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Abstract
In this paper we consider three distributed decision

making tasks that arise in the design and configuration of
multi-hop wireless networks: medium access scheduling,
Hamiltonian cycle formation, and the partitioning of net-
work nodes into coordinating cliques. We first model these
tasks as distributed constraint satisfaction problems (DC-
SPs). We first show that the communication complexity of
DCSPs can be related to the computational complexity of
centralized constraint satisfaction problems. We then use
centralized algorithms to obtain experimental results on
the solvability and complexity of the three DCSPs. We show
that these problems exhibit “phase transitions” in solvabil-
ity and complexity as the transmission power of the wire-
less nodes is varied. Based on these results, we argue that
phase transition analysis provides a mechanism for quan-
tifying the critical range of network resources needed for
scalable, self-configuring multi-hop wireless networks.

1 Introduction
Multi-hop wireless networks are generally defined to be

random collections of interconnected nodes in a flat topol-
ogy. It is assumed that such networks have no infrastruc-
ture, though as real applications emerge, we expect that the
requirements of the applications will dictate the use of a
limited amount of infrastructure, if only as an interface to
the Internet and other existing networked resources. In this
paper we focus on the problems that arise when configur-
ing a randomly placed collection of wireless nodes. We
envision an application in which hundreds to thousands of
nodes are distributed across a desired coverage area, and
a means must be devised for internetworking these nodes
while coping with energy and spectral constraints. We as-
sume that the transmission radius for a single node is quite
small relative to the coverage area for the network as a
whole. It follows that the network configuration algorithms
should be distributed and local, with an aim toward ob-
taining some globally desired behavior [8]. The specific
local configuration issues that must be considered include

the following:
• Medium access scheduling – How does a collection of
nodes jointly allocate the locally available spectrum in an
efficient manner while avoiding conflicts between neigh-
boring transmitters? This is the traditional problem of de-
vising a “frequency reuse” strategy such that a given log-
ical channel is efficiently used across a wireless network,
while no two co-channel transmitters are close enough to
interfere with one another.
• Hamiltonian cycle formation – How does a collection of
nodes devise an ordering of links such that each node in
the collection is visited exactly once? Such orderings are
an important first step in the creation of token ring and bus
topologies. They are also used in selection strategies [13].
• Partitioning the network into coordinating cliques of
more than three nodes – How does a collection of nodes
partition itself into subgroups of completely interconnected
nodes? Such problems arise in the design of sensor net-
work, where a collection of nodes is assigned the joint task
of tracking a particular object.

In their general form, all three of the above problems
are known to be NP-hard (see, for example, [9] and [16]).
In this paper we will first formulate these problems as
distributed constraint-satisfaction problems. We will then
show that with each problem there exists a “complexity-
tuning” parameter for which the probability that a solution
exists undergoes a 0-1 phase transition. We also show that
the computational complexity of solving the problem (i.e.
finding a solution or showing that no solution exists) un-
dergoes an easy-hard-easy phase transition, with the hard-
est problems distributed near the critical threshold value.
In order to design systems whose self-configuration poses
problems that lie in the under-constrained regions of the
complexity profile, we need to engineer sufficient resources
into the system, with “sufficiency” quantified in terms of
the phase transition.

The rest of the paper is organized as follows. In section
2, we provide some background on the constraint satisfac-
tion formalism and describe DLL, a complete algorithm
for constraint satisfaction. In section 3, we discuss dis-
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tributed constraint satisfaction problems, algorithms used
for DCSP, and the relationship between centralized and dis-
tributed complexity. This formalism is used to study the
complexity of the above problems in section 4. We present
our conclusions in section 5.

2 Constraint Satisfaction Problems

Constraint satisfaction has been used to model a large
class of problems with applications in engineering design,
planning, scheduling, resource allocation, and fault diag-
nosis [7]. In a constraint satisfaction problem (CSP), there
are a number of variables, each of which has an associated
domain of values. A number of constraints are specified on
subsets of these variables restricting the set of values they
can take on jointly. The objective of a CSP is to find out
if each of these variables can be assigned a value from its
domain in such a way that all the constraints are satisfied.

