significant period of time. This pattern could be character-
ized by temporary local variability but the approach presented
accounts for them. An application-oriented assumption is that

the sink does not know when to query and so it does not is-
sue queries. Instead, it listens passively for data pushed by
source sensors towards it. Such situations are representative
of a class of real-life situations that are characterized bynon-
requirement of disseminating queries and uninformed mobile
sinks. The example below illustrates such situations.

Consider a forest patrol that makes periodic patrols along
certain paths in the forest. These patrols aim at preventing
poaching and monitoring endangered wildlife. However their
efficacy is limited because they cannot cover the entire area
assigned to them. This problem can be solved to an extent by
deploying a wireless sensor network that senses unusual events
in the area (incoming poachers or endangered animals). Infor-
mation about these events needs to get routed to the moving
patrol. The naive way of doing it is to route to a stationary
base-station at the periphery of the network and then directly
transmit to the sink. However this is not always desirable be-
cause of energy and delay constraints. Another method is to
flood the network but this can result in unacceptable wastage
of energy.

Instead, a better approach is to route data to the patrol (mo-
bile sink) while it ison the move. Note that the patrol does
not know when to query. Periodic query might not be fea-
sible due to the energy cost as well as the time lag incurred
in receiving information. The main reason for energy ineffi-
ciency of periodic querying is the fact that unusual events are
not likely to happen very often. In such situations, it is desir-
able for the mobile sink to passively listen for incoming data
from the sources. This is equivalent to source sensorspushing
data towards the sink. In this case, routing can exploit the fact
that patrols move in a certain pattern that can be characterized
by some spatio-temporal relation. Over time, the network can
learn this pattern and then by adding a temporal dimension to
the routing decision, data can be pushed towards the moving
patrol with a degree of confidence about its energy efficiency
and delivery guarantees.

The approach proposed in this paper, which we call Hybrid
Learning-Enforced Time Domain Routing (HLETDR), makes



use of the underlying pattern in the sink’s movement to dis-
cover good data delivery paths. We definemolesto be the
nodes that lie in the vicinity of the path that the sink takes.It is
assumed that a mole can somehow detect the presence of the
sink near itself. Every mole characterizes the sink’s presence
in its vicinity as a probability distribution over the tour dura-
tion of the sink. The objective of HLETDR is to route data
towards the sink in an energy efficient and robust way. Here,
each node that either generates the data or receives it from a
neighboring node, makes a decision depending on the current
local time as to which node to forward the data to. We say
that these decisions are made in time-domain. Ultimately data
reaches a mole which subsequently delivers it to the sink.

Upon receiving data, a molereinforcesthe route taken de-
pending on a goodness value associated with it. This value
is calculated by the mole using probabilistic local information
about when the mobile sink is expected to make an appearance
in its vicinity. The reinforcement propagates to the sourceand
in the process, sets up gradients that enable a temporal dimen-
sion to the routing decision problem. Over time this distributed
algorithm is expected to converge to an efficient route/set-of-
routes in terms of energy cost and delay.

The remainder of this paper is organized as follows. The
related work is presented in section 2. We then present our
approach in section 3 which describes the scheme and presents
extensive simulations results followed by discussion. Andwe
conclude the paper in section 4.

2. Related Work

The problem of routing to mobile sink been addressed in
some recent papers (see [1], [2], [3]). The authors of [1] pro-
pose an asynchronous data dissemination protocol SEAD for
mobile sinks in a sensor network. SEAD constructs and main-
tains a data dissemination tree from source nodes to multiple
mobile sinks. A sink that wants to join the tree selects one ofits
neighboring sensor nodes and sends a join query to the source
of the tree. The scenario that we are considering is different
from this because here, the sink is not explicitly querying for
the data. Secondly, none of these schemes uses learning-based
techniques to try and learn the movement pattern of the sink.

The authors of [2] propose a three-tier architecture com-
posed of a top tier of WAN connected devices, a middle tier of
mobile transport agents (MULES) and a bottom tier made of
fixed wireless sensor nodes. The MULES perform a random
walk on the sensor field, collecting data from the nodes and de-
livering it to the sink. The underlying assumption here is that
the MULES cover the entire region in a finite time duration, so
that data can be delivered to the sink in bounded time delay.

