
Learning Multiuser Channel Allocations in
Cognitive Radio Networks: A Combinatorial

Multi-Armed Bandit Formulation
Yi Gai, Bhaskar Krishnamachari and Rahul Jain

Ming Hsieh Department of Electrical Engineering
University of Southern California

Los Angeles, CA 90089, USA
Email: {ygai, bkrishna, rahul.jain}@usc.edu

Abstract—We consider the following fundamental problem
in the context of channelized dynamic spectrum access. There
are M secondary users and N ≥ M orthogonal channels.
Each secondary user requires a single channel for operation
that does not conflict with the channels assigned to the other
users. Due to geographic dispersion, each secondary user can
potentially see different primary user occupancy behavior on
each channel. Time is divided into discrete decision rounds. The
throughput obtainable from spectrum opportunities on each user-
channel combination over a decision period is modeled as an
arbitrarily-distributed random variable with bounded support
but unknown mean, i.i.d. over time. The objective is to search
for an allocation of channels for all users that maximizes the
expected sum throughput. We formulate this problem as a
combinatorial multi-armed bandit (MAB), in which each arm
corresponds to a matching of the users to channels. Unlike
most prior work on multi-armed bandits, this combinatorial
formulation results in dependent arms. Moreover, the number
of arms grows super-exponentially as the permutation P (N, M).
We present a novel matching-learning algorithm with polynomial
storage and polynomial computation per decision period for
this problem, and prove that it results in a regret (the gap
between the expected sum-throughput obtained by a genie-aided
perfect allocation and that obtained by this algorithm) that is
uniformly upper-bounded for all time n by a function that grows
as O(M4Nlogn), i.e. polynomial in the number of unknown
parameters and logarithmic in time. We also discuss how our
results provide a non-trivial generalization of known theoretical
results on multi-armed bandits.

I. INTRODUCTION

There is considerable ongoing interest in developing dy-
namic spectrum access mechanisms that enable more efficient
spectrum utilization [1]. Cognitive radio networks, character-
ized by greater levels of autonomy, intelligence and learning,
are expected to play a significant role in this domain.

In this paper, we focus on a problem of fundamental
significance to overlay opportunistic spectrum access. There is
a set of M coordinated secondary users each trying to access
one of N channels. Different from most prior work in this
setting, we do not assume that each secondary user sees the
same primary behavior on a given channel. This is of particular
concern in geographically dispersed networks where different
secondary users may be in proximity of different primary

users. Thus the opportunities available on each channel might
be potentially quite different for each user.

The mathematical framework we adopt in this paper is quite
general. We model the throughput obtainable from exploiting
the opportunities available on each user-channel combination
over a decision period to be an i.i.d. random process with any
arbitrary, bounded-support distribution, independent across
user-channel combinations. Further it is assumed that the mean
reward for each user-channel pairing is unknown to the user(it
is to be determined online by a learning process). The desired
objective is to maximize the expected sum-throughput of all
users. Assuming an interference model whereby at most one
secondary user can derive benefit from any channel, if the
number of channels is greater than the number of users, the
optimal channel allocation employs a one-to-one matching of
users to channels, such that the expected sum-throughput is
maximized.

This kind of problem, where the desired goal is to develop a
sequential policy to make a selection among multiple choices,
each offering stochastic rewards derived from a distribution
with an unknown parameter, is traditionally formulated as an
infinite horizon non-Bayesian multi-armed bandit (see [2]–
[5]). A key metric of interest in evaluating a given policy
for this problem is regret, which is defined as the difference
between the expected reward gained by a genie that always
makes the optimal choice, and that obtained by the given
policy. The regret achieved by a policy can be evaluated in
terms of its growth over time and its scalability with respect
to the number of unknown parameters. Most of the prior
literature on multi-armed bandits focuses on independent arms,
and essentially shows logarithmic scaling of the regret over
time and linear scaling with respect to the number of arms.

In this paper, we formulate the problem of learning the
optimal matching of users to channels in a stochastic setting
as a new kind of bandit problem that we refer to as the
combinatorial multi-armed bandit. In this formulation, we map
each matching (consisting of a set of component one-to-one
user-channel pairings) to an arm. The reward of each arm
consists of the sum of the underlying component rewards.
Different from most of the classic literature, the combinatorial



nature of the arms results in dependencies between them.
Further, the number of arms grows super-exponentially as
P (N, M), the number of permutations that arrange M out
of N choices.

We show first that a naive policy based on a direct applica-
tion of the work by Auer et al. [5], that essentially ignores the
dependencies between the arms, results in both storage and
regret growing linearly with the large number of arms.

This raises the question whether a more sophisticated ap-
proach that exploits the combinatorial dependence between
the arms can do better. We show that indeed this is possible.
In particular, we develop a novel policy that we refer to as
matching learning with polynomial storage (MLPS) that uses
only polynomial storage and computation time at each decision
period. A key sub-routine of the MLPS policy involves solving
a combinatorial optimization problem pertaining to weighted
matchings with polynomial complexity at each step. Our
analysis of the expected regret of MLPS shows that it is
bounded (for any finite n, not only asymptotically) by a
function that grows much more reasonably as O(M4N log n)
where n is the number of time steps. Thus, it is in not only
logarithmic in time but also polynomial in the number of
unknown parameters.