The original NP-complete problem, satisfiability (SAT)
[9], is a special kind of CSP. We briefly consider SAT for
the purpose of illustration. LetX = {x1, x2, . . . , xn} be a
set of Booleanvariables. Each variablexi and its negation
xi constituteliterals. A clauseis a disjunction (OR) of one
or more literals (e.g.(x1 ∨ x2)) and is said to besatisfi-
able if there exists sometruth assignmentof 0/1 values to
all variables such that at least one of its literals evaluates to
true under that assignment. Two special cases are the unit
clause, represented(l), that contains only one literal, and
theempty clause, represented(2), which contains no liter-
als and is by definition unsatisfiable. A conjunctive normal
form (CNF) formula overX consists of the conjunction
(AND) of a number of clauses, and is said to be satisfiable
if there exists some truth assignment to the variables inX
such that all the clauses are satisfied. An instance of SAT
consists of a CNF formulaΓ, and the goal is to determine if
there exists a satisfying truth assignment forΓ. For exam-
ple, the formulaΓ = (x1 ∨ x2) ∧ (x1 ∨ x2) is satisfied by
setting bothx1 andx2 to 1; the formula(x1) ∧ (x1) is un-
satisfiable since only one of the clauses can be satisfied by
settingx1 to either 0 or 1. SAT is a constraint satisfaction
problem as the clauses in the formula represent constraints
on the Boolean variables.

For many CSPs, including SAT, it is known that as the
ratio of constraints to variables is increased, the fraction
of (randomly generated) instances that are solvable under-
goes a one to zero “phase transition” [4], [11], [14]. Fur-
ther, the computational cost of determining whether or not
an instance is satisfiable shows an easy-hard-easy pattern,
with the complexity peaking in the phase transition region.
The phase transition for a series of randomly generated
SAT problems with 3 literals in each clause (i.e. 3-SAT)
is shown in figure 1. The curve illustrates that it is easy
to solve CSPs when they are under-constrained, and easy
to show that they have no solution when they are over-

Figure 1. Phase transitions in the fraction of solvable
problems and the average complexity for 3-SAT with 40
variables using a complete algorithm

constrained. The hardest instances lie in the critically-
constrained phase transition region.

2.1 A Complete Algorithm for Satisfiability

Complete algorithms are frequently used to study the
complexity of CSPs. An algorithm is complete if it pro-
vides a solution whenever the problem has one, or else
determines that the problem has no solution. DLL is a
complete algorithm that is frequently used for solving SAT
problems [6]. It is based on the use of the following two
rules:
Unit-propagation rule: Given a CNF formulaΓ containing
a unit clause{l}:
1. Remove all clauses containing the literall (these

clauses, a conjunction of literals, are satisfied whenever we
satisfy the unit clause{l}). When all the clauses from a
formula are removed through application of this rule (the
empty formula∅ is generated), all the clauses have been
satisfied, and we have a solution to the original expression.
2. Delete all occurrences of the complementary literall in

clauses of the formula (by the rule of the excluded middle,
the complementary literal cannot be satisfied). Observe
that this portion of the Unit-propagation rule can produce
new unit clauses, as we may delete a literal from a clause
with two literals. The unit-propagation rule should be ap-
plied again with the new unit clauses.

Branching rule: Reduce the problem of determining
whether a CNF formulaΓ is satisfiable to the problem of
determining whetherΓ ∪ {l′} is satisfiable orΓ ∪ {l′} is
satisfiable, wherel′ is a literal occurring inΓ.

The unit-propagation rule can be seen as a simplification
rule, while the branching rule is a splitting rule that divides
the problem in two subproblems. The pseudo-code of DLL
is shown in Figure 2. It returns true (false) if the input CNF
formulaΓ is satisfiable (unsatisfiable). First, it repeatedly
applies the unit-propagation rule, until there are no more

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 2
Proceedings of the 35th  Annual Hawaii International Conference on System Sciences (HICSS-35�02) 
0-7695-1435-9/02 $17.00 © 2002 IEEE 



procedure DLL

Input: a Boolean CNF formulaΓ
Output: true if Γ is satisfiable andfalse if Γ is unsatisfiable
begin
if Γ = ∅ then return true ;
if 2 ∈ Γ then return false ;
/* unit-propagation rule*/
if Γ contains a unit clause{l} then DLL(unit propagation(Γ, {l}));
let l′ be a literal occurring inΓ;
/* branching rule */
if DLL(Γ ∪ {l′}) then return true ;
else return DLL(Γ ∪ {l′});

end

Figure 2. The DLL procedure

unit clauses, resulting in a simplified formulaΓ′. It then
selects a literall′ of Γ′, applies the branching rule and re-
cursively solves the problem of deciding whetherΓ′ ∪ {l′}
is satisfiable orΓ′ ∪ {l′} is satisfiable. As such subprob-
lems contain a unit clause, the unit-propagation rule can be
applied again. DLL terminates when some subproblem is
shown to be satisfiable by obtaining the empty CNF for-
mula or all the subproblems are shown to be unsatisfiable
by deriving the empty clause(2) in all of them. The empty
clause is derived when the unit-propagation rule deletes the
unique literal of a unit clause.