TTDD (Two-Tier Data Dissemination) proposed in [3],
aims to provide scalable and efficient data delivery to mobile
sinks. Upon detecting a stimulus, each source sensor proac-
tively builds a data dissemination grid and sets up forwarding
information at the sensors closest to grid points, called dissem-
ination nodes. A query from a sink traverses two tiers to reach

a source, the first being the local grid square of the sink’s cur-
rent location and the second being the dissemination nodes at
grid points. TTDD promises to be more energy efficient than
several data dissemination protocols such as Directed Diffu-
sion [4], GRAB [6] etc. However, it does not make any as-
sumptions on the mobility pattern of the sink. For the spe-
cific scenario that we consider in this paper, we show that our
learning-based approach yields much better energy efficiency.

A Reinforcement-based approach to data gathering was
proposed in Directed Diffusion [4], a data-centric dissemina-
tion scheme primarily meant for stationary sinks. It uses at-
tribute based naming to match data to sensor nodes. It is spe-
cially designed to enable in-network data processing. It uses a
reinforcement scheme to locally select neighbors from which
to receive high-rate data originating somewhere downstream.
Initially, the sink floods the query to the entire network. The at-
tributes in the query identify destination sensors. These source
sensors on obtaining data, flood the network with low-rate
data. This data will reach the sink from multiple neighbors.
The sink in turn reinforces the neighbor it wants to receive data
from. This reinforcement is recursively applied right downto
the source sensors. From then on, high-rate data disseminates
along this reinforced path. This adds tremendous robustness
to data dissemination because of allowance for negative rein-
forcement and local repair. The reinforcement decision canbe
based on observed latency or some form of discretionary prior-
ity. Note that Directed Diffusion uses reinforcement to select
a preferable path from a set whereas HLETDR uses reinforce-
ment to locate the sink as well as to arrive at an efficient path.

Our reinforcement-based scheme is closest in spirit to
[5] which proposes a reinforcement learning-based efficient
querying mechanism LEQS for sensor networks. In this
scheme, the object being queried for is assumed to have an
underlying probabilistic spatial description that is learned over
time. It is shown that this in-network learning helps reduce
energy expenditure significantly over time. In the scenario
considered in our work, the sink has an underlyingspatio-
temporaldescription.

3. HLETDR: Hybrid Learning-Enforced Time
Domain Routing

Consider a random deployment of sensor nodes in an area
of interest. The sensor nodes are capable of sensing one or
more phenomena and processing this information. The objec-
tive of each node is to send this information to a mobile sink
over multiple hops. The sink might not be able to cover the
entire region because of several limitations. We consider the
specific case where there is an inherent pattern to the sink’s
movement through the sensor field with allowance for some
variance. We assume that the sink does not explicitly query
for the data collected by the sensor nodes. The problem in this
set up can be described as follows:

Is it possible for source sensors to learn an efficient way to
route data to the mobile sink in a distributed fashion ?



We show that answer to the above question is yes. More
specifically, if there is a subset of nodes through whose vicinity
the mobile sink passes periodically (moles), then for each of
these moles, we can construct a function that represents the
likelihood that the sink is in its vicinity in a given time interval.
This information can then be leveraged to find efficient routes
to the mobile sink using reinforcement leaning.

We now describe our approach in detail in the following
sections.

3.1. Methodology

Every node in the field maintains weights which are used to
calculate the forwarding probabilities to each of its neighbors.
Every node can be a data source as well as a relay node. The
goal is to forward data such that the path leads to a mole in
whose vicinity the mobile sink in located. This path should be
efficient and also dynamically transmuting in order to account
for sink movement and random delays in the network.

In other words, the problem is essentially that of locating
the moving sink efficiently even under indeterministic delays
and high speed of the sink. This implies that routing decisions
based on a global estimate of the sink’s position at a given
time are likely to fail. Hence, HLETDR makes all decisions
locally based on local time. If a node has data that needs to
be forwarded, then the probability of selecting a neighbor is
determined by the likelihood of this neighbor being on a good
path to the sink at that moment of time. Every node involved
in successive propagation of data recursively follows thislocal
decision making process at the time instant in which it has to
forward data.

Since we assume that the sink has an underlying pattern to
its motion, we define atour as the smallest time duration after
which the pattern repeats itself. Then the timeline as seen by a
node can be divided into chunks (domains). If the tour duration
is T time units and there arem time-domains, then each time-
domain lasts forT

m
time units and the time-line is said to be

“m-granular”. Note that this granularity determines the state
complexity of the routing table at any node. For example, if
a node hasN neighbors, then the complexity of the routing
table isO(mN). Intuitively, there would a trade-off between
the accuracy of sink’s location information and the time-line
granularity.

