
An Evaluation of Availability Latency in Carrier-based
Vehicular Ad-Hoc Networks

Shahram
Ghandeharizadeh

Dept of Computer Science
Univ of Southern California

Los Angeles, CA 90089, USA

shahram@usc.edu

Shyam Kapadia
Dept of Computer Science
Univ of Southern California

Los Angeles, CA 90089, USA

kapadia@usc.edu

Bhaskar Krishnamachari
Dept of Computer Science

Dept of Electrical Engineering
Univ of Southern California

Los Angeles, CA 90089, USA

bkrishna@usc.edu

ABSTRACT
On-demand delivery of audio and video clips in peer-to-peer vehic-
ular ad-hoc networks is an emerging area of research. Our target
environment uses data carriers, termed zebroids, where a mobile
device carries a data item on behalf of a server to a client thereby
minimizing its availability latency. In this study, we quantify the
variation in availability latency with zebroids as a function of a rich
set of parameters such as car density, storage per device, repository
size, and replacement policies employed by zebroids. Using analy-
sis and extensive simulations, we gain novel insights into the de-
sign of carrier-based systems. Significant improvements in latency
can be obtained with zebroids at the cost of a minimal overhead.
These improvements occur even in scenarios with lower accuracy
in the predictions of the car routes. Two particularly surprising
findings are: (1) a naive random replacement policy employed by
the zebroids shows competitive performance, and (2) latency im-
provements obtained with a simplified instantiation of zebroids are
found to be robust to changes in the popularity distribution of the
data items.

Categories and Subject Descriptors:C.2.4 [Distributed Systems]:
Client/Server

General Terms: Algorithms, Performance, Design, Experimenta-
tion.

Keywords: Mobility, Vehicular Networks, AutoMata, Latency, Re-
placement policy, Data carriers, Markov model.

1. INTRODUCTION
Technological advances in areas of storage and wireless commu-

nications have now made it feasible to envision on-demand delivery
of data items, for e.g., video and audio clips, in vehicular peer-to-
peer networks. In prior work, Ghandeharizadehet al. [10] intro-
duce the concept of vehicles equipped with a Car-to-Car-Peer-to-
Peer device, termed AutoMata, for in-vehicle entertainment. The
notable features of an AutoMata include a mass storage device of-
fering hundreds of gigabytes (GB) of storage, a fast processor, and
several types of networking cards. Even with today’s500 GB disk
drives, a repository of diverse entertainment content may exceed
the storage capacity of a single AutoMata. Such repositories con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE’06,June 25, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-436-7/06/0006 ...$5.00.

stitute the focus of this study. To exchange data, we assume each
AutoMata is configured with two types of networking cards: 1) a
low-bandwidth networking card with a long radio-range in the or-
der of miles that enables an AutoMata device to communicate with
a nearby cellular or WiMax station, 2) a high-bandwidth network-
ing card with a limited radio-range in the order of hundreds of feet.

The high bandwidth connection supports data rates in the or-
der of tens to hundreds of Megabits per second and represents the
ad hoc peer to peer network between the vehicles. This is la-
belled as the data plane and is employed to exchange data items
between devices. The low-bandwidth connection serves as the con-
trol plane, enabling AutoMata devices to exchange meta-data with
one or more centralized servers. This connection offers bandwidths
in the order of tens to hundreds of Kilobits per second. The cen-
tralized servers, termed dispatchers, compute schedules of data de-
livery along the data plane using the provided meta-data. These
schedules are transmitted to the participating vehicles using the
control plane. The technical feasibility of such a two-tier architec-
ture is presented in [7], with preliminary results to demonstrate the
bandwidth of the control plane is sufficient for exchange of control
information needed for realizing such an application.

In a typical scenario, an AutoMata device presents a passenger
with a list of data items1, showing both the name of each data item
and its availability latency. The latter, denoted asδ, is defined as
the earliest time at which the client encounters a copy of its re-
quested data item. A data item is available immediately when it
resides in the local storage of the AutoMata device serving the re-
quest. Due to storage constraints, an AutoMata may not store the
entire repository. In this case, availability latency is the time from
when the user issues a request until when the AutoMata encounters
another car containing the referenced data item. (The terms car and
AutoMata are used interchangeably in this study.)

The availability latency for an item is a function of the current
location of the client, its destination and travel path, the mobility
model of the AutoMata equipped vehicles, the number of replicas
constructed for the different data items, and the placement of data
item replicas across the vehicles. A method to improve the avail-
ability latency is to employ data carriers which transport a replica
of the requested data item from a server car containing it to a client
that requested it. These data carriers are termed ‘zebroids’.

Selection of zebroids is facilitated by the two-tiered architecture.
The control plane enables centralized information gathering at a
dispatcher present at a base-station.2 Some examples of control in-

1Without loss of generality, the term data item might be either tra-
ditional media such as text or continuous media such as an audio or
video clip.
2There may be dispatchers deployed at a subset of the base-stations
for fault-tolerance and robustness. Dispatchers between base-
stations may communicate via the wired infrastructure.

