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Abstract

This paper describes our ongoing work on an in-
teresting distributed constraint satisfaction problem
(DCSP), SensorCSP, that is based on a system of
wireless sensors tracking multiple mobile nodes. We
present some preliminary results showing that the
source of combinatorial complexity in this problem
is closely linked to the level of communication in the
system. This DCSP lends itself naturally to two mod-
els - one in which agents are associated with the sen-
sors, and one in which agents are associated with the
mobile nodes. We show that these models are duals
of each other, and discuss how they differ in the num-
ber of intra and inter-agent constraints and how this
might affect the cost of finding a distributed solution.
We also suggest that a careful distinction must be
made between explicit and implicit inter-agent con-
straints in this problem domain as this might affect
the communication costs and the scalability of a dis-
tributed solution.

1 Introduction

With some of the recent developments in multi-hop
wireless communication networks, distributed artifi-
cial intelligence techniques and approaches are in-
creasingly seen as a useful tool. One of the areas

in DAI is the use of distributed agents for coopera-
tive problem solving through negotiation processes.
If the common task of the agents can be described as
one of choosing consistent values for certain variables
while satisfying given constraints, a useful formalism
to use in these contexts is that of a Distributed Con-
straint Satisfaction Problem (DCSP) [2, 13]. In a
DCSP, there are assumed to n independent agents,
each of which have some variables to which they need
to assign values. There are, however, constraints be-
tween the variables for a single agent (intra-agent
constraints) as well as constraints between the vari-
ables of different agents (inter-agent constraints) that
must be satisfied.

We describe in this paper a problem domain we refer
to as SensorCSP, an interesting test-bed for studying
distributed constraint satisfaction. SensorCSP arises
in the context of a distributed wireless sensor system
for tracking mobile nodes. It is based on a challenge
problem pertaining to the agent negotiating teams
project (ANTs) [8].

Some of the current literature has focused on us-
ing DCSP to parallelize the solution of traditional
constraint satisfaction problems such as SAT, Graph
Coloring, N-Queens [5, 11, 13]. One property of the
SensorCSP is that it lends itself readily to solutions
involving the use of distributed agents, since the in-
formation needed to solve the problem is not local-
ized.



We show in this paper that the origins of computa-
tional complexity in SensorCSP are directly related
to the communication constraints of the system. An-
other interesting property of this domain is that when
the distributed agents exchange information in order
to solve the DCSP their interactions are restricted by
these same constraints.

We present two different DCSP formulations of the
SensorCSP that can be viewed as duals of each other.
One of these representations has more inter-agent
constraints and less intra-agent constraints than the
other. One of goals in this work is to study how
the choice of representation affects the complexity of
computation and communication .

Some sound and complete algorithms have been de-
veloped for DCSP [4, 13]. These have proved useful in
characterizing the computation and communication
complexity of such problems, for example to examine
phase transition behavior [5]. We make a distinction
between explicit and implicit inter-agent constraints
in SensorCSP. We show that in the SensorCSP do-
main, the use of a complete DCSP algorithm can
sometimes entail indirect, multi-hop, communication
between agents that have implicit inter-agent con-
straints.

The rest of this paper is organized as follows. In sec-
tion 2 we describe the wireless sensor tracking system
and define SensorCSP using a graph-based model.
We prove that SensorCSP is an NP-complete prob-
lem using a reduction from the problem of partition-
ing a graph into isomorphic subgraphs [6]. We show
that SensorCSP also exhibits a phase-transition phe-
nomenon that is linked to the communication prop-
erties of the system. In section 3, we present the
dual representations of this problem as a distributed
constraint satisfaction problem. We then describe
the communication issues that need to be considered
when using asynchronous backtracking algorithms for
solving this problem in section 4. Finally, we con-
clude with a discussion of our ongoing and future
work in section 5.

2 The Wireless Sensor Track-
ing System

Figure 1: Sensors nodes and mobile nodes in an area

The wireless sensor tracking system consists of a set
of n doppler radar-based sensors S = {s1, s2, . . . sn}
that are required to track the position of a set of m
moving mobile nodes T = {t1, t2, . . . tm}. The radar
coverage of each sensor is assumed to be a circular
region of a fixed radius R. In order to estimate the
location of each mobile node, the position and veloc-
ity measurements obtained from k different sensors
must be combined. Thus, in order to be tracked, a
mobile node must lie in the intersection of the cov-
erage areas of at least k sensors. Figure 1 shows an
instantaneous snapshot of such a system. Figure 2
shows the coverage zone for each mobile node. An
edge is drawn between each sensor and all of its in-
range mobile nodes.