This division of timeline into domains at the nodes serves
three purposes:

1. Eliminates the need for explicit time synchronization:
Each node now needs to make a forwarding decision in
its local time-domain, which need not be same as others.
The only loose requirement in terms of time synchroniza-
tion is for each node to have a consistent notion of a tour.

2. Makes routing decisions robust to random delays (cu-
mulative transmission delays, MAC contention etc.) in
the network: As pointed out earlier, random delays in
the network can make global routing decision erroneous.

With local time-domains, if a packet gets delayed at a
downstream node, then the upstream neighbor selects the
best possible forwarding neighbor for thecurrent time-
domain. In this way time-domain routing can be consid-
ered as best effort in time.

3. Helps locate the sink as a function of time by adding a
temporal dimension to the routing problem

Let S be the set of neighbors of noden. If Wn(k, ti) de-
notes the weight associated with a neighbork at time-domain
ti, the forwarding probabilityPn(k, ti) for that neighbor atti
is calculated as follows:

Pn(k, ti) =
Wn(k, ti)

∑

i Wn(i, ti)
∀i ∈ S (1)

Initially, each node assigns equal weights to all its neigh-
bors. Data from a source node performs a random walk based
on the forwarding probabilities calculated as above. When data
finally reaches a mole, the mole reinforces the path taken based
on agoodness valuewhich is calculated using local informa-
tion of the sink’s location available to the mole.

It is assumed that each mole maintains a mean and variance
of the arrival time of the sink in its vicinity. This could be done
by calculating simple running averages or by obtaining expo-
nentially weighted running averages which allows us to give
more importance to recent events. This becomes important in
the scenarios where the mobility pattern of the sink changesto
a new one. Because of severe space constraints, maintaining
time-series data of sink arrivals at the moles in order to collect
a distribution of arrival times is prohibitively expensive. This
is the rationale behind maintaining only the mean and variance.

Given this setup, the goodness estimator at every mole as-
sumes the arrival times within a tour to have a Gaussian distri-
bution with a mean and variance as obtained above. When data
arrives at a mole, it calculates the goodness value as follows.
Supposeµ andσ are the mean and standard deviation asso-
ciated with the arrival time of the sink at a mole. If the data
arrives at the mole at some timet, then the goodness valueG
is calculated as:

G =

∫ t+βσ

t−βσ

1√
2πσ2

e
−(τ−µ)2

2σ2 dτ (2)

whereβ is a tunable parameter.
The goodness valueG calculated at a mole not only gives

the probability of the sink being in its vicinity but also gives
the notion of how far away the sink possibly is. Lower the
probability, farther away the sink is and vice versa. The tunable
parameterβ can be selected based on the following criteria. If
data arrives exactly at the mean time of arrival of the sink, then
the goodness value for the path taken should be very high and
yet, not 1 (to account for incidental non-arrival). To give a
goodness of about 0.9545 to such a path,β can be taken to be
2. β determines the level of accuracy about the sink’s position
that is desired at the mole. For example, if the storage capacity
at a mole is not a constraint,β can be set to a high value which



would imply that data can be stored at the mole until the sink
arrives in its vicinity.

Note that if a mole does not have enough storage capac-
ity to hold the expected amount of traffic or the variance in
the mobility pattern is very high, mole-to-mole data propa-
gation is performed until a rendezvous point with a sink is
reached (upon which the sink receives the data). It might also
be needed if the sink is expected to take a very long time to
reach that mole and the data has a time constraint attached.

Once calculated, the reinforcement parameterG propagates
downstream to the source of the data along the same path taken
from source to mole. Along the way, every intermediate node
updates the weights for its upstream neighbor based on the re-
inforcement parameter.

The design of the weight update scheme is critical to the
success of HLETDR. Intuitively, optimistic update methods
are required because reinforcement is essentially a trial-and-
error based search of the solution space. We considered four
different update schemes and found that conservative update
schemes might not be able to locate the sink at all and if they
are able to locate it, the learning process is very long. Thus,
in the update schemes that we propose, if the goodness value
is high, then the weight of the upstream neighbor is increased
aggressively. If it is low, then weights are decreased aggres-
sively.