Our policy and the analysis of its regret directly generalizes
the results in Auer et al. [5], which can be seen as the special
case when M = 1. Moreover, though we focus on matchings
because of the assumption of complete interference among
the secondary users, our policy and its analysis also extends
known results on MAB with multiple-plays, by allowing for
arbitrary combinatorial restrictions on the set of arms played
simultaneously.

Our paper is organized as follows. We first provide a survey
of related work in section II. We then give a formal description
of the problem we solve in section III. We first present an
algorithm in section IV that is the direct application of a policy
described in [5], that completely ignores the combinatorial
dependencies between the arms, and show that it results in
unacceptably high complexity as well as poor performance
in terms of the regret as the number of users and channels is
increased. We then present our MLPS policy in section V, and
show that it requires only polynomial storage and polynomial
computation per time period. We present the novel analysis
of the regret of this algorithm in section VI and point out
how this analysis generalizes known results on MAB. We
discuss some of the issues pertaining to developing a protocol
implementation of the proposed MLPS algorithm in cognitive
radio networks for dynamic spectrum access. Finally, we
conclude with a summary of our contributions and point out
avenues for future work in section VIII.

II. RELATED WORK

Lai and Robbins [2] wrote one of the earliest papers on
the classic non-Bayesian infinite horizon multi-armed bandit
problem. Assuming K independent arms, each generating
rewards that are i.i.d. over time from a given family of
distributions with an unknown real-valued parameter, they

presented a general policy that provides expected regret that
is O(K log n), i.e. linear in the number of arms and asymp-
totically logarithmic in n. They also show that this policy is
order optimal in that no policy can do better than Ω(K log n).
Anantharam et al. [3] extend this work to the case when M
simultaneous plays are allowed. The work by Agrawal [4]
presents easier to compute policies based on the sample mean
that also has asymptotically logarithmic regret. However, their
policies cannot be directly applied to our problem formulation
in this paper, which involves combinatorial arms that cannot
be characterized by a single parameter.

Our work is influenced by the paper by Auer et al. [5]
that considers arms with non-negative rewards that are i.i.d.
over time with an arbitrary un-parameterized distribution that
has the only restriction that it have a finite support. Further
they provide a simple policy (referred to as UCB1), which
achieves logarithmic regret uniformly over time, rather than
only asymptotically. However, their work does not exploit
potential dependencies between the arms. As we show in this
paper, a direct application of their UCB1 policy therefore
performs poorly for our problem formulation. Our basic policy
and its analysis can be seen as a generalization of the results
in [5] that allows for M plays with arbitrary constraints on
the set of arms that are allowed to be played simultaneously.

While these above key papers and many others have focused
on independent arms, there have been some works treating
dependencies between arms. The paper by Pandey et al. [6]
divides arms into clusters of dependent arms (in our case
there would be only one such cluster consisting of all the
arms). Their model assumes that each arm provide only binary
rewards, and in any case, they do not present any theoretical
analysis on the expected regret. In [7], the reward from each
arm is modeled as the sum of a linear combination of a set
of static random numbers and a zero-mean random variable
that is i.i.d. over time and independent across arms. This is
different from the combinatorial arm model in our paper, in
which the rewards from each arm can be expressed as a linear
combination of a set of independent random variables that are
each i.i.d over time.

Lai et al. ( [8], [9]) have applied multi-arm bandit formu-
lations to user-channel selection problems in cognitive radio
networks. In [8], for the case of a single user, they apply the
UCB1 algorithm from [5], and for the case of decentralized
multiple users they propose a randomized access policy to be
applied after learning the unknown parameters. The extension
of that work in [9] considers Markovian rewards and for the
case of multiple users proposes a constant-probability arm-
selection policy. More recently, Liu and Zhao [10] formu-
lated the problem of secondary users selecting channels as
a decentralized multi-armed bandit problem, and present a
policy that achieves asymptotically logarithmic regret with
respect to time. However, all these prior works applying multi-
armed bandits to cognitive radio networks do not allow for the
possibility that the reward process on the same channel can
be different for different users. This is the key sense in which
our combinatorial bandit formulation is novel. However, these



works do suggest that a important direction to extend our work
in the future is to consider the case of decentralized secondary
users.

A different line of work in the domain of cognitive radio op-
portunistic spectrum access that has received a lot of attention
recently considers dynamic decisions by a single secondary
user when the underlying primary user behavior on each
channel is a two-state Markov chain. This can be formulated as
a POMDP, and when the channels are independent, as a special
class of POMDP known as restless bandits [11]–[15]. A series
of these recent results show that a surprisingly simple myopic
policy is optimal when the channels are identical ( [12], [13],
[15]), and that this policy is the special case of Whittle’s
index policy for restless bandits which can be computed for
non-identical channels as well [14]. Learning mechanisms for
coordinating multiple users in this more complex setting are
discussed in [16], [17].

There are also some other papers in the area of cognitive
radio networks that focus on static user-channel matchings
when the mean rewards for each combination are known a
priori, under various assumptions about the number of users
and channels, the selfishness of users, and interference [18]–
[20]. Due to the emphasis of these static parameters, known
distributions, however they are not directly related to multi-
armed bandits.