The application of the branching rule can be interpreted
as the construction of a search tree. In the next section we
will see some examples of the running of DLL. Although
the DLL algorithm only works for the (Boolean) SAT prob-
lem, there exist other, similar, complete/systematic search
algorithms that work for more general CSPs [7]. Stochas-
tic local search algorithms are alternatives to complete al-
gorithms that obtain the solution through a series of local,
randomized, moves through the search space[18]. Local
search algorithms are often faster at solving satisfiable in-
stances, but cannot detect if a problem has no solution, and
are not always guaranteed to find the solution even if one
does exist.

3 Distributed Constraint Satisfaction Prob-
lems (DCSP)

A DCSP [21], is a generalization of a CSP to the frame-
work of distributed problem solving. In a DCSP, there is
a set ofn AgentsA = {1, 2, · · · , n}. Each agent has its
own variables with their own associated domains. There
are intra-agentconstraints between the variables of each
individual agent, andinter-agentconstraints between the
variables of different agents. A solution to the DCSP is an
instantiation of values to the variables of each agent such
that every intra and inter-agent constraint is satisfied.

To satisfy the inter-agent constraints in a DCSP, agents
need to use some communication mechanism for exchang-
ing the values of their variables with other agents. A com-
munication cost, or complexity is added to the computa-
tional effort associated with a centralized CSP. In the realm

of multi-hop network design, this cost is important as it
bears directly on the lifetime of sensor and other networks
in which battery power is limited. One measure of the com-
munication complexity for a DCSP is the number of mes-
sages exchanged by the agents in order to solve the problem
or to detect that no solution exists.

Figure 3. Satisfiable
DCSP

Figure 4. Unsatisfiable
DCSP

Figure 3 gives an example of a satisfiable DCSP (one
that has at least one solution). This DCSP consists of three
agents, with one binary variable for each agent. The in-
teragent constraints are represented in the figure as edges
with a binary relation symbol. The relation symbol speci-
fies the relation that must hold between the variables of the
two connected agents. A possible solution for this DCSP
is for all agents to set the same value (0 or 1) to their vari-
ables. Figure 4 gives an example of an unsatisfiable DCSP.
There is no possible solution for this DCSP, because the
fact thatx1 = x2 andx1 = x3 must be trueimplies that
x2 = x3 should also be true, which would violate the inter-
agent constraint between agents 2 and 3.

DCSPs provide a good formalism for modelling and rea-
soning about constraint satisfaction problems that areper
se of a distributed nature, and where there is no easy or
practical way to solve them in a centralized way. There is a
different line of work that considers the benefits of solving
a central problem by requiring the cooperation of a team
of agents [5] that organize themselves to decide the best
way of solve the problem by assigning different subtasks
to every agent.

3.1 Complete Algorithms for Solving DCSP

Two complete algorithms – the distributed backtracking
algorithm (DIBT) [10], and the asynchronous backtrack-
ing algorithm (ABT) [21] – have been developed for solv-
ing distributed problems that can be formalized as DCSPs.
These two algorithms work by using a generalization of
systematic complete search in the distributed setting. Be-
cause we are working in an asynchronous environment (we
assume no central control in a flat, multi-hop network) the
agents decide for themselves when to change the values as-
signed to their variables. At the beginning, all the agents
choose a value for all their variables such that their intra-
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agent constraints are satisfied (they can achieve this using
any existing centralized CSP algorithm). Before the search
can proceed, it is necessary to assign a unique identifier
number to every agent. This identifier is used to estab-
lish a priority order between agents, such that one agent
has a greater priority than other if its identifier is smaller.
Given an inter-agent constraint, one between two agents,
the higher priority agent may change the values of those
variables in the constraint that belong to him. It must in-
form the other agent about any change to the variables by
sending aninformationmessage. When the other agent re-
ceives the information message, it must try to find an as-
signment to its own variables such that all the inter-agent
constraints that it has with higher priority agents, and its
own intra-agent constraints, are satisfied. If it changes the
value of some of its variables, it will send information mes-
sages to all lower priority agents with whom it has inter-
agent constraints. However, if it is unable to change the
values of its variables, it will send abacktrackingmessage
to the lowest priority agent among all its higher priority
agents that have an unsatisfied inter-agent constraint. This
message tells the higher priority agent that it must try to
find a different value for the variable that is causing a con-
flict with the lower priority agent, because the latter cannot
do anything to resolve the conflict.