Specifically, the update process at each node can be de-
scribed as:

Update=







Perform Negative Reinforcement0 < G < a

No Reinforcement a ≤ G ≤ b

Perform Positive Reinforcement b < G < 1
(3)

The thresholdsa andb can be selected based on empirical
observations. In our simulations we choosea andb after em-
pirically observing that at least one path was able to locatethe
sink with high probability if multiple flows are initiated inev-
ery time-domain. The “No Reinforcement” area has the effect
of hysteresis; it is required because the update schemes are
designed to be aggressive. Having this region avoids unneces-
sary crossovers to the opposite update type ifG is close to the
threshold.

Fig. 1 shows the basic mechanism of HLETDR update
process at work at nodeR for time domainti. Data packets
originating at SourceS initially perform a random walk based
on the forwarding probabilities obatained from the weights.
When these finally reach a mole (X, Y, Z in fig. 1), goodness
values are calculated using the learnt distribution and sent back
along the reverse path as shown by the dashed curves. At ev-
ery intermediate node (such asR in fig. 1), the weights for the
neighbors (A, B, C in fig. 1) are modified based on the update
scheme. Now we describe the update schemes considered.

3.2. Update Schemes

1. Additive Increase Additive Decrease (AIAD):
This is a conservative scheme where a constant value

C

B

Y

Z

R

S

AX

Source

Relay

Sink At Mole Z, a < G < b

At Mole Y,
G > b

At Mole X, G < a

No Reinforcement
No Change in W R(C, t i)

Positive Reinforcement
Increase W R(B, t i)

Negative Reinforcement
Decrease W R(A, t i)

Flow 1

Flow 2

Flow 3

Figure 1. An illustration of the working of
HLETDR showing the update process

(equal to the initial weightW0) is added to the current
weight to get the updated weight under positive reinforce-
ment and vice versa. Specifically, updated weights are
given by:

Wnew =







Wold + W0 Positive Reinforcement
Wold No Reinforcement
Wold − W0 Negative Reinforcement

(4)

2. Additive Increase Multiplicative Decrease (AIMD):
This scheme conservatively increases weights on positive
reinforcement and aggressively reduces on negative rein-
forcement. Updated weights are given by:

Wnew =







Wold + W0 Positive Reinforcement
Wold No Reinforcement
Wold

2 Negative Reinforcement
(5)

3. Multiplicative Increase Multiplicative Decrease (MIMD):
In this scheme, positive reinforcement causes the weight
of the upstream neighbor to be doubled and negative rein-
forcement causes the weight to be halved. The key insight
that led to this scheme is that the bias introduced by any
reinforcement scheme should be such that the random-
ness in the network does not nullify the benefits of that
bias. Updated weights are given by:

Wnew =







2Wold Positive Reinforcement
Wold No Reinforcement
Wold

2 Negative Reinforcement
(6)

4. Distance Biased Multiplicative Update (DBMU):
This is similar to MIMD except that the degree of rein-
forcement is not the same across all nodes. The nearer an
intermediate node is to the mole, the larger is the degree.
This is designed to be more aggressive than pure MIMD.
Apart from the insight that led to MIMD, the other key
insight that led to this scheme is that nodes closer to the



mole are better indicators of the “goodness” of the path
taken; nodes near the source are likely to be part of many
paths irrespective of those paths being good or bad. So the
consequence of the local decision-making process at ev-
ery node in a path must be felt more strongly at the nodes
near the mole than at the nodes near the source. Ifd is the
distance (measured in terms of hop-count) of an interme-
diate node from the source, then the updated weight for
the upstream neighbor is given by:

Wnew =











√

(d + 3)Wold Positive Reinforcement
Wold No Reinforcement

Wold√
(d+3)

Negative Reinforcement

(7)

The term
√

(d + 3) makes sure that even in the worst
case, MIMD is performed. At nodes one hop away from
source, this becomes2 and is even more for nodes farther
away from the source.

Note that updates are performed only for the neighbor
through which the reinforcement arrived; other neighbors are
not affected by the nature of reinforcement performed. Thisis
because a good reinforcement on one neighbor does not mean
that other neighbors should be negatively reinforced and vice
versa.