75

formation are currently active requests, travel path of the clients and
their destinations, and paths of the other cars. For each client re-
quest, the dispatcher may choose a set ofz carriers that collaborate
to transfer a data item from a server to a client (z-relay zebroids).
Here,z is the number of zebroids such that0 ≤ z < N , where
N is the total number of cars. Whenz = 0 there are no carriers,
requiring a server to deliver the data item directly to the client. Oth-
erwise, the chosen relay team ofz zebroids hand over the data item
transitively to one another to arrive at the client, thereby reducing
availability latency (see Section3.1for details). To increase robust-
ness, the dispatcher may employ multiple relay teams of z-carriers
for every request. This may be useful in scenarios where the dis-
patcher has lower prediction accuracy in the information about the
routes of the cars. Finally, storage constraints may require a zebroid
to evict existing data items from its local storage to accommodate
the client requested item.

In this study, we quantify the following main factors that affect
availability latency in the presence of zebroids: (i) data item repos-
itory size, (ii) car density, (iii) storage capacity per car, (iv) client
trip duration, (v) replacement scheme employed by the zebroids,
and (vi) accuracy of the car route predictions. For a significant sub-
set of these factors, we address some key questions pertaining to
use of zebroids both via analysis and extensive simulations.

Our main findings are as follows. A naive random replacement
policy employed by the zebroids shows competitive performance
in terms of availability latency. With such a policy, substantial im-
provements in latency can be obtained with zebroids at a minimal
replacement overhead. In more practical scenarios, where the dis-
patcher has inaccurate information about the car routes, zebroids
continue to provide latency improvements. A surprising result is
that changes in popularity of the data items do not impact the la-
tency gains obtained with a simple instantiation of z-relay zebroids
called one-instantaneous zebroids (see Section3.1). This study
suggests a number of interesting directions to be pursued to gain
better understanding of design of carrier-based systems that im-
prove availability latency.
Related Work: Replication in mobile ad-hoc networks has been
a widely studied topic [11, 12, 15]. However, none of these stud-
ies employ zebroids as data carriers to reduce the latency of the
client’s requests. Several novel and important studies such as Ze-
braNet [13], DakNet [14], Data Mules [16], Message Ferries [20],
and Seek and Focus [17] have analyzed factors impacting inter-
mittently connected networks consisting of data carriers similar in
spirit to zebroids. Factors considered by each study are dictated by
their assumed environment and target application. A novel char-
acteristic of our study is the impact on availability latency for a
given database repository of items. A detailed description of re-
lated works can be obtained in [9].

The rest of this paper is organized as follows. Section2 pro-
vides an overview of the terminology along with the factors that
impact availability latency in the presence of zebroids. Section3
describes how the zebroids may be employed. Section4 provides
details of the analysis methodology employed to capture the per-
formance with zebroids. Section5 describes the details of the sim-
ulation environment used for evaluation. Section6 enlists the key
questions examined in this study and answers them via analysis
and simulations. Finally, Section7 presents brief conclusions and
future research directions.

2. OVERVIEW AND TERMINOLOGY
Table1 summarizes the notation of the parameters used in the

paper. Below we introduce some terminology used in the paper.
Assume a network ofN AutoMata-equipped cars, each with

storage capacity ofα bytes. The total storage capacity of the sys-
tem isST =N ·α. There areT data items in the database, each with

Database Parameters
T Number of data items.
Si Size of data itemi
fi Frequency of access to data itemi.

Replication Parameters
Ri Normalized frequency of access to data itemi
ri Number of replicas for data itemi
n Characterizes a particular replication scheme.
δi Average availability latency of data itemi
δagg Aggregate availability latency,δagg =

PT
j=1 δj · fj

AutoMata System Parameters
G Number of cells in the map (2D-torus).
N Number of AutoMata devices in the system.
α Storage capacity per AutoMata.
γ Trip duration of the client AutoMata.
ST Total storage capacity of the AutoMata system,ST = N · α.

Table 1: Terms and their definitions

sizeSi. The frequency of access to data itemi is denoted asfi,
with

PT
j=1 fj = 1. Let the trip duration of the client AutoMata

under consideration beγ.
We now define the normalized frequency of access to the data

item i, denoted byRi, as:

Ri =
(fi)

n

PT
j=1(fj)n

; 0 ≤ n ≤ ∞ (1)

The exponentn characterizes a particular replication technique.
A square-root replication scheme is realized whenn = 0.5 [5].
This serves as the base-line for comparison with the case when ze-
broids are deployed.Ri is normalized to a value between 0 and
1. The number of replicas for data itemi, denoted asri, is: ri =
min (N, max (1, bRi·N·α

Si
c)). This captures the case when at least

one copy of every data item must be present in the ad-hoc network
at all times. In cases where a data item may be lost from the ad-hoc
network, this equation becomesri = min (N, max (0, bRi·N·α

Si
c)).

In this case, a request for the lost data item may need to be satisfied
by fetching the item from a remote server.

The availability latency for a data itemi, denoted asδi, is defined
as the earliest time at which a client AutoMata will find the first
replica of the item accessible to it. If this condition is not satisfied,
then we setδi to γ. This indicates that data itemi was not available
to the client during its journey. Note that since there is at least one
replica in the system for every data itemi, by settingγ to a large
value we ensure that the client’s request for any data itemi will be
satisfied. However, in most practical circumstancesγ may not be
so large as to find every data item.

We are interested in the availability latency observed across all
data items. Hence, we augment the average availability latency
for every data itemi with its fi to obtain the following weighted
availability latency (δagg) metric: δagg =

PT
i=1 δi · fi

Next, we present our solution approach describing how zebroids
are selected.