We further assume that even if several mobile nodes
are within range, each sensor can only be involved
in tracking one of these at a given time. Each sen-
sor node is equipped with sufficient computational
resources. One of the requirements of the problem is
that the tracking should be performed in a decentral-



Figure 2: Coverage zone for each mobile node

ized, distributed, manner.

Due to limited bandwidth and power resources, there
may be time-varying constraints on communication
between the nodes, i.e. at any given time direct com-
munication may only be possible between some pairs
of nodes. Only sensor nodes that can directly commu-
nicate with each other may track a particular mobile
node.

2.1 Constraint Satisfaction Model

We can formulate the operation of the overall system,
at any given moment in time, as a constraint satisfac-
tion problem based on a graph model. We construct a
graph G∗ = (S∪T,E∗) where the vertices correspond
to each of the sensors and mobile nodes at a partic-
ular instant in time. We place an edge between a
sensor and a mobile node if the mobile node is within
a distance R of the sensor. As we noted above, in
the operational setting of the wireless sensor network,
there may be constraints on the inter-sensor commu-
nication. To incorporate these into our graph model,
we also place an edge e′ = (s1, s2) between all pairs

Figure 3: An example Graph G∗ with communication
and visibility edges between the sensor and mobile
nodes: dashed edges represent a solution to Sensor-
CSP in this graph

of sensor nodes s1 and s2 that can communicate with
each other. Thus, in addition to the visibility con-
straints modelled by the edges between sensors and
mobile nodes, we have communication edges between
sensor nodes.

Definition 1 We say a node t ∈ T is k−trackable,
k ∈ Z+ by S in a graph G+ = (T ∪ S, E+) if the
following hold:

1. There are exactly k edges touching node t, (k
sensors are tracking this mobile node)

2. For all s ∈ S such that (s, t) ∈ E+, there is no
other node t′ ∈ T for which (s, t′) ∈ E+ (each
such sensor should track only this mobile node)

3. For all s1, s2 ∈ S such that (s1, t) ∈ E+ and
(s2, t) ∈ E+, (s1, s2) ∈ E+ (all sensors track-
ing this mobile node can communicate with each
other, pairwise).



We formulate the constraint satisfaction problem in
the following way:

SensorCSP: Given a graph G∗ = (S ∪T,E∗), is there
a subgraph G+ = (S ∪ T,E+) of G∗ such that every
node t ∈ T is k−trackable for some k ∈ Z+?

Claim 1 SensorCSP is NP-complete.

Proof: It is clear that it is in NP - given a certifi-
cate consisting of a graph G+, it is easy to verify in
polynomial time that it is indeed a subgraph of G∗

and that all nodes t ∈ T are k − trackable by simply
checking each of the conditions given in definition 1.

To complete the proof, we reduce the problem of par-
titioning a graph into isomorphic subgraphs to Sen-
sorCSP. This problem considers a graph G = (V,E)
and a graph H = (V ′, E′) such that |V | = q · |V ′| for
some q ∈ Z+. The question is to find a decomposi-
tion of the graph G into q disjoint subgraphs, such
that every one of these graphs is isomorphic to H.
This problem is NP-complete for every graph H that
contains a connected component with at least three
vertices [6]. Consider the particular sub-problem of
finding a decomposition of G when H is a clique of
size k and when |V | = q · k for some q ∈ Z+. We
construct a new graph GTS = (VTS , ETS) that is
identical to G = (V,E) except that we put q extra
vertices W and we connect each of them to all the ver-
tices in V . The set of vertices V represents the set
of sensors and the edges E between them are com-
munication edges. The additional set W of q vertices
represent the set of mobile nodes of the GTS graph.
We need to show that the graph G has a decompo-
sition into cliques of size k if and only if the graph
GTS has a subgraph such that every node w ∈ W
is k − trackable. Let us consider each direction of
this equivalence separately. If the graph G has a de-
composition into cliques of size k, then there must
be q such cliques. In GTS , each of these q disjoint
cliques correspond to k communicating sensors. We
can therefore assign each mobile node to such a dis-
tinct set of k communicating sensors. This is all that
is required for GTS to have a subgraph such that

Figure 4: Phase Transition in the probability of ob-
taining a solution to SensorCSP with respect to the
communication edge probability model

every node w ∈ W is k − trackable. Conversely, let
graph GTS have a subgraph G+ such that every node
w ∈ W is k − trackable. Then, each of the q mobile
nodes in G+ is connected with a clique of k vertices
from the set V . Each of these cliques is disjoint (no
shared vertices) and only contains edges from the set
E. Hence there is a partition of the graph G = (V,E)
into q disjoint cliques of size k. This concludes the
proof. 2

In this problem the computational complexity is
closely related to the communication level between
the sensor nodes. Our preliminary results indicate
that, as the number of communication edges is in-
creased, this problem also shows the phase transition
phenomenon that has been identified in many diffi-
cult computational problems [1, 7].