3.3. Simulation Experiments, Results and Discussion

Discrete event based simulations were performed to com-
pare these update schemes. A packet level simulator was writ-
ten in C++ that abstracts away the MAC layer to a pair of trans-
mit and receive functions that have a random delay attached
to account for MAC contentions. The link layer also intro-
duces a transmission delay on every packet depending on its
size and bandwidth of the link. The network layer uses these
two functions to transmit and receive packets. The probabilis-
tic forwarding process and the weight update process are the
chief functions of this layer. The packet size is set to 1 Kb and
bandwidth is taken as 1 Kbps. The simulation maintains local
time-line at every node for use in the routing decision making
process. All nodes were randomly placed in a 100m X 100m
square region. An approximate trajectory was assigned to the
sink along a diagonal of the square. All nodes whose com-
munication and coverage range overlapped with the trajectory
were designated as moles. The radio model chosen was the
connectivity within Rmodel whereR was taken as 10m. Since
the sink mobility model is outside the scope of this work, it
is assumed that the moles have a distribution of arrival times
at hand which is characterized by a mean and variance and is
assumed to be Gaussian.

There are two main metrics of interest for comparing the
update schemes. The first is theconvergence timewhich is an
indicator of the amount of time taken by the learning process
to arrive at an approximate stable set of paths to the mobile

sink for a given time-domain. In our simulations, we take this
to be the number of sink tours after which the mean length of
paths (in terms of hop-count) taken by data packets for a fixed
time-domain stabilizes. We find the convergence for a time-
domain is dependent on the update scheme used, the density
of the field and the number of data flows initiated at the source
within that time-domain.

The second metric is the mean cost of the set of paths after
convergence. This is an indicator of the efficiency of the rout-
ing scheme and is found to be dependent on the update scheme
and the node density.

In order to compare the performance of the update schemes
in terms of these two parameters, the mean tour duration was
taken as 100 sec and time-domain size was fixed at 20 sec. A
randomly chosen source node near the bottom-right corner of
the field detects an event at the start of its third time-domain. It
therefore initiates data flows (taken to be 10 packets per tour)
in that time-domain that carry out a random walk indepen-
dently based on the forwarding probabilities calculated using
the weights. Looping of these flows is avoided by having dis-
tinct flow ids and marking out nodes that have already been
visited once. When a flow reaches a mole, the update scheme
is used to modify the weights of the nodes involved in the path
(this list is progressively built in the forward path).

3.3.1 Experiments on convergence times:

Fig. 2 shows the mean cost of path with tours for AIAD and
AIMD update schemes in the setup described above. It can be
seen that while AIMD performs better than AIAD in terms of
cost, both the schemes do not show convergence even after 50
tours. While they do manage to locate the sink using an ap-
proximate set of paths, this set is not stable; hence oscillations
in the mean cost.

0 5 10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

Number of Tours

M
ea

n 
C

os
t o

f P
at

h 
Ta

ke
n 

(h
op

s)

AIAD
AIMD

Figure 2. Mean cost of the path obtained using
AIAD and AIMD updates over tours. Node den-
sity = 200.

Fig. 3 and Fig.4 indicate the performance of MIMD and
DBMU for the same setup, albeit for 3 different node densities.
They bring out the following facts:



0 5 10 15 20 25 30
5

10

15

20

25

30

35

Number of Tours

M
ea

n 
C

os
t o

f P
at

h 
Ta

ke
n 

(h
op

s)

100 Nodes
200 Nodes
300 Nodes

Figure 3. Mean cost of the path obtained using
MIMD updates over tours.

0 5 10 15 20 25 30
5

10

15

20

25

30

Number of Tours

M
ea

n 
C

os
t o

f P
at

h 
Ta

ke
n 

(h
op

s)

100 Nodes
200 Nodes
300 Nodes

Figure 4. Mean cost of the path obtained using
DBMU updates over tours.

1. The fact that convergence is taking place, even at differ-
ent densities, as indicated by the horizontal section of the
plots. After this point, all subsequent packets generated
in that time-domain (irrespective of the tour number) are
able to find their way to the moving sink efficiently using
the same or similar paths.

2. Different densities show not only different convergence
times (number of tours for convergence), but also differ-
ent path lengths after convergence. This trend prevails
over all update schemes used.

3. The convergence time for DBMU is the quickest and the
convergence time also scales better with increasing den-
sity.

4. In the first few tours the mean path length experiences
high oscillations, though there is a downward trend. This
is because the search process eliminates bad routes from
the solution space in spite of the effect of randomness in
the network. As more packets are sent, the biases get
stronger and this results in the downward trend.

Based on these observations, MIMD and DBMU were cho-
sen as the update schemes in the remaining experiments.