3. SOLUTION APPROACH

3.1 Zebroids
When a client references a data item missing from its local stor-

age, the dispatcher identifies all cars with a copy of the data item
as servers. Next, the dispatcher obtains the future routes of all cars
for a finite time duration equivalent to the maximum time the client
is willing to wait for its request to be serviced. Using this informa-
tion, the dispatcher schedules the quickest delivery path from any
of the servers to the client using any other cars as intermediate car-
riers. Hence, it determines the optimal set of forwarding decisions

76

that will enable the data item to be delivered to the client in the
minimum amount of time. Note that the latency along the quickest
delivery path that employs a relay team ofz zebroids is similar to
that obtained with epidemic routing [19] under the assumptions of
infinite storage and no interference.

A simple instantiation of z-relay zebroids occurs whenz = 1
and the client’s request triggers a transfer of a copy of the requested
data item from a server to a zebroid in its vicinity. Such a ze-
broid is termedone-instantaneous zebroid. In some cases, the
dispatcher might have inaccurate information about the routes of
the cars. Hence, a zebroid scheduled on the basis of this inaccurate
information may not rendezvous with its target client. To minimize
the likelihood of such scenarios, the dispatcher may schedule multi-
ple zebroids. This may incur additional overhead due to redundant
resource utilization to obtain the same latency improvements.

The time required to transfer a data item from a server to a ze-
broid depends on its size and the available link bandwidth. With
small data items, it is reasonable to assume that this transfer time is
small, especially in the presence of the high bandwidth data plane.
Large data items may be divided into smaller chunks enabling the
dispatcher to schedule one or more zebroids to deliver each chunk
to a client in a timely manner. This remains a future research direc-
tion.

Initially, number of replicas for each data item replicas might be
computed using Equation1. This scheme computes the number
of data item replicas as a function of their popularity. It is static
because number of replicas in the system do not change and no
replacements are performed. Hence, this is referred to as the ‘no-
zebroids’ environment. We quantify the performance of the various
replacement policies with reference to this base-line that does not
employ zebroids.

One may assume a cold start phase, where initially only one or
few copies of every data item exist in the system. Many storage
slots of the cars may be unoccupied. When the cars encounter one
another they construct new replicas of some selected data items to
occupy the empty slots. The selection procedure may be to choose
the data items uniformly at random. New replicas are created as
long as a car has a certain threshold of its storage unoccupied.
Eventually, majority of the storage capacity of a car will be ex-
hausted.

3.2 Carrier-based Replacement policies
The replacement policies considered in this paper are reactive

since a replacement occurs only in response to a request issued for a
certain data item. When the local storage of a zebroid is completely
occupied, it needs to replace one of its existing items to carry the
client requested data item. For this purpose, the zebroid must se-
lect an appropriate candidate for eviction. This decision process
is analogous to that encountered in operating system paging where
the goal is to maximize the cache hit ratio to prevent disk access de-
lay [18]. The carrier-based replacement policies employed in our
study areLeast Recently Used (LRU), Least Frequently Used
(LFU) and Random (where a eviction candidate is chosen uni-
formly at random). We have considered local and global variants
of the LRU/LFU policies which determine whether local or global
knowledge of contents of the cars known at the dispatcher is used
for the eviction decision at a zebroid (see [9] for more details).

The replacement policies incur the following overheads. First,
the complexity associated with the implementation of a policy. Sec-
ond, the bandwidth used to transfer a copy of a data item from a
server to the zebroid. Third, the average number of replacements
incurred by the zebroids. Note that in the no-zebroids case neither
overhead is incurred.

The metrics considered in this study are aggregate availability la-
tency,δagg, percentage improvement inδagg with zebroids as com-

pared to the no-zebroids case and average number of replacements
incurred per client request which is an indicator of the overhead
incurred by zebroids.

Note that the dispatchers with the help of the control plane may
ensure that no data item is lost from the system. In other words,
at least one replica of every data item is maintained in the ad-hoc
network at all times. In such cases, even though a car may meet a
requesting client earlier than other servers, if its local storage con-
tains data items with only a single copy in the system, then such a
car is not chosen as a zebroid.

4. ANALYSIS METHODOLOGY
Here, we present the analytical evaluation methodology and some

approximations as closed-form equations that capture the improve-
ments in availability latency that can be obtained with both one-
instantaneous and z-relay zebroids. First, we present some prelim-
inaries of our analysis methodology.

• Let N be the number of cars in the network performing a 2D
random walk on a

√
G×√G torus. An additional car serves

as a client yielding a total ofN + 1 cars. Such a mobility
model has been used widely in the literature [17, 16] chiefly
because it is amenable to analysis and provides a baseline
against which performance of other mobility models can be
compared. Moreover, this class of Markovian mobility mod-
els has been used to model the movements of vehicles [3,
21].

• We assume that all cars start from the stationary distribution
and perform independent random walks. Although for sparse
density scenarios, the independence assumption does hold, it
is no longer valid whenN approachesG.

• Let the size of data item repository of interest beT . Also,
data itemi hasri replicas. This impliesri cars, identified as
servers, have a copy of this data item when the client requests
item i.