III. PROBLEM FORMULATION

There are M secondary users, and N ≥ M orthogonal
channels. Time is divided into discrete decision periods and
is denoted by the index n. At each decision period (also
referred to interchangeably as time slot), each of the secondary
users select a channel to sense and access according to some
policy. If a secondary user i is on channel j, assuming there
are no other conflicting secondary users on that channel, that
user is able to opportunistically access that channel when
the primary user is not occupying it, to get a non-negative
stochastic throughput (reward) of Si,j(n). We assume that
Si,j(n) evolves as some i.i.d. random process over time, with
the only restriction that its distribution have a finite support.
Without loss of generality, we normalize Si,j(n) ∈ [0, 1]. We
do not require that Si,j(n) be independent across users and
channels. This random process is assumed to have a mean θi,j

that is unknown to the users. We denote the set of all these
means as Θ = {θi,j}.

Figure 1 illustrates a simple scenario. There are two sec-
ondary users (i.e., links) S1 and S2, that are each assumed to be
in interference range of each other. S1 is proximate to primary
user P1 who is operating on channel 1. S2 is proximate
to primary user P2 who is operating on channel 2. The
matrix shows the corresponding Θ, i.e., the throughput each
secondary user could derive from being on the corresponding
channel. In this simple example, the optimal matching is for
secondary user 1 to be allocated channel 2 and user 2 to be
allocated channel 1. Note, however, that, in our formulation,
the users are not a priori aware of the matrix of mean values,
and therefore must follow a sequential learning policy.

S1

P1
P2

S2

0.9 0.2
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Fig. 1. An illustrative scenario

Denote by Yi,j(n) the actual reward obtained by a user i on
channel j at time n. If user i is the only occupant of channel
j, then we assume that Yi,j(n) = Si,j(n). Else, if there are
multiple users on the channel, then we assume that, due to
interference, at most one of the conflicting users j′ gets reward
Yi,j′(n) = Si,j′(n), while the other users on the channel j 6=
j′ get zero reward, i.e., Yi,j(n) = 0. This interference model
covers both the perfect collision model (in which none of the
conflicting users derive any benefit) and CSMA with perfect
sensing (in which exactly one of the conflicting user derives
benefit from the channel).

We define the deterministic policy π(n) at each time to be
a map from the observation history {Ok}n−1

k=1 to a vector of
channels o(n) to be selected at period n, where user i selects
channel oi(n). Then the observation history {Ok}n−1

k=1 in turn
can be expressed as {oi(k), Yi,oi(k)(k)}1≤i≤M,1≤k<n.

Since, under the assumptions above, there are sufficient
channels and putting more than one user in a channel is always
worse than assigning each a different channel in terms of
sum-throughput, we will restrict our attention to collision-free
policies that assign all users to distinct channels, which we
will refer to as a permutation or matching. There are P (N, M)
such permutations.

Formulating our problem as a combinatorial multi-armed
bandit, we map each permutation to an arm. We can represent
the arm corresponding to a permutation k (1 ≤ k ≤ P (N, M))
as the index set Ak = {(i, j) : (i, j) is in permutation k}.
The stochastic reward for choosing arm k at time n is then
given as Yk(n) =

∑
(i,j)∈Ak

Yi,j(n) =
∑

(i,j)∈Ak

Si,j(n). Note

that the reward obtained from each arm is i.i.d. over time, but
dependent across arms that share common components.

We are interested in designing policies for this combi-
natorial multi-armed bandit problem that perform well with
respect to regret, which is defined as the difference between
the expected reward that could be obtained by a genie that can
pick the optimal arm at each time, and that obtained by the
given policy. It can be expressed as:

Rπ
n(Θ) = nθ∗ − Eπ[

n∑
t=1

Yπ(t)(t)], (1)

where θ∗ = max
k

∑
(i,j)∈Ak

θi,j , the expected reward of the

optimal arm, is the expected sum-weight of the maximum
weight matching of users to channels with θi,j as the weight.

Intuitively, we would like the regret Rπ
n(Θ) to be as small



as possible. If it is sub-linear with respect to time n, the time-
averaged regret will tend to zero.

IV. A NAIVE APPROACH

To begin with, we show a straightforward, relatively naive
approach to solving the combinatorial multi-armed bandit
problem that we have defined. This approach essentially
ignores the dependencies across the different arms, storing ob-
served information about each arm independently, and making
decisions based on this information alone.

In particular, we use the UCB1 policy given by Auer et
al. [5]. In this policy, shown in Algorithm 1, two variables
are stored and updated each time an arm is played: Ŷk is the
average of all the observation values of arm k up to the current
time slot (sample mean); nk is the number of times that arm
k has been played up to the current time slot. Ŷk and nk are
both initialized to 0 and updated as follows:

Ŷk(n) =





Ŷk(n−1)nk+
∑

(i,j)∈Ak

Sij(n)

nk(n−1)+1 , if arm k is played
Ŷk(n− 1) , else

(2)

nk(n) =
{

nk(n− 1) + 1 , if arm k is played
nk(n− 1) , else (3)

Algorithm 1 Policy UCB1 from Auer et al. [5]
1: // INITIALIZATION
2: Play each arm once. Update Ŷk, nk accordingly;
3: // MAIN LOOP
4: while 1 do
5: Play arm k that maximizes Ŷk +

√
2 ln n
nk

;

6: Update Ŷk, nk accordingly;
7: end while

Theorem 1: The expected regret under UCB1 policy, spec-
ified in Algorithm 1, is at most

[
8

∑

k:θk<θ∗
(
lnn

∆k
)

]
+ (1 +

π2

3
)(

∑

k:θk<θ∗
∆k). (4)

where ∆k = θ∗ − θk, θk =
∑

(i,j)∈Ak

θi,j(n).