3.3.2 Effect of Number of Packets sent per tour:

Fig. 5 brings out the impact of the number of simultaneous
packets sent within the time-domain on the convergence time
for MIMD and DBMU. It is observed that for a fixed density,
if the number of packets sent within a time-domain increases
then the convergence time decreases. This happens for both
the schemes. This happens because when multiple packets are
sent, a larger part of the network is searched within that time-
domain. This implies that HLETDR performs very well for
events that generate multiple packets for a sustained amount
of time.

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10

Number of Packets sent per Tour

N
u
m

b
e

r 
o
f 
T

o
u
rs

 t
o
 c

o
n
ve

rg
e

MIMD
DBMU

Figure 5. Comparison of the number of tours
required to converge to a path for MIMD and
DBMU for varying number of packets. Number
of Nodes = 100.

3.3.3 Multiple Source Scenarios:

Table 1 captures the impact of multiple sources on convergence
time when they all generate data at the same time. The value
chosen is the highest time taken among all sources. Two sce-
narios are considered. First, where the sources are clustered
spatially and second, where they are dispersed.

Table 1. Comparison of convergence times (in
number of tours) for multiple sources (both clus-
tered and dispersed)

Sources 1 2 3 4 5
Clustered 12 10 9 8 8
Dispersed 12 16 14 11 12

As Table 1 shows, when multiple sources are clustered and
generate data at the same, the convergence time decreases.
This is because nearby multiple sources increase the intensity
of parallel search of the network; the routing table state atany
point of time can be favorably used by peer and subsequent
packets. If the sources are well dispersed, then the reinforce-
ments act independent of each other. However, with increasing
number of sources, regardless of their position in the field,the



resultant reinforcements begin to complement each other and
hence a decreasing trend sets in.

Fig. 6 helps visualize flows from three close-by sensors. All
three sensors share a path to the sink and during path forma-
tion, reinforcements resulting from all the three sources com-
plement each other. Individual flows join the path at some
point and this enables the possibility of in-network processing
and data aggregation.

Figure 6. Path formation using DBMU under mul-
tiple nearby sources. Number of Nodes = 300.

3.3.4 Node Failure Scenarios:

HLETDR is inherently extremely robust to node failures. Fig.
7 shows that HLETDR is able to recover and find an alternate
path very quickly under node failures. In the experiment, two
nodes were failed after Tour 19 along the original converged
path and the recovery process was observed for different node
densities. The spike in the mean path lengths (shown by the
vertical dashed line) indicates that an alternate high-cost path
is being used; yet the continuing learning process enables fast
convergence to a new set of stable paths within 2 tours. Table
2 compares the recovery performance of MIMD and DBMU
under varying number of node failures.

14 16 18 20 22 24 26
4

6

8

10

12

14

16

Number of Tours

M
ea

n 
C

os
t o

f P
at

h 
(h

op
s)

100 Nodes
200 Nodes
300 Nodes

Figure 7. Recovery process under node failure
for DBMU for different node densities. Packets
sent per tour = 10.

It is seen that DBMU’s recovery time is much faster than
MIMD.

3.3.5 Comparison with Shortest Path:

Fig. 8 compares the path for MIMD and DBMU after conver-
gence with the theoretically obtained shortest path using Dijk-
stra’s algorithm for different node densities. It is seen that for
low densities, the obtained paths are close to optimal. How-
ever, for higher densities, the obtained path length are higher.
This can be explained by noting that if the communication
range is fixed, the average number of neighbors per node in-
creases linearly with the node density. Thus, the solution space
for a random walk based method increases as well and can
converge to a sub-optimal solution. However, it is more appro-
priate to scale down the communication radius appropriately
with increasing node densities such that the average numberof
neighbors remains same. This is more so because in a realis-
tic scenario, the neighborhood table space for a node would be
bounded. Thus, we also plot the shortest path lengths in Fig.
8 for scaled down radius and find that they are close to MIMD
and DBMU path-lengths.