All analysis results presented in this section are obtained assum-
ing that the client is willing to wait as long as it takes for its request
to be satisfied (unbounded trip durationγ = ∞). With the random
walk mobility model on a 2D-torus, there is a guarantee that as
long as there is at least one replica of the requested data item in the
network, the client will eventually encounter this replica [2]. Ex-
tensions to the analysis that also consider finite trip durations can
be obtained in [9].

Consider a scenario where no zebroids are employed. In this
case, the expected availability latency for the data item is the ex-
pected meeting time of the random walk undertaken by the client
with any of the random walks performed by the servers. Aldouset
al. [2] show that the the meeting time of two random walks in such
a setting can be modelled as an exponential distribution with the
meanC = c ·G · log G, where the constantc ' 0.17 for G ≥ 25.
The meeting time, or equivalently the availability latencyδi, for
the client requesting data itemi is the time till it encounters any of
theseri replicas for the first time. This is also an exponential distri-
bution with the following expected value (note that this formulation
is valid only for sparse cases whenG >> ri): δi = cGlogG

ri
The aggregate availability latency without employing zebroids is

then this expression averaged over all data items, weighted by their
frequency of access:

δagg(no− zeb) =

TX
i=1

fi · c ·G · log G

ri
=

TX
i=1

fi · C
ri

(2)

77

4.1 One-instantaneous zebroids
Recall that with one-instantaneous zebroids, for a given request,

a new replica is created on a car in the vicinity of the server, pro-
vided this car meets the client earlier than any of theri servers.
Moreover, this replica is spawned at the time step when the client
issues the request. LetNc

i be the expected total number of nodes
that are in the same cell as any of theri servers. Then, we have

Nc
i = (N − ri) · (1− (1− 1

G
)ri) (3)

In the analytical model, we assume thatNc
i new replicas are

created, so that the total number of replicas is increased tori +Nc
i .

The availability latency is reduced since the client is more likely to
meet a replica earlier. The aggregated expected availability latency
in the case of one-instantaneous zebroids is then given by,

δagg(zeb) =

TX
i=1

fi · c ·G · log G

ri + Nc
i

=

TX
i=1

fi · C
ri + Nc

i

(4)

Note that in obtaining this expression, for ease of analysis, we
have assumed that the new replicas start from random locations
in the torus (not necessarily from the same cell as the originalri

servers). It thus treats all theNc
i carriers independently, just like

the ri original servers. As we shall show below by comparison
with simulations, this approximation provides an upper-bound on
the improvements that can be obtained because it results in a lower
expected latency at the client.

It should be noted that the procedure listed above will yield a
similar latency to that employed by a dispatcher employing one-
instantaneous zebroids (see Section3.1). Since the dispatcher is
aware of all future car movements it would only transfer the re-
quested data item on a single zebroid, if it determines that the ze-
broid will meet the client earlier than any other server. This selected
zebroid is included in theNc

i new replicas.

4.2 z-relay zebroids
To calculate the expected availability latency with z-relay ze-

broids, we use a coloring problem analog similar to an approach
used by Spyropouloset al. [17]. Details of the procedure to obtain
a closed-form expression are given in [9]. The aggregate availabil-
ity latency (δagg) with z-relay zebroids is given by,

δagg(zeb) =

TX
i=1

[fi · C

N + 1
· 1

N + 1− ri
·

(N · log
N

ri
− log (N + 1− ri))] (5)

5. SIMULATION METHODOLOGY
The simulation environment considered in this study comprises

of vehicles such as cars that carry a fraction of the data item reposi-
tory. A prediction accuracy parameter inherently provides a certain
probabilistic guarantee on the confidence of the car route predic-
tions known at the dispatcher. A value of100% implies that the
exact routes of all cars are known at all times. A70% value for this
parameter indicates that the routes predicted for the cars will match
the actual ones with probability0.7. Note that this probability is
spread across the car routes for the entire trip duration. We now
provide the preliminaries of the simulation study and then describe
the parameter settings used in our experiments.

• Similar to the analysis methodology, the map used is a 2D
torus. A Markov mobility model representing a unbiased 2D

random walk on the surface of the torus describes the move-
ment of the cars across this torus.

• Each grid/cell is a unique state of this Markov chain. In each
time slot, every car makes a transition from a cell to any of
its neighboring8 cells. The transition is a function of the
current location of the car and a probability transition matrix
Q = [qij] whereqij is the probability of transition from state
i to statej. Only AutoMata equipped cars within the same
cell may communicate with each other.

• The parametersγ, δ have been discretized and expressed in
terms of the number of time slots.

• An AutoMata device does not maintain more than one replica
of a data item. This is because additional replicas occupy
storage without providing benefits.

• Either one-instantaneous or z-relay zebroids may be employed
per client request for latency improvement.

• Unless otherwise mentioned, the prediction accuracy para-
meter is assumed to be100%. This is because this study
aims to quantify the effect of a large number of parameters
individually on availability latency.

Here, we set the size of every data item,Si, to be1. α represents
the number of storage slots per AutoMata. Each storage slot stores
one data item.γ represents the duration of the client’s journey in
terms of the number of time slots. Hence the possible values of
availability latency are between0 andγ. δ is defined as the number
of time slots after which a client AutoMata device will encounter a
replica of the data item for the first time. If a replica for the data
item requested was encountered by the client in the first cell then
we setδ = 0. If δ > γ then we setδ = γ indicating that no copy
of the requested data item was encountered by the client during its
entire journey. In all our simulations, for illustration we consider a
5× 5 2D-torus withγ set to10. Our experiments indicate that the
trends in the results scale to maps of larger size.