The primary difference between the DIBT and ABT al-
gorithms is the manner in which they ensure the complete-
ness of the search. To ensure completeness, the algorithms
must ensure that they will never revisit any previously con-
sidered “bad” solution, and that they will never discard
any potentially good solution. DIBT ensures complete-
ness by following a predefined order when changing values
of variables in response to information and backtracking
messages. ABT ensures completeness by recording partial,
previously considered, bad assignments inside agents that
allow agents to keep track of the particular assignments that
should not be repeated.

3.2 Relationship between Complexity of Central-
ized and Distributed CSPs

Because the algorithms DIBT and ABT both adopt a
backtracking search approach, we can relate their commu-
nication complexity to the classical computation complex-
ity of a centralized backtracking algorithm solving a cor-
responding centralized version of the problem. To show
this we present two example DCSPs and discuss how the
communication complexity of the DIBT algorithm on these
problems relates to the number of unit propagations and
number of backtrack calls in a corresponding DLL search
tree. We focus on Boolean DCSPs in which we have only
inter-agent constraints, because this is the parameter that
drives communication complexity.

Consider first the satisfiable DCSP of Figure 3. This
DCSP has only two possible solutions (x1 = 0, x2 =

0, x3 = 0 and x1 = 1, x2 = 1, x3 = 1), and no mat-
ter what initial assignment the variables start with, a com-
plete DCSP algorithm will end with one of the two solu-
tions. We assume that the subindex of the variables estab-
lishes the priority order between agents. We further assume
that the initial configuration isx1 = 1, x2 = 1, x3 = 0.
Agents1 and2 will send an information message to agents
2 and3, respectively. Because the constraint betweenx2

andx3 is not satisfied, agent3 is forced to change its as-
signment to the other possibility (x3 = 1) that is consis-
tent with the assignment of the higher priority agent. We
have found a solution at this point, because all agents have
an assignment consistent with higher priority agents. Ob-
serve that2 information messages have been transmitted.
A similar situation occurs if we start with the configuration
x1 = 0, x2 = 0, x3 = 1.

We can now relate the number of information messages
to the number of unit-propagations in a corresponding
DLL search tree. The CNF formula of the corresponding
Boolean (centralized) CSP is

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3). (1)

This CNF expression has the same set of solutions as the
DCSP of Figure 3. Figure 5 shows a possible DLL search
tree for this formula. This tree is constructed by calling
the DLL algorithm with the formula and choosing as the
variable at the root of the tree the variable corresponding to
the highest priority agent. The tree shows an application of
the branching rule as one variable (x1 in this case) and the
two edges below it labelled with the two possible values (0
and1). Every such edge denotes one of the two subprob-
lems that the branching rule creates when assigning to the
variable the value of the label.

Applications of the unitpropagation rule are shown as
arrows from the variable to which the unitpropagation rule
is going to assign its value. The value assigned to the
variable is shown in the label of the arrow. Observe that
an application of the unitpropagation rule forces a unique
possible value to the variable, so we only have one arrow
starting from the variable. Because an application of the
unit propagation rule can produce more unit clauses, we
have in the tree somechainsof applications of this rule.
Observe that we have two branches, and that the number
of unit propagations in every branch is two. Every branch
corresponds to one of the two different solutions, and its
number of unit-propagations corresponds with the number
of information messages sent by higher priority agents to
lower priority agents when reaching one of these two solu-
tions in the corresponding DCSP.

In a given application of DLL, the real search tree con-
structed by DLL will contain only one of these branches,
depending on which subproblem is considered first by the
branching rule, because once it finds a solution it will not
consider the other branch of the tree.
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Figure 5. DLL search
tree for satisfiable DCSP