Proof: See [5, Theorem 1].
¥

Note that in our setting UCB1 requires storage that is linear
in the number of arms. The upper-bound of regret given in
Theorem 1 also grows linearly with the number of arms. Since
the number of arms in this formulation grows as P (N, M),
both of these are highly unsatisfactory. Furthermore, we con-
jecture that in fact even the lower bound of regret for UCB1
in this case will not be better than Ω(P (N, M)logn). This
is the lower bound on the performance of any algorithm on
independent arms [2], and intuitively, UCB1, as described in
Algorithm 1, cannot distinguish between arms with dependent
or independent rewards.

Intuitively, UCB1 algorithm performs poorly on this prob-
lem because it ignores the underlying dependencies. This
motivates us to propose a sophisticated policy which more ef-
ficiently stores observations from correlated arms and exploits
the correlations to make better decisions.

V. MATCHING LEARNING WITH POLYNOMIAL STORAGE

N : number of channels.
M : number of users, M ≤ N .
k : index of a parameter used for an arm,

1 ≤ k ≤ P (N, M).
i, j : index of a parameter used for user i, channel j.
∗ : index indicating that a parameter is for the

optimal arm.
ni,j : number of times that channel j has been

observed by user i up to the current time slot.
θ̂i,j : average (sample mean) of all the observed values

of channel j by user i up to the current time slot.
Note that E[θ̂i,j(n)] = θi,j .

θk :
∑

(i,j)∈Ak

θi,j(n)

∆k: θ∗ − θk .
∆min: min

k
∆k.

∆max: max
k

∆k.

nk
i : ni,j such that (i, j) ∈ Ak at current time slot.

Tk(n): number of times arm k has been played by
MLPS in the first n time slots.

θ̂k(n):
∑

(i,j)∈Ak

θ̂i,j(n). It is the summation of all the

average observation values in arm k at time n.

Note that E[θ̂k(n)] = θk.
T̂k(n): min

(i,j)∈Ak

ni,j(n).

θ̂k
i,nk

i
: θ̂i,j(n) such that (i, j) ∈ Ak and ni,j(n) = nk

i .

θ̂k,nk
1 ,...,nk

M
:

M∑
i=1

θ̂k,nk
1
.

T̂k(nk
1 , . . . , nk

M ) : min
i

nk
i .
TABLE I

NOTATION

Table I summarizes some notation we use in the description
and analysis of our algorithm.

The key idea behind this algorithm is to store and use
observations for each user-channel pair, rather than for each
arm as a whole. Since the same user-channel combination
can occur in different matchings, this allows exploitation of
information gained from the operation of one arm to make
decisions about a correlated arm.

We use two M by N matrices to store the information after
we play an arm at each time slot. One is (θ̂i,j)M×N in which
θ̂i,j is the average (sample mean) of all the observed values
of channel j by user i up to the current time slot (obtained
through potentially different sets of arms over time). The other



one is (ni,j)M×N in which ni,j is the number of times that
channel j has been observed by user i up to the current time
slot.

At each time slot n, after an arm k is played, we get the
observation of Si,j(n) for all (i, j) ∈ Ak. Then (θ̂i,j)M×N

and (ni,j)M×N (both initialized to 0 at time 0) are updated
as follows:

θ̂i,j(n) =

{
θ̂i,j(n−1)ni,j+Si,j(n)

ni,j(n−1)+1 , if (i, j) ∈ Ak

θ̂i,j(n− 1) , else
(5)

ni,j(n) =
{

ni,j(n− 1) + 1 , if (i, j) ∈ Ak

ni,j(n− 1) , else (6)

Note that while we indicate the time index in the above
updates for notational clarity, it is not necessary to store the
matrices from previous time steps while running the algorithm.

Our proposed policy, which we refer to as matching learning
with polynomial storage (MLPS), is shown in Algorithm 2.

Algorithm 2 Matching Learning with Polynomial Storage
(MLPS)

1: // INITIALIZATION
2: for p = 1 to M do
3: for q = 1 to N do
4: n = (M − 1)p + q;
5: Play any permutation k such that (p, q) ∈ Ak;
6: Update (θ̂i,j)M×N , (ni,j)M×N accordingly.
7: end for
8: end for
9: // MAIN LOOP

10: while 1 do
11: n = n + 1;
12: Run algorithm 3 to play arm k that maximizes

∑

(i,j)∈Ak

θ̂i,j + M

√√√√ (M + 1) ln n

min
(i,j)∈Ak

ni,j
(7)

13: Update (θ̂i,j)M×N , (ni,j)M×N accordingly.
14: end while

Denote

Wk(n) =
∑

(i,j)∈Ak

θ̂i,j + M

√√√√ (M + 1) lnn

min
(i,j)∈Ak

ni,j
. (8)

The MLPS policy chooses to play an arm with the maximum
value Wk(n) at each time slot to play after the initialization
period when each arm is chosen once. Note that there are
P (N, M) arms, so using exhaustive search to solve this
maximization is prohibitively expensive. We therefore propose
the subroutine presented in Algorithm 3 to solve the rele-
vant combinatorial optimization over matchings in polynomial
time.