We simulated a skewed distribution of access to theT data items
that obeys Zipf’s law with a mean of0.27. This distribution is
shown to correspond to sale of movie theater tickets in the United
States [6]. We employ a replication scheme that allocates replicas
for a data item as a function of the square-root of the frequency of
access of that item. The square-root replication scheme is shown
to have competitive latency performance over a large parameter
space [8]. The data item replicas are distributed uniformly across
the AutoMata devices. This serves as the base-line no-zebroids
case. The square-root scheme also provides the initial replica dis-
tribution when zebroids are employed. Note that the replacements
performed by the zebroids will cause changes to the data item replica
distribution. Requests generated as per the Zipf distribution are is-
sued one at a time. The client car that issues the request is chosen
in a round-robin manner. After a maximum period ofγ, the latency
encountered by this request is recorded.

In all the simulation results, each point is an average of 200,000
requests. Moreover, the95% confidence intervals determined for
the results are quite tight for the metrics of latency and replace-
ment overhead. Hence, we only present them for the metric that
captures the percentage improvement in latency with respect to the
no-zebroids case.

6. RESULTS
In this section, we describe our evaluation results where the fol-

lowing key questions are addressed. With a wide choice of replace-
ment schemes available for a zebroid, what is their effect on avail-
ability latency? A more central question is: Do zebroids provide

78

0 20 40 60 80 100
1.5

2

2.5

3

3.5

Number of cars

Aggregate availability latency (δ
agg

)

lru_global

lfu_global

lru_local

lfu_local

random

Figure 1: Figure 1 shows the availability latency when employ-
ing one-instantaneous zebroids as a function of (N ,α) values,
when the total storage in the system is kept fixed,ST = 200.

significant improvements in availability latency? What is the asso-
ciated overhead incurred in employing these zebroids? What hap-
pens to these improvements in scenarios where a dispatcher may
have imperfect information about the car routes? What inherent
trade-offs exist between car density and storage per car with re-
gards to their combined as well as individual effect on availability
latency in the presence of zebroids? We present both simple analy-
sis and detailed simulations to provide answers to these questions
as well as gain insights into design of carrier-based systems.

6.1 How does a replacement scheme employed
by a zebroid impact availability latency?

For illustration, we present ‘scale-up’ experiments where one-
instantaneous zebroids are employed (see Figure1). By scale-up,
we mean thatα andN are changed proportionally to keep the total
system storage,ST , constant. Here,T = 50 andST = 200. We
choose the following values of (N ,α) = {(20,10), (25,8), (50,4),
(100,2)}. The figure indicates that a random replacement scheme
shows competitive performance. This is because of several reasons.

Recall that the initial replica distribution is set as per the square-
root replication scheme. The random replacement scheme does not
alter this distribution since it makes replacements blind to the pop-
ularity of a data item. However, the replacements cause dynamic
data re-organization so as to better serve the currently active re-
quest. Moreover, the mobility pattern of the cars is random, hence,
the locations from which the requests are issued by clients are also
random and not known a priori at the dispatcher. These findings
are significant because a random replacement policy can be imple-
mented in a simple decentralized manner.

The lru-global and lfu-global schemes provide a latency per-
formance that is worse than random. This is because these poli-
cies rapidly develop a preference for the more popular data items
thereby creating a larger number of replicas for them. During evic-
tion, the more popular data items are almost never selected as a
replacement candidate. Consequently, there are fewer replicas for
the less popular items. Hence, the initial distribution of the data
item replicas changes from square-root to that resembling linear
replication. The higher number of replicas for the popular data
items provide marginal additional benefits, while the lower number
of replicas for the other data items hurts the latency performance of
these global policies. The lfu-local and lru-local schemes have sim-
ilar performance to random since they do not have enough history
of local data item requests. We speculate that the performance of

these local policies will approach that of their global variants for a
large enough history of data item requests. On account of the com-
petitive performance shown by a random policy, for the remainder
of the paper, we present the performance of zebroids that employ a
random replacement policy.

6.2 Do zebroids provide significant improve-
ments in availability latency?

We find that in many scenarios employing zebroids provides sub-
stantial improvements in availability latency.

6.2.1 Analysis
We first consider the case of one-instantaneous zebroids. Fig-

ure2.a shows the variation inδagg as a function ofN for T = 10
andα = 1 with a10× 10 torus using Equation4. Both the x and y
axes are drawn to a log-scale. Figure2.b show the % improvement
in δagg obtained with one-instantaneous zebroids. In this case, only
the x-axis is drawn to a log-scale. For illustration, we assume that
theT data items are requested uniformly.

Initially, when the network is sparse the analytical approximation
for improvements in latency with zebroids, obtained from Equa-
tions2 and4, closely matches the simulation results. However, as
N increases, the sparseness assumption for which the analysis is
valid, namelyN << G, is no longer true. Hence, the two curves
rapidly diverge. The point at which the two curves move away from
each other corresponds to a value ofδagg ≤ 1. Moreover, as men-
tioned earlier, the analysis provides an upper bound on the latency
improvements, as it treats the newly created replicas given byNc

i

independently. However, theseNc
i replicas start from the same cell

as one of the server replicasri. Finally, the analysis captures a one-
shot scenario where given an initial data item replica distribution,
the availability latency is computed. The new replicas created do
not affect future requests from the client.