Figure 6. DLL search
tree for unsatisfiable
DCSP

Consider now the unsatisfiable DCSP of Figure 4. We
assume the same priority ordering between agents as in the
previous example. Observe that in this example agent3 has
two higher priority agents, because it has inter-agent con-
straints with agents2 and1. Let’s assume that the initial
configuration isx1 = 0, x2 = 0, x3 = 0. Agent1 will send
information messages to agents2 and3 and agent2 will
send an information message to agent3. Because agents2
and3 have a conflict, agent3 should try to find a different
value for its variable. But observe that no matter what as-
signment it chooses, it always has a conflict with one of its
higher priority agents. So, it sends a backtracking message
to agent2. However, agent2 is not able to find an assign-
ment consistent with its higher priority agent (1) different
from its current assignment. So, it sends to agent1 a back-
tracking message, that causes agent1 to change its assign-
ment tox1 = 1. Then agent1 sends an information value
to agent2 and the same message to agent3. This causes
agent2 to change its assignment tox2 = 1 and for agent3
to change tox3 = 1. But now we are in a similar situation
as at the beginning of the example, because there is a con-
flict between agents2 and3 that will cause the transmission
of a backtracking message from3 to 2 and then from2 to
1. When agent1 receives this last backtracking message, it
realizes that it cannot do anything more to try to find a so-
lution to the problem. It concludes that there is no solution
to the problem. The total number of information messages
has been4 and the total number of backtracking messages
has been also4.

For this example, the CNF formula of the corresponding
centralized Boolean CSP is

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧
(x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3) (2)

Figure 6 shows the corresponding search tree. This tree is
similar to the tree of the previous example, except that in
this tree we obtain the empty clause in the two subprob-
lems that the branching rule considers, indicating that the
input formula is unsatisfiable. DLL will first consider the
subproblem of the left branch, causing two applications of
the unit-propagation rule and, when the empty clause is
generated, it will backtrack two times until it reaches the
root of the tree. At this point it will consider the subprob-

lem of the right branch, causing again two applications of
the unit-propagation rule and two backtrack calls to reach
again the root of the tree to discover that there is no solution
to the problem. So, in this example the total number of unit
propagations, until it finds that there is no solution, is4 and
the total number of backtrack calls is also4. Observe that
there is a correspondence between information messages
and unit propagations and between backtrack messages and
backtrack calls.

We note here that this correspondence is not going to
hold in all the cases with the same accuracy, because some-
times the application of the unit-propagation rule can elim-
inate certain bad partial solutions in the DLL search tree.
Also, because some DCSPs algorithms always start from
total solutions, they could start the search from a bad so-
lution that would never have been considered by DLL in
the corresponding centralized CSP. Moreover, in the same
way that in centralized CSPs the choice of the branching
heuristic (the rule that selects the literal in applications of
the branching rule) has a big impact in the size of the search
tree, for DCSPs the agent priority-ordering heuristics and
the value-ordering heuristics can have also a big impact
in the actual communication complexity of different DC-
SPs. Still, the point we wish to make is that the two com-
plexity measures are similar. Studying the computational
complexity of a CSP using a centralized algorithm provides
a strong indication of the communication complexity of a
distributed version of the same problem. This is precisely
the approach we take in this paper when we discuss the
complexity of some DCSPs that arise in wireless networks.

4 Distributed Constraint Satisfaction in Wire-
less Networks

We now consider three specific problems that can arise in
the context of distributed wireless networks: i) channelized
multiple access, ii) Hamiltonian cycle formation and iii)
the partitioning of nodes into coordinating cliques. These
problems are all NP-hard, so unless P=NP, we can expect
the communication and computational complexity in these
problems to be exponential in the worst case. It follows
that a clear understanding of the complexity of these prob-
lems is a necessary step in the incorporation of solutions
of these problems into self-configuring multi-hop wireless
networks.

In this section we formalize these problems as dis-
tributed constraint-satisfaction problems and show that
they each have a “complexity-tuning” parameter over
whose range they exhibit a 0-1 phase-transition in the prob-
ability of being satisfiable, and a corresponding easy-hard-
easy transition in average case complexity. Most interest-
ing from the view-point of application is the fact that in
each case we can show that adding resources (in the form
of additional bandwidth or energy) to the nodes of the net-
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work moves the system to the easy, satisfiable, portion of
the transition curves. This is precisely the region under
which the communication and computation complexity is
the lowest and the distributed problem solving task can be
performed easily and efficiently.