If we only focus on the first part, i.e., max
k

∑
(i,j)∈Ak

θ̂i,j , it

would be the problem of finding a maximum weight matching

on a labeled bipartite graph between users and channels
with weights θi,j . However, note that the second term in
the optimization required by the MLPS policy, min

(i,j)∈Ak

ni,j ,

depends on which permutation is picked, and cannot be at-
tached to any particular edge in the maximum weight matching
problem. Therefore, something additional is called for. The
subroutine presented in Algorithm 3 solves the problem by
conditioning on each edge one at a time to see which one fits
the second term and solving for the max-weight matching over
the remaining users and channels.

Algorithm 3 Matching Optimization Subroutine

Input: M , N , (θ̂i,j)M×N , (ni,j)M×N

Output: k, an arm that maximizes Wk

1: θ̃i,j = θ̂i,j ,∀i, j.
2: for i = 1 to M do
3: for j = 1 to N do
4: // ASSUME THAT ni,j WILL GIVE THE MAXIMUM

VALUE IN (7)
5: ∀1 ≤ p ≤ M , set θ̃p,j = 0;
6: ∀1 ≤ q ≤ N , set θ̃i,q = 0;
7: for i′ = 1 to M do
8: for j′ = 1 to N do
9: // DELETE AN EDGE i′j′ IF ni′j′ < ni,j

10: if ni′j′ < ni,j then
11: Set θ̃i′,j′ = 0;
12: end if
13: end for
14: end for
15: Solve the Maximum Weight Matching problem

(e.g., using the Hungarian algorithm [21]) on the bipartite
graph of users and channels with edge weights (θ̃i,j)M×N .
Call the permutation corresponding to this maximum
weight matching ki,j . Compute Wki,j according to (8);

16: end for
17: end for
18: Let k = arg max

ki,j

Wki,j

Theorem 2: Algorithm 3 computes a solution to the opti-
mization problem:

max
k

∑
(i,j)∈Ak

θ̂i,j + M
√

(M+1) ln n
min

(i,j)∈Ak

ni,j (9)

in polynomial time.
Proof of Theorem 2: Denote O∗ = {k : k =

arg max
k

∑
(i,j)∈Ak

θ̂i,j + M
√

(M+1) ln n
min

(i,j)∈Ak

ni,j
}. Denote nk∗

min =

min
(i,j)∈Ak∗

nk∗
i,j . We prove Theorem 2 by showing that the one of

the arms in O∗ will be obtained after running the algorithm.
Specifically, we prove the following lemma.

Lemma 1: ∀k∗ ∈ O∗, when nk∗
min is assumed to be the one

given the maximum value in (7) by the algorithm, k∗ will
stay as a permutation in (θ̂′i,j)M×N for running the maximum
weight matching.



Proof: When nk∗
min is assumed, note that ∀(i, j) ∈

Ak∗ , n
k∗
i,j ≥ nk∗

min, so none of θ̂i,j:(i,j)∈Ak∗ are deleted in the
comparison at line 9 in Algorithm 3. Also note that k is a
permutation, so ∀(i, j) ∈ Ak∗ , i 6= i′ implies j 6= j′, j 6=
j′ also implies i 6= i′. So none of θ̂i,j:(i,j)∈Ak∗ are deleted at
line 5 or 6. Therefore, Lemma 1 holds.

Lemma 2: ∃k∗ ∈ O∗ such that k∗ is the arm gotten by
running the maximum weight matching at line 15.

Proof: Suppose none of the arms in O∗ is the arm obtained
by running the maximum weight matching algorithm. For any
k∗ ∈ O∗, when nk∗

min is assumed, there exists another arm
k′ /∈ O∗ such that

∑

(i,j)∈Ak′

θ̂i,j ≥
∑

(i,j)∈Ak∗

θ̂i,j .

Also note that

min
(i,j)∈Ak′

ni,j = min
(i,j)∈Ak′

ni,j = nk∗
min,

we have
∑

(i,j)∈Ak′
θ̂i,j + M

√
(M+1) ln n

min
(i,j)∈A

k′
ni,j

≥ ∑
(i,j)∈Ak∗

θ̂i,j

+M
√

(M+1) ln n
min

(i,j)∈Ak

ni,j
.

(10)

(10) implies that k′ ∈ O∗, which contradicts that k′ /∈ O∗,
therefore Lemma 2 holds.