On account of space limitations, here, we summarize the obser-
vations in the case when z-relay zebroids are employed. The inter-
ested reader can obtain further details in [9]. Similar observations,
like the one-instantaneous zebroid case, apply since the simulation
and analysis curves again start diverging when the analysis assump-
tions are no longer valid. However, the key observation here is that
the latency improvement with z-relay zebroids is significantly bet-
ter than the one-instantaneous zebroids case, especially for lower
storage scenarios. This is because in sparse scenarios, the transi-
tive hand-offs between the zebroids creates higher number of repli-
cas for the requested data item, yielding lower availability latency.
Moreover, it is also seen that the simulation validation curve for the
improvements inδagg with z-relay zebroids approaches that of the
one-instantaneous zebroid case for higher storage (higherN val-
ues). This is because one-instantaneous zebroids are a special case
of z-relay zebroids.

6.2.2 Simulation
We conduct simulations to examine the entire storage spectrum

obtained by changing car densityN or storage per carα to also
capture scenarios where the sparseness assumptions for which the
analysis is valid do not hold. We separate the effect ofN andα
by capturing the variation ofN while keepingα constant (case
1) and vice-versa (case 2) both with z-relay and one-instantaneous
zebroids. Here, we set the repository size asT = 25. Figure3
captures case 1 mentioned above. Similar trends are observed with
case 2, a complete description of those results are available in [9].
With Figure3.b, keepingα constant, initially increasing car den-
sity has higher latency benefits because increasingN introduces
more zebroids in the system. AsN is further increased,ω reduces
because the total storage in the system goes up. Consequently, the
number of replicas per data item goes up thereby increasing the

79

number of servers. Hence, the replacement policy cannot find a
zebroid as often to transport the requested data item to the client
earlier than any of the servers. On the other hand, the increased
number of servers benefits the no-zebroids case in bringingδagg

down. The net effect results in reduction inω for larger values of
N .

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

Number of cars

no−zebroids
anal

no−zebroids
sim

one−instantaneous
anal

one−instantaneous
sim

Aggregate Availability latency (δ
agg

)

2.a)δagg

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Number of cars

% Improvement in δ
agg

 wrt no−zebroids (ω)

analytical upper−bound

simulation

2.b) ω

Figure 2: Figure 2 shows the latency performance with one-
instantaneous zebroids via simulations along with the analyti-
cal approximation for a 10× 10 torus with T = 10.

The trends mentioned above are similar to that obtained from the
analysis. However, somewhat counter-intuitively with relatively
higher system storage, z-relay zebroids provide slightly lower im-
provements in latency as compared to one-instantaneous zebroids.
We speculate that this is due to the different data item replica dis-
tributions enforced by them. Note that replacements performed by
the zebroids cause fluctuations in these replica distributions which
may effect future client requests. We are currently exploring suit-
able choices of parameters that can capture these changing replica
distributions.

6.3 What is the overhead incurred with im-
provements in latency with zebroids?

We find that the improvements in latency with zebroids are ob-
tained at a minimal replacement overhead (< 1 per client request).

6.3.1 Analysis
With one-instantaneous zebroids, for each client request a maxi-

mum of one zebroid is employed for latency improvement. Hence,
the replacement overhead per client request can amount to a maxi-
mum of one. Recall that to calculate the latency with one-instantaneous

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

Number of cars

Aggregate availability latency (δ
agg

)

no−zebroids

one−instantaneous

z−relays

3.a

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Number of cars

% Improvement in δ
agg

 wrt no−zebroids (ω)

one−instantaneous

z−relays

3.b

Figure 3: Figure 3 depicts the latency performance with both
one-instantaneous and z-relay zebroids as a function of the car
density whenα = 2 and T = 25.

zebroids,Nc
i new replicas are created in the same cell as the servers.

Now a replacement is only incurred if one of theseNc
i newly cre-

ated replicas meets the client earlier than any of theri servers.
Let Xri andXNc

i
respectively be random variables that capture

the minimum time till any of theri andNc
i replicas meet the client.

SinceXri andXNc
i

are assumed to be independent, by the property
of exponentially distributed random variables we have,

Overhead/request = 1 · P (XNc
i

< Xri) + 0 · P (Xri ≤ XNc
i
)

(6)

Overhead/request =
ri
C

ri
C

+
Nc

i
C

=
ri

ri + Nc
i

(7)

Recall that the number of replicas for data itemi, ri, is a function
of the total storage in the system i.e.,ri = k ·N ·α wherek satisfies
the constraint1 ≤ ri ≤ N . Using this along with Equation2, we
get

Overhead/request = 1− G

G + N · (1− k · α)
(8)

Now if we keep the total system storageN · α constant since
G andT are also constant, increasingN increases the replacement
overhead. However, ifN ·α is constant then increasingN causesα

80

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of cars

one−instantaneous
 zebroids

Average number of replacements per request

(N=20,α=10)

(N=25,α=8)

(N=50,α=4)

(N=100,α=2)

Figure 4: Figure 4 captures replacement overhead when em-
ploying one-instantaneous zebroids as a function of (N ,α) val-
ues, when the total storage in the system is kept fixed,ST =
200.

to go down. This implies that a higher replacement overhead is in-
curred for higherN and lowerα values. Moreover, whenri = N ,
this means that every car has a replica of data itemi. Hence, no
zebroids are employed when this item is requested, yielding an
overhead/request for this item as zero. Next, we present simula-
tion results that validate our analysis hypothesis for the overhead
associated with deployment of one-instantaneous zebroids.