4.1 Scheduled Channelized Medium Access

Figure 7. Solvable channel scheduling with small
transmission radius (n = 7, C = 3, R = 0.40)

Figure 8. Unsolvable channel scheduling with large
transmission radius (n = 7, C = 3, R = 0.55)

The random access protocols that have been proposed
for use in ad-hoc networks (e.g. ALOHA [1] and Busy
Tone Multiple Access (BTMA) [19]) are useful for appli-
cations with bursty traffic conditions. In these protocols
nodes share the same broadcast channel and transmit when-
ever they need to. The scheduled access techniques that
have been proposed for ad-hoc networks [2], [15], [16] are
better suited for non-bursty traffic conditions. In a typical
scheduled access protocol, the available bandwidth is di-
vided into multiple logical channels defined on the basis of
differing time slots, frequency slots, spreading codes, or a
combination thereof. Transmit power is limited so that a
given logical channel can be simultaneously used by sev-
eral nodes in the network so long as the nodes are suffi-

Figure 9. Phase transitions in the fraction of solvable
problems and the average complexity for the channel
scheduling problem using a complete backtracking al-
gorithm

ciently far apart to limit mutual interference. This prob-
lem is also referred to in the literature as multi-hop TDMA
or broadcast scheduling and is known to be NP-complete
[16]. An excellent survey of the complexity results for this
problem and analysis of some of the proposed suboptimal
methods can be found in [12].

A simpler version of the broadcast scheduling problem,
which is still NP-hard, can be defined as follows. Consider
a wireless network consisting ofn nodes, each of which
transmits with the same power. We will assume that the
transmission range of each node can be modelled as a circle
of some radius R centered at the node. Let each nodei in
the network have a specified traffic need forti contiguous
time slots on a single channel (the time slots may be taken
to be more general logical channels; we have adopted time
slots for clarity).C channels are to be shared by all users in
a given region. The goal is to find an assignment ofti time
slots for each nodei, such that no two neighboring nodesj
andk share the same slot.

The channel assignment problem can be easily modelled
as a DCSP. Imagine each node as an agent, withti multi-
valued variables{xi,1, . . . xi,ti

} for each agenti, corre-
sponding to the allocated channels. These variables can
take on values from 1 toC. The intra-agent constraint here
is that each of the variables within an agent must take on
distinct values. The inter-agent constraints take the form
that if there are two neighboring (interfering) nodesi and
j, their variables must not take on the same values.

Formulated as a DCSP, this problem can be solved using
one of the distributed backtracking algorithms described
in the previous section. Although the communication and
computational costs involved can be exponential in the
number of nodes in the worst case, as we have discussed
before, the average complexity can be within tolerable lim-
its provided the system as a whole is under-constrained.

Figure 7 shows a solvable instance of this problem on
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a small, sparse network. Variable assignments that satisfy
all constraints are indicated in the figure. Figure 8, on the
other hand, is an unsolvable instance of this problem on a
dense network. Since there are only three channels avail-
able, and the nodes 2,3,4, and 5 form a clique of size 4, it
is not possible for them to assign values to their respective
variables without violating inter-agent constraints.

Figure 10. Average computational complexity of solv-
ing the channel scheduling problem for satisfiable in-
stances using a randomized local search algorithm

For a given mean traffic level per node, there are two
parameters that affect the problem complexity and solv-
ability: the transmission radiusR, and the total number
of channels availableC. In order to study the effects of
these parameters, we conducted the following experiment.
7 nodes are placed at random in a square region with unit
sides. The transmission radius of all nodes is the same and
is varied from1 to

√
2. A particular combination of node

positions and transmission radii corresponds to a unique
network graph. A traffic level of1 or 2 is generated at each
node with equal probabilities. The bandwidthC is tested
for values4,6, and8. 100 instances are generated for each
value of transmission radius and bandwidth. A complete
CSP-solver, similar to the DLL algorithm presented earlier
in the paper, is used to obtain statistics on satisfiability and
computational complexity of these instances. Figure 9 con-
tains the results of these experiments, and shows that this
problem undergoes a phase transition with respect to the
Transmission Radius1.

These figures show that there is a critical value of the
transmission radius below which a satisfying solution ex-
ists with high probability, and above which it exists with
negligible probability. Figure 9 also shows the easy-hard-
easy phase transition in average complexity when this con-

1Note that in this problem the transmission radius increases with the
ratio of constraints to variables. This is because for a given mean traffic
level, number of nodes, and number of channels, the number of variables
is fixed, and the number of constraints increases with the density of the
network graph which in turn depends directly upon the transmission ra-
dius.

straint satisfaction problem is solved using a backtracking
algorithm. It can be seen that when we increase the total
number of channels – the bandwidth available to the system
– the phase transition threshold moves to the right. This
is intuitive, for adding bandwidth resources to this system
makes it easier to provide a non-conflicting schedule to the
nodes.