Lemma 2 implies that k∗ is one of the ki,j at line 18.
Further, computation time of maximum weight matching on
a bipartite graph is polynomial (e.g., the Hungarian method
requires O((M + N)3) computations), and there are exactly
M ×N such computations in Algorithm 3. Hence Theorem 2
holds.
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VI. ANALYSIS OF REGRET

Traditionally, the regret of a policy for a multi-armed bandit
problem is upper-bounded by analyzing the expected number
of times that each non-optimal arm is played, and the summing
this expectation over all non-optimal arms. While such an
approach will work to analyze the MLPS policy too, it turns
out that the upper-bound for regret consequently obtained is
quite loose, being linear in the number of arms, P (N, M).
Instead, we give here a tighter analysis of the MLPS algorithm
that provides an upper bound which is instead polynomial in
M and N and logarithmic in time. Like the regret analysis
in [5], this upper-bound is also valid for finite n.

Theorem 3: The expected regret under the MLPS policy
specified in algorithm 2 is at most

[
4M2(M + 1)(MN) lnn

(∆min)2
+ M2N(1 +

π2

3
)

]
∆max. (11)

Proof of Theorem 3: Denote Ct,nj
as M

√
(M+1) ln t

nj
. We

introduce T̃ij(n) as a counter after the initialization period. It
is updated in the following way:

At each time slot after the initialization period, one of the
two cases must happen: (1) an optimal arm is played; (2) a
non-optimal arm is played. In the first case, (T̃ij(n))M×N

won’t be updated. When an non-optimal arm k(n) is picked
at time n, there must be at least one (i, j) ∈ Ak such that
ni,j(n) = min

(i,j)∈Ak

ni,j . If there is only one such arm, T̃ij(n)

is increased by 1. If there are multiple such arms, we arbitrarily
pick one, say (i′, j′), and increment T̃i′j′ by 1.

Each time when a non-optimal arm is picked, exactly one
element in (T̃ij(n))M×N is incremented by 1. This implies
that the total number that we have played the non-optimal arms
is equal to the summation of all counters in (T̃ij(n))M×N .
Therefore, we have:

∑

k:θk<θ∗
E[Tk(n)] =

M∑

i=1

N∑

j=1

E[T̃ij(n)] (12)

Also note for T̃ij(n), the following inequality holds:

T̃ij(n) ≤ ni,j(n),∀1 ≤ i ≤ M, 1 ≤ j ≤ N. (13)

Denote by Ĩij(n) the indicator function which is equal to
1 if T̃ij(n) is added by one at time n. Let l be an arbitrary
positive integer. Then:

T̃ij(n)=
n∑

t=MN+1

{Ĩij(t)}

≤ l +
n∑

t=MN+1

{Ĩij(t), T̃ij(t− 1) ≥ l}

When Ĩij(t) = 1, there exists some arm such that a non-
optimal arm is picked for which ni,j is the minimum in this
arm. We denote this arm as k(t) since at each time that
Ĩij(t) = 1, we could get different arms. Then,

T̃ij(n)≤ l +
n∑

t=MN+1

{θ̂∗(t− 1) + Ct−1,T̂∗(t−1)

≤ θ̂k(t−1)(t− 1) + Ct−1,T̂k(t−1)(t−1), T̃ij(t− 1) ≥ l}
= l +

n∑
t=MN

{θ̂∗(t) + Ct,T̂∗(t)

≤ θ̂k(t)(t) + Ct,T̂k(t)(t)
, T̃ij(t) ≥ l}

Note that l ≤ T̃ij(t) implies,

l ≤ T̃ij(t) ≤ ni,j(t) = n
k(t)
i = min

j
n

k(t)
j . (14)

This means:

∀1 ≤ i ≤ M, n
k(t)
i ≥ l. (15)



Then we have,

T̃ij(n)≤ l +
n∑

t=MN

{ min
0<n∗1 ,...,n∗M <t

θ̂∗n∗1 ,...,n∗M

+Ct−1,T̂∗(n∗1 ,...,n∗M ) ≤ max
l≤n

k(t)
1 ,...,n

k(t)
M <t

θ̂
k(t),n

k(t)
1 ,...,n

k(t)
M

+C
t−1,T̂k(n

k(t)
1 ,...,n

k(t)
M )

}

≤ l +
n∑

t=1
[

t−1∑
n∗1=1

· · ·
t−1∑

n∗M=1

t−1∑
n

k(t)
1 =l

· · ·
t−1∑

n
k(t)
M =l

(θ̂∗n∗1 ,...,n∗M

+Ct−1,T̂∗(n∗1 ,...,n∗M ) ≤ θ̂
k(t),n

k(t)
1 ,...,n

k(t)
M

+C
t−1,T̂k(t)(n

k(t)
1 ,...,n

k(t)
M )

)]

θ̂∗n∗1 ,...,n∗M + Ct−1,T̂∗(n∗1 ,...,n∗M ) ≤ θ̂
k(t),n

k(t)
1 ,...,n

k(t)
M

+
C

t−1,T̂k(t)(n
k(t)
1 ,...,n

k(t)
M )

means that at least one of the following
must be true:

θ̂∗n∗1 ,...,n∗M ≤ θ∗ − Ct−1,T̂∗(n∗1 ,...,n∗M ) (16)

θ̂
k(t),n

k(t)
1 ,...,n

k(t)
M

≥ θk + C
t−1,T̂k(t)(n

k(t)
1 ,...,n

k(t)
M )

(17)

θ∗ < θk + 2C
t−1,T̂k(t)(n

k(t)
1 ,...,n

k(t)
M )

(18)

Now we find the upper bound for Pr{θ̂∗n∗1 ,...,n∗M ≤ θ∗ −
Ct−1,T̂∗(n∗1 ,...,n∗M )}.