6.3.2 Simulation
Figure4shows the replacement overhead with one-instantaneous

zebroids when (N ,α) are varied while keeping the total system stor-
age constant. The trends shown by the simulation are in agreement
with those predicted by the analysis above. However, the total sys-
tem storage can be changed either by varying car density (N) or
storage per car (α). On account of similar trends, here we present
the case whenα is kept constant andN is varied (Figure5). We
refer the reader to [9] for the case whenα is varied andN is held
constant.

We present an intuitive argument for the behavior of the per-
request replacement overhead curves. When the storage is extremely
scarce so that only one replica per data item exists in the AutoMata
network, the number of replacements performed by the zebroids is
zero since any replacement will cause a data item to be lost from
the system. The dispatcher ensures that no data item is lost from
the system. At the other end of the spectrum, if storage becomes
so abundant thatα = T then the entire data item repository can
be replicated on every car. The number of replacements is again
zero since each request can be satisfied locally. A similar scenario
occurs ifN is increased to such a large value that another car with
the requested data item is always available in the vicinity of the
client. However, there is a storage spectrum in the middle where
replacements by the scheduled zebroids result in improvements in
δagg (see Figure3).

Moreover, we observe that for sparse storage scenarios, the higher
improvements with z-relay zebroids are obtained at the cost of a
higher replacement overhead when compared to the one-instantaneous
zebroids case. This is because in the former case, each of thesez
zebroids selected along the lowest latency path to the client needs
to perform a replacement. However, the replacement overhead is
still less than1 indicating that on an average less than one replace-
ment per client request is needed even when z-relay zebroids are
employed.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of cars

z−relays

one−instantaneous

Average number of replacements per request

Figure 5: Figure 5 shows the replacement overhead with ze-
broids for the cases whenN is varied keepingα = 2.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Prediction percentage

no−zebroids (N=50)

one−instantaneous (N=50)

z−relays (N=50)

no−zebroids (N=200)

one−instantaneous (N=200) z−relays (N=200)

Aggregate Availability Latency (δ
agg

)

Figure 6: Figure 6 showsδagg for different car densities as a
function of the prediction accuracy metric with α = 2 and T =
25.

6.4 What happens to the availability latency
with zebroids in scenarios with inaccura-
cies in the car route predictions?

We find that zebroids continue to provide improvements in avail-
ability latency even with lower accuracy in the car route predic-
tions. We use a single parameterp to quantify the accuracy of the
car route predictions.

6.4.1 Analysis
Sincep represents the probability that a car route predicted by the

dispatcher matches the actual one, hence, the latency with zebroids
can be approximated by,

δerr
agg = p · δagg(zeb) + (1− p) · δagg(no− zeb) (9)

δerr
agg = p · δagg(zeb) + (1− p) · C

ri
(10)

Expressions forδagg(zeb) can be obtained from Equations4
(one-instantaneous) or5 (z-relay zebroids).

6.4.2 Simulation
Figure6 shows the variation inδagg as a function of this route

prediction accuracy metric. We observe a smooth reduction in the

81

improvement inδagg as the prediction accuracy metric reduces. For
zebroids that are scheduled but fail to rendezvous with the client
due to the prediction error, we tag any such replacements made by
the zebroids as failed. It is seen that failed replacements gradually
increase as the prediction accuracy reduces.

6.5 Under what conditions are the improve-
ments in availability latency with zebroids
maximized?

Surprisingly, we find that the improvements in latency obtained
with one-instantaneous zebroids are independent of the input dis-
tribution of the popularity of the data items.

6.5.1 Analysis
The fractional difference (labelledω) in the latency between the

no-zebroids and one-instantaneous zebroids is obtained from equa-
tions2, 3, and4 as

ω =

PT
i=1

fi·C
ri

−PT
i=1

fi·C
ri+(N−ri)·(1−(1− 1

G)ri)PT
i=1

fi·C
ri

(11)

HereC = c ·G · log G. This captures the fractional improvement
in the availability latency obtained by employing one-instantaneous
zebroids. Letα = 1, making the total storage in the systemST =
N . Assuming the initial replica distribution is as per the square-

root replication scheme, we have,ri =

√
fi·NPT

j=1

√
fj

. Hence, we get

fi =
K2·r2

i
N2 , whereK =

PT
j=1

p
fj . Using this, along with the

approximation(1 − x)n ' 1 − n · x for smallx, we simplify the

above equation to get,ω = 1−
PT

i=1
ri

1+
N−ri

GPT
i=1 ri

In order to determine when the gains with one-instantaneous ze-
broids are maximized, we can frame an optimization problem as
follows: Maximize ω, subject to

PT
i=1 ri = ST

THEOREM 1. With a square-root replication scheme, improve-
ments obtained with one-instantaneous zebroids are independent
of the input popularity distribution of the data items. (See [9] for
proof)

6.5.2 Simulation
We perform simulations with two different frequency distribu-

tion of data items: Uniform and Zipfian (with mean= 0.27). Sim-
ilar latency improvements with one-instantaneous zebroids are ob-
tained in both cases. This result has important implications. In
cases with biased popularity toward certain data items, the aggre-
gate improvements in latency across all data item requests still re-
main the same. Even in scenarios where the frequency of access
to the data items changes dynamically, zebroids will continue to
provide similar latency improvements.