Table 2. Comparison Recovery Time (in number
of tours) for MIMD and DBMU under varying de-
gree of node failures. Node density:200

Node Failures 1 2 3 4 5
MIMD 2 2 3 5 6
DMBU 1 2 2 3 3

0

2

4

6

8

10

12

14

16

75 100 200 300

Number of Nodes

M
ea

n 
C

os
t o

f P
at

h 
(h

op
s)

SP (fixed R)
SP (scaled R)
MIMD
DBMU

Figure 8. Comparison of the cost of the path ob-
tained using MIMD and DBMU with the shortest
paths with fixed and scaled down radius

3.3.6 Comparison with TTDD:

Fig. 9 shows the relative performance of HLETDR with re-
spect to TTDD [3], a sink oriented data dissemination (SODD)
scheme also described in [3] and flooding. In SODD, the sink



floods the whole network with its location information to con-
struct forwarding gradients towards it. Sources then explicitly
route data along these gradients towards the sink. These costs
were obtained by using the analytical expressions for commu-
nication overhead derived in [3]. It is assumed that all packets
are unit length and the number of nodes is 200. Transmission
of a packet consumes equal energy over all links in the net-
work. For SODD, the sink advertises once every time-domain.
The side of a TTDD grid-square is calculated to be approxi-
mately 14 meters in order to uniquely cover every part of the
sink’s trajectory given the number of time-domains.

In this setup, HLETDR performs almost three times better
than TTDD and SODD. Even when a very few packet are sent,
HLETDR performs better because TTDD involves a dissem-
ination grid formation overhead as well as localized flooding
by the mobile sink. It is to be noted, however, that TTDD and
HLETDR have been designed with slightly different scenarios
in mind. TTDD is designed to run in scenarios that require
explicity querying, while HLETDR is not. HLETDR assumes
that there is an underlying pattern in the sink’s mobility, while
TTDD does not.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 10

4

Total Number of Data Packets Generated

To
ta

l E
ne

rg
y 

C
on

su
m

ed

TTDD
SODD
HLETDR
FLOOD

Figure 9. Comparison of energy efficiency of
HLETDR, TTDD, SODD and flooding. Number
of Nodes = 200.

4. Conclusions and Future Work

We have proposed a scalable and distributed learning-based
approach to find efficient and robust routes to a mobile sink in
a wireless sensor network. The scenarios that we were inter-
ested in involved sinks which move in a certain pattern. The
key contribution of our work is identifying that learning-based
mechanisms can be used in such scenarios to find routes that
satisfy the requirements of energy-efficiency and robustness.
The scheme that we have proposed uses a combination of sta-
tistical and reinforcement learning to come up with good data
delivery paths to the mobile sink. This is a distributed scheme
that does not require explicit time synchronization or nodelo-
calization and is sensitive to in-network delays. It is highly
energy-efficient and furthermore, it is robust to node failures
because of its inherent exploratory nature.

As part of future work, we would like to come up with
mechanisms that converge to paths that are closer to the the-
oretically optimal paths. We plan to study different statisti-
cal learning schemes that the moles can use to come up with
probability distributions. The impact of different sink mobil-
ity models is another interesting extension. Finally, we would
like to obtain analytical expressions for our protocol’s perfor-
mance.

References

[1] H.S. Kim, T.F. Abdelzaher, and W.H. Kwon,“Minimum-
Energy Asynchronous Dissemination to Mobile Sinks in
Wireless Sensor Networks,”The First ACM Conference
on Embedded Networked Sensor Systems (Sensys’03), Los
Angeles, CA, November 2003.

[2] R.C. Shah, S. Roy, S. Jain, and W. Brunette, “Data
MULEs: Modeling a Three-tier Architecture for Sparse
Sensor Networks,”Proceedings of the First IEEE Interna-
tional Workshop on Sensor Network Protocols and Appli-
cations (SNPA’03), Anchorage, AL, May 2003.

[3] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A Two-Tier
Data Dissemination Model for Large-scale Wireless Sen-
sor Networks,”Proceedings of the Eighth Annual Inter-
national Conference on Mobile Computing and Networks
(MobiCOM 2002), Atlanta, GA, September 2002.

[4] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Di-
rected Diffusion: A Scalable and Robust Communication
Paradigm for Sensor Networks”,Proceedings of the Sixth
Annual International Conference on Mobile Computing
and Networks (MobiCOM 2000), Boston, MA, August
2000.

[5] Bhaskar Krishnamachari, Congzhou Zhou, Baharak
Shademan, “LEQS: Learning-based Efficient Querying
for Sensor Networks”,USC Computer Science Technical
Report CS 03-795, 2003.

[6] F. Ye, G. Zhong, S. Lu, L. Zhang, “A Robust Data De-
livery Protocol for Large Scale Sensor Networks ”,Pro-
ceedings of Second International Workshop on Informa-
tion Processing in Sensor Networks (IPSN’03), Palo Alto,
CA, April 2003.