Note that

T̂ ∗(n∗1, . . . , n
∗
M ) = min

i
n∗i , n∗min,

We also define nk
min = min

i
nk

i , so T̂ k(nk
1 , . . . , nk

M ) = nk
min.

We have:

Pr{θ̂∗n∗1 ,...,n∗M ≤ θ∗ − Ct−1,T̂∗(n∗1 ,...,n∗M )}
= Pr{θ̂∗1,n∗1

+ θ̂∗2,n∗2
+ . . . + θ̂∗M,n∗M

≤ θ∗1 + θ∗2 + . . . θ∗M
−Ct−1,n∗min

}

≤ Pr{At least one of the following must hold:
θ̂∗1,n∗1

≤ θ∗1 − 1
M Ct−1,n∗min

,

θ̂∗2,n∗2
≤ θ∗2 − 1

M Ct−1,n∗min
,

...
θ̂∗1,n∗M

≤ θ∗M − 1
M Ct−1,n∗min

}

≤ Pr{θ̂∗1,n∗1
≤ θ∗1 − 1

M Ct−1,n∗min
}

+Pr{θ̂∗2,n∗2
≤ θ∗2 − 1

M Ct−1,n∗min
}+ . . .

+Pr{θ̂∗M,n∗M
≤ θ∗M − 1

M Ct−1,n∗min
}.

∀1 ≤ i ≤ M , applying the Chernoff-Hoeffding bound [24], we
could find the upper bound of each item in the above equation

as,
Pr{θ̂i,n∗i ≤ θ∗i − 1

M Ct−1,n∗min
}

= Pr{n∗i θ̂i,n∗i ≤ n∗i θ
∗
i − n∗i

M Ct−1,n∗min
}

≤ e
−2· 1

n∗
i
·(n∗i )2· (M+1) ln t

n∗min

≤ e
−2· 1

n∗
i
·(n∗i )2· (M+1) ln t

n∗
i

= e−2(M+1) ln t

= t−2(M+1).

Thus,

Pr{θ̂∗n∗1 ,...,n∗M ≤ θ∗ − Ct−1,T̂∗(n∗1 ,...,n∗M )} ≤ Mt−2(M+1).
(19)

Similarly, we can get the upper bound of the probability for
inequality (17):

Pr{θ̂
k(t),n

k(t)
1 ,...,n

k(t)
M

≥ θk + C
t−1,T̂k(t)(n

k(t)
1 ,...,n

k(t)
M )

}
≤ Mt−2(M+1).

(20)

Note that for l ≥
⌈

4(M+1) ln n(
∆k(t)

M

)2

⌉
,

θ∗ − θk(t) − 2C
t−1,T̂k(t)(n

k(t)
1 ,...,n

k(t)
M )

= θ∗ − θk(t) − 2M

√
(M+1) ln t

n
k(t)
min

≥ θ∗ − θk(t) −M

√
4(M+1) ln n

n
k(t)
min

≥ θ∗ − θk(t) −M

√
4(M+1) ln n
4(M+1) ln n

(
∆k(t)

M

)2

= θ∗ − θk(t) −∆k(t) = 0.

(21)

(21) implies that condition (16) is false when l =


4(M+1) ln n(
∆k(t)

M

)2




. If we let l =




4(M+1) ln n(
∆i,j

min
M

)2




, then (16) is false

for all k(t), 1 ≤ t ≤ ∞ where

∆i,j
min = min

k
{∆k : (i, j) ∈ Ak}. (22)

Therefore,

E[T̃ij(n)]≤ 4(M+1) ln n(
∆i,j

min
M

)2

+
∞∑

t=1

(
t−1∑

n∗1=1

· · ·
t−1∑

n∗1=M

t−1∑
nk

1=1

· · ·
t−1∑

nk
1=M

2Mt−2(M+1)

)

≤ 4M2(M+1) ln n

(∆i,j
min)

2 + M
∞∑

t=1
2t−2

≤ 4M2(M+1) ln n

(∆i,j
min)

2 + M(1 + π2

3 )

(23)



So under our MLPS policy,

Rπ
n(Θ)= θ∗n− Eπ[

n∑
t=1

Yπ(t)(t)]

=
∑

k:θk<θ∗
∆kE[Tk(n)]

≤ ∆max

∑
k:θk<θ∗

E[Tk(n)]

= ∆max

M∑
i=1

N∑
j=1

E[T̃ij(n)]

≤
[

M∑
i=1

N∑
j=1

4M2(M+1) ln n

(∆i,j
min)

2 + M2N(1 + π2

3 )

]
∆max

≤
[

4M2(M+1)(MN) ln n

(∆min)2
+ M2N(1 + π2

3 )
]
∆max

(24)
¥

We note that when M = 1, which means there is only one
user in the system, the upper bound of regret in Theorem 3
becomes the same as the upper bound in Theorem 1 in [5].
So Theorem 3 is a more general result.