7. CONCLUSIONS AND
FUTURE RESEARCH DIRECTIONS

In this study, we examined the improvements in latency that can
be obtained in the presence of carriers that deliver a data item from
a server to a client. We quantified the variation in availability la-
tency as a function of a rich set of parameters such as car density,
storage per car, title database size, and replacement policies em-
ployed by zebroids.

Below we summarize some key future research directions we in-
tend to pursue. To better reflect reality we would like to validate the
observations obtained from this study with some real world sim-
ulation traces of vehicular movements (for example using COR-
SIM [1]). This will also serve as a validation for the utility of the

Markov mobility model used in this study. We are currently analyz-
ing the performance of zebroids on a real world data set compris-
ing of an ad-hoc network of buses moving around a small neigh-
borhood in Amherst [4]. Zebroids may also be used for delivery
of data items that carry delay sensitive information with a certain
expiry. Extensions to zebroids that satisfy such application require-
ments presents an interesting future research direction.

8. ACKNOWLEDGMENTS
This research was supported in part by an Annenberg fellowship and NSF

grants numbered CNS-0435505 (NeTS NOSS), CNS-0347621 (CAREER),
and IIS-0307908.

9. REFERENCES
[1] Federal Highway Administration. Corridor simulation. Version 5.1,

http://www.ops.fhwa.dot.gov/trafficanalysistools/cors im.htm.
[2] D. Aldous and J. Fill. Reversible markov chains and random walks

on graphs. Under preparation.
[3] A. Bar-Noy, I. Kessler, and M. Sidi. Mobile Users: To Update or Not

to Update. InIEEE Infocom, 1994.
[4] J. Burgess, B. Gallagher, D. Jensen, and B. Levine. MaxProp:

Routing for Vehicle-Based Disruption-Tolerant Networking. InIEEE
Infocom, April 2006.

[5] E. Cohen and S. Shenker. Replication Strategies in Unstructured
Peer-to-Peer Networks. InSIGCOMM, 2002.

[6] A. Dan, D. Dias, R. Mukherjee, D. Sitaram, and R. Tewari. Buffering
and Caching in Large-Scale Video Servers. InCOMPCON, 1995.

[7] S. Ghandeharizadeh, S. Kapadia, and B. Krishnamachari. PAVAN: A
Policy Framework for Content Availabilty in Vehicular Ad-hoc
Networks. InVANET, New York, NY, USA, 2004. ACM Press.

[8] S. Ghandeharizadeh, S. Kapadia, and B. Krishnamachari.
Comparison of Replication Strategies for Content Availability in
C2P2 networks. InMDM, May 2005.

[9] S. Ghandeharizadeh, S. Kapadia, and B. Krishnamachari. An
Evaluation of Availability Latency in Carrier-based Vehicular Ad-hoc
Networks. Technical report, Department of Computer Science,
University of Southern California,CENG-2006-1, 2006.

[10] S. Ghandeharizadeh and B. Krishnamachari. C2p2: A peer-to-peer
network for on-demand automobile information services. InGlobe.
IEEE, 2004.

[11] T. Hara. Effective Replica Allocation in Ad Hoc Networks for
Improving Data Accessibility. InIEEE Infocom, 2001.

[12] H. Hayashi, T. Hara, and S. Nishio. A Replica Allocation Method
Adapting to Topology Changes in Ad Hoc Networks. InDEXA, 2005.

[13] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein.
Energy-efficient computing for wildlife tracking: design tradeoffs
and early experiences with ZebraNet.SIGARCH Comput. Archit.
News, 2002.

[14] A. Pentland, R. Fletcher, and A. Hasson. DakNet: Rethinking
Connectivity in Developing Nations.Computer, 37(1):78–83, 2004.

[15] F. Sailhan and V. Issarny. Cooperative Caching in Ad Hoc Networks.
In MDM, 2003.

[16] R. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling and
analysis of a three-tier architecture for sparse sensor networks.
Elsevier Ad Hoc Networks Journal, 1, September 2003.

[17] T. Spyropoulos, K. Psounis, and C. Raghavendra. Single-Copy
Routing in Intermittently Connected Mobile Networks. InSECON,
April 2004.

[18] A. Tanenbaum.Modern Operating Systems, 2nd Edition, Chapter 4,
Section 4.4. Prentice Hall, 2001.

[19] A. Vahdat and D. Becker. Epidemic routing for partially-connected
ad hoc networks. Technical report, Department of Computer Science,
Duke University, 2000.

[20] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach
for data delivery in sparse mobile ad hoc networks. InMobiHoc,
pages 187–198, New York, NY, USA, 2004. ACM Press.

[21] M. Zonoozi and P. Dassanayake. User Mobility Modeling and
Characterization of Mobility Pattern.IEEE Journal on Selected
Areas in Communications, 15:1239–1252, September 1997.

82