Another experiment makes it clear that we can also ex-
pect some gains in complexity to result from the increase
in bandwidth. If we restrict the study of complexity to only
those instances in which there is a solution, i.e. satisfiable
instances, then we can use a randomized local search algo-
rithm to solve the problem. Figure 10 shows the normalized
average cost for finding the satisfying solution for the three
values of the bandwidthC ranging from4 to 8. For each
value of the transmission radius , the cost (which is a mea-
sure of the time taken to obtain the solution) is averaged
over 300 runs of the local search algorithm, each starting
from a random point in the search space. Figure 10 shows
that an increase in bandwidth not only increases the prob-
ability that a solution, but also decreases the complexity of
obtaining the solution when it exists.

4.2 Distributed Hamiltonian Cycle Formation

Consider the following task in a wireless sensor network:
a set of nodes that form a connected network component
wish to form a Hamiltonian cycle in a distributed manner.
Recall that a Hamiltonian cycle in a graph is a cycle that
visits each node in the graph exactly once. The formation
of such a cycle is useful, for example, when forming a to-
ken ring in the network, and also forms the basis of some
other distributed algorithms such as leader selection [13].
Another application is in optimal one-to-one broadcasting
where nodes only send messages to one of their neighbors
[17]. If a Hamiltonian cycle is established, any node in
a one-to-one network can send a broadcast message to all
the nodes in the network in sequential order, with a mini-
mal number of data packets, and even get an acknowledge-
ment/confirmation of the successful receipt of the message
by all nodes.

We can represent the problem of forming a Hamiltonian
cycle as a DCSP as follows: Each ofn nodes has an as-
sociated agent. Agenti has three multi-valued variables,
FROMi, TOi, andHOPCOUNTi, representing the pre-
ceding and succeeding nodes in the hamiltonian cycle, and
the number of hops from the beginning of the cycle respec-
tively. TheFROMi andTOi variables can take on values
from 1 to n, while theHOPCOUNTi variable takes on
values from0 to n − 1. The intra-agent constraints per-
taining to theFROMi andTOi variables is that they must
be distinct and not equal toi. The following are the intra-
agent constraints pertaining to theHOPCOUNTi vari-
able. Agent1 is always considered to be the beginning
point of the cycle, and henceHOPCOUNT1 is always

Proceedings of the 35th Hawaii International Conference on System Sciences - 2002

0-7695-1435-9/02 $17.00 (c) 2002 IEEE 7
Proceedings of the 35th  Annual Hawaii International Conference on System Sciences (HICSS-35�02) 
0-7695-1435-9/02 $17.00 © 2002 IEEE 



Figure 11. Unsolvable Hamiltonian cycle forma-
tion with small transmission radius (n = 7, R =
0.40)

Figure 12. Solvable Hamiltonian cycle formation
with large transmission radius (n = 7, R = 0.55)

equal to0. The inter-agent constraints between agentsi and
j are thatFROMi = j if and only if i andj are neighbors
andTOj = i andHOPCOUNTi = (HOPCOUNTj +
1) mod n. Once it is specified in this manner, a complete
DCSP algorithm can be used to solve this problem in a dis-
tributed manner.

Figure 11 shows an unsolvable instance of this problem
on a small, sparse network graph which contains no Hamil-
tonian cycles. No assignment of values to the variables of
nodes 1, 6, and 7 will satisfy their respective intra-agent
constraints, since they each have only one neighbor. Fig-
ure 12, on the other hand, shows a solvable instance of this
problem on a denser network with a higher transmission ra-
dius. A particular solution is indicated in this figure using
dashed lines, as are the corresponding constraint-satisfying
values to the variables of each node agent.

The transmission radii of the nodes is once again the fac-
tor affecting the complexity of this problem. Unlike in the
medium access problem, however, the under-constrained
region is reached by increasing the transmission radii of

Figure 13. Phase transitions in the fraction of solv-
able problems and the average complexity of forming
a Hamiltonian cycle using a complete search algorithm
with a simple pruning heuristic

the nodes. This is because as the network graph becomes
denser, the probability that a hamiltonian cycle exists in the
graph increases.

Figure 13 shows the phase transition in the probability of
solution that occur in this problem as the transmission ra-
diusR increases. The figure is based on networks consist-
ing of 7 randomly placed nodes in a square area with unit
sides.100 such instances were generated for each value of
the transmission radius, which is varied from1 to

√
2. The

statistics for satisfiability and complexity of this problem
were generated using a complete search algorithm with a
simple pruning heuristic. Figure 13 also shows how the
complexity for this problem too undergoes an easy-hard-
easy phase transition.