Remark: Because of the application context of cognitive
radio networks, we have focused on policies that search only
through matchings in this paper. But we note that the MLPS
policy we have described and its analysis can be extended eas-
ily to a more general combinatorial multi-armed bandit prob-
lem in which arms represent any arbitrary collection (of size
no more than M ) of components. In this case, the subroutine
in Algorithm 3 will no longer apply as it is specific to finding
a matching to optimize the relevant quantity. But essentially
everything else about the MLPS policy in Algorithm 2 (which
should perhaps be then renamed “combinatorial-arm learning
with polynomial storage” or CLPS, to deemphasize matchings)
can remain the same.

VII. IMPLEMENTATION CONSIDERATIONS

The MLPS algorithm we have presented can be run either
at a centralized coordinator or in a distributed manner by each
secondary user (link). We discuss briefly some of the pertinent
issues in translating the algorithm to a practical protocol.

For an example of the first setting, consider a scenario
where the secondary users are nodes communicating with a
common access point. The access point can then be in charge
of announcing (over some predetermined control channel) the
non-conflicting channels to be used by each user for each
decision period after running the MLPS algorithm. In an
uplink setting, the throughput from each secondary user on
the corresponding channel can be measured directly by the
access point. For downlink settings, the throughput may be
measured by the access point through acknowledgement or
direct signaling from the secondary user.

Even if there is no common access-point for all secondary
users, it is possible to develop a protocol involving some form
of distributed leader election [22] to appoint a coordinator
to which information about the measured throughput on each
secondary user is communicated, and which runs the MLPS
algorithm. Given the assumption in this paper that all sec-
ondary users are in interference range of each other, it is not

entirely unreasonable to assume that they can communicate to
a common node.

If there are compelling reasons to implement this protocol
in a distributed manner (e.g., to avoid having a central point
of failure), an alternative approach is to design a protocol
whereby the users of the secondary network can reliably
propagate their channel measurements to all other secondary
users once each decision period, and have each secondary
user run the MLPS algorithm independently over the common
information. This is similar to how distributed link state
routing protocols such as OLSR [23] propagate link state
information and compute routes. In this case, care must be
taken to have deterministic tie-breaking where needed, to
maintain consistency between the secondary users (for instance
if there are multiple permutations that are solutions to the
optimization subroutine).

A further level of decentralization that may be desired in
some settings is for the users to not propagate any information
explicitly, and instead rely on purely local observations and
decisions. Such a decentralized solution has been developed
recently for the conventional multi-armed bandit setting where
all users perceive the same rewards for each channel [10].
However, developing such a completely decentralized version
of the matching learning policy for the problem of combina-
torial multi-armed bandits described in this paper remains an
open question.

Our description of the MLPS algorithm also leaves open
the question of the granularity of each decision period. The
optimal duration may have to be determined empirically taking
into account constraints such as the minimum time needed to
accommodate all the communication and computation required
at each step.

VIII. CONCLUSION

We have presented in this paper a new kind of bandit
problem that we refer to as a combinatorial multi-armed
bandit. The key distinction of this formulation from the classic
non-Bayesian multi-armed bandit problem is each arm is itself
a combinatorial “bundle” of components. The number of arms
is consequently quite large and there are dependencies between
the rewards provided by arms sharing common components.
A slightly different formulation of our problem is to think of
arms as being the components themselves, with multiple plays
allowed simultaneously. But from this perspective too, there
is a key difference from prior work: in our formulation, there
are pre-specified restrictions on exactly which bundles of plays
are allowed simultaneously.

We have shown that a naive approach that ignores the
dependencies between the combinatorial arms requires too
much storage and also performs poorly as the regret scales
linearly with the number of arms (while we have rigorously
proved only the scaling of the upper bound, we conjecture that
this is true for the lower bound as well in this case).

We have therefore developed a more sophisticated policy
that we refer to as matching learning with polynomial stor-
age (MLPS). This policy stores only information about the



component user-channel pairings and uses a polynomial time
matching optimization at each time step. Our analysis of this
policy is unique in that we bound the number of times the
large number of non-optimal arms are visited by tracking only
a polynomial number of quantities. This results in an upper
bound on the expected regret that scales only polynomially
in the number of components. As we noted, while we have
focused on permutations/matchings in this paper, the basic
algorithm and analysis are in fact directly generalizable to
arbitrary restrictions on the set of sub-components that be
selected at each time. Our algorithm and analysis are therefore
a direct generalization of the results provided by Auer et al. [5]
for non-combinatorial arms.

The theoretical formulation we have presented in this paper
is of fundamental relevance to dynamic spectrum access
using cognitive radio networks. When there are geographically
dispersed secondary users it is reasonable to assume that they
experience different primary user behavior on each channel.
While we have focused on the simplest complete-interference
case when all secondary users interfere with each other and
must therefore each be allocated distinct channels, it is easy to
conceive of a generalization of this work where the interfer-
ence constraints are specified on a graph, with a formulation
that takes into account coloring constraints. We plan to explore
this direction further in the future.

As noted before, an interesting open problem is to develop
a completely decentralized version of this policy in which
secondary users do not have to share any information with
each other and act purely on local observations. Another open
question at present is to derive a lower bound on the regret
that can be achieved by any policy for the combinatorial multi-
armed bandit. Since there are M×N independent components
that must be explored, we conjecture that this lower bound is
Ω(MN log n).
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