The graph density at which the phase transition occurs in
this problem corresponds to a critical amount of per-node
energy consumption. When sufficient energy resources
are provided to the system, the problem enters the under-
constrained regime where a solution exists with high prob-
ability and the solution complexity is low.

4.3 Partition into Coordinating Cliques

We now turn to a third and final problem that once
again reflects the impact of transmission power on self-
configuration. In wireless sensor network, sensing or other
tasks may need to be distributed among the various nodes.
One such example is in the task of monitoring the environ-
ment for a pre-specified phenomenon. If several nodes are
selected to perform this task together, it is desirable that
these nodes form a communication clique. In other words,
any node in the coordinating group should be able to com-
municate directly over the wireless link with any other. For
example, such a situation arises in the tracking of mobile
nodes by Doppler radar sensors where it is required that
a number of nodes participate and coordinate their actions
jointly in order to track each mobile node [3]. The par-
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Figure 14. Unsolvable partition into coordinating
cliques with small transmission radius (n = 9, k =
3, R = 0.40)

Figure 15. Solvable partition into coordinating
cliques with large transmission radius (n = 7, k =
3, R = 0.55)

titioning of the nodes has other applications in multi-hop
wireless networks, such as in geography-informed energy
conservation for routing [20].

We consider here the problem of arranging such com-
munication cliques. Givenn = q · k wireless nodes in the
network, each with a transmitting radiusR, the objective
is to partition the network intoq communicating cliques
of sizek each. This can be formulated as a DCSP as fol-
lows: Each node is an agent. Agenti hask − 1 variables
{xi,1, . . . xi,k−1} which can each take on values from 1 to
n. The values assumed by the variables must be distinct
and no equal toi, as they are to represent the other mem-
bers of thek-node clique. The inter-agent constraint be-
tween agentsi andj is that one of agenti’s variables takes
on the valuej if and only if one of agentj’s variables is set
to the valuei, and all the otherk − 2 variables of agents
i andj share the same values. Also, one of agenti’s vari-
able can be set to the valuej if and only nodesi andj are
neighbors.

Figure 16. Phase transitions in the fraction of solvable
problems and the average complexity for the problem
of partitioning a network into coordinating cliques us-
ing a complete search algorithm with a simple pruning
heuristic.

Figure 14 shows an unsolvable instance of this prob-
lem on a sparse network consisting of nine nodes which
is to be partitioned into three coordinating cliques of size
three each. This instance is clearly unsatisfiable because
node 6 has only one neighbor and hence cannot commu-
nicate/coordinate with two other nodes. If we increase
the transmission radius of each node, we get a denser net-
work graph as shown in figure 15. This graph represents a
solvable instance of the problem. The dashed edges repre-
sent one possible partition of the graph into three 3-cliques.
Also shown in the figure is the corresponding, satisfiable,
value assignment to the variables of each node agent.

The problem of partitioning a graph into isomorphic sub-
graphs is known to be NP-hard for any connected subgraph
with more than 3 nodes [9]. For a given set of nodes po-
sitioned arbitrarily, the difficulty of obtaining a partition in
this problem is dependent on the density of the network
graph. As we have seen before, this is affected directly by
the transmission radii of the nodes. Figure 16 shows the
phase transitions in both probability of partition and the
average complexity for this problem based on100 problem
instances (n = 9, k = 3) for each value of the transmission
radiusR ranging from 0 to

√
2. Once again, there is a crit-

ical transmission power level above which the problem has
a solution with high probability and below which there is
rarely a solution.

5 Conclusion

In this paper we studied the complexity of several prob-
lems related to the configuration of multi-hop wireless net-
works. In every instance, we saw that the existence of a
solution and the difficulty of finding the solution exhibited
a phase transition as the transmission radii of the nodes was
varied. It followed that a certain critical range of resources
was necessary to ensure that configuration problems in an
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multi-hop wireless network are tractable. The following
design methodology is suggested by these results:
• Use the phase transition analysis to determine the upper
limit of the under-constrained region of the medium access
scheduling problem.
• Design the network to have a balance between transmis-
sion radii and the number of available logical channels that
ensures that the design problem falls within the previously
determined under-constrained region.
• Having appropriately bounded the complexity of the
problem, use stochastic search techniques to rapidly iden-
tify a good channel assignment. This final step can be in-
corporated into a self-configuring system, and repeated as
necessary while the network is on-line.

In general the configuration of an multi-hop wireless
network is a multidimensional optimization problem. The
goal is to identify the boundaries of the under-constrained
region of the problem and then use efficient algorithms to
identify solutions that fall within that region.
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