Figure 4 shows the result obtained with experiments
with a random configuration of 9 sensors and 3 mo-
bile nodes such that there is a communication channel
between two sensors with probability p. In these ex-
periments all mobile nodes were assumed to be within



range of all sensors, and the number of required sen-
sor trackers k is equal to 3. The plot shows the prob-
ability that three communicating sensors can be as-
signed to track each mobile node. On the far left
hand side of the phase transition, when p is near 0,
there are few communication edges and it is hard to
find such an assignment for every mobile node. On
the other hand, when p is near 1, the system has
almost a global communication property (nearly all
pairs of sensors can directly communicate with each
other), and it is almost certain that there exists such
an assignment. As with other CSPs, it is expected
that the harder instances of SensorCSP are likely to
occur around the region of the phase transition.

We note that the results in figure 4 are based on a
random graph model, and in fact the phase transition
that we observe in this figure is the one expected for
monotone first order properties in random graphs [9].

3 Distributed Constraint Satis-
faction Model

In the wireless radar tracking system, it is assumed
that computational resources are available at each
sensor node for the instantiation of agents. It is de-
sirable for the agents to solve the overall problem in
a distributed manner by making use of local informa-
tion. For modeling this, we consider formulating Sen-
sorCSP as a distributed constraint satisfaction prob-
lem formulation (DCSP) [13].

In a DCSP, variables and constraints are distributed
among multiple agents. As explained in [13], it con-
sists of a set of agents A = {a1, a2, . . . an}, each of
which has its own variables. There are constraints
on the assignments to variables of each agent (intra-
agent constraints), as well as constraints on the as-
signments for variables of different agents (inter-
agent constraints). A solution to this problem is an
assignment to the variables of all the agents such that
all these constraints are satisfied.

Figure 5: Sensor-centered Agents: Variables and
Constraints

In this problem domain, one can think of having a
distinct agent for each sensor, or having a distinct
tracker agent for each mobile node1. Each of these
views results in a different DCSP model: a sensor-
centered model, and a mobile node-centered model.
We describe these two models below in more detail.

3.1 Sensor-centered DCSP

In this model, each sensor agent has a binary vari-
able corresponding to each mobile node that is within
range of it. A sensor agent assigns a value 1 to a
variable t if it is going to track the mobile node cor-
responding to this variable.

Since each sensor can track at most one in-range mo-
bile node, at most one of its variables can be set to 1.
This is the intra-agent constraint in this model. In
SensorCSP, we desire that k communicating sensors
should track each mobile node - this forms the basis
of the inter-agent constraints.

Figure 5 shows an example variable assignment for
the sensor-centered DCSP with k = 3. Each row rep-
resents the variables of a particular sensor, in such
a way that the variables corresponding to the same

1We assume that in either case the agents reside physically
in sensors only, where the computational resources are.



Figure 6: Mobile node-centered Agents: Variables
and Constraints

mobile node are placed in the same column. In each
row, the elements corresponding to out-of-range mo-
bile nodes are crossed out since these variables are not
available to the sensor agent. For example, row one
corresponds to the sensor agent s1 which can assign
values to variables corresponding to mobile nodes t2
and t4. In the current assignment it has chosen to
assign a 1 to the variable for t4. In this example,
sensors s1, s2, and s3 are able to communicate with
each other but not with s4. Hence the first three sen-
sor agents can all decide to track mobile node t4 since
the inter-agent constraint depicted by the dashed-line
oval is satisfied. Another inter-agent constraint is
that sensor agent s4 cannot choose to track mobile
node t4 because there is no communication between
s3 and s4, and this is depicted by the solid-line oval.

3.2 Mobile node-centered DCSP

In this model, there is a tracker agent associated with
each mobile node. Each tracker agent has a binary
variable corresponding to each sensor that has the
mobile node within its range. A tracker agent t as-
signs a value 1 to a sensor variable s if that sensor is
going to track the mobile node corresponding to t.

In SensorCSP, it is required that each mobile node be
tracked by k communicating sensors that it is within
range of. This forms the basis of the intra-agent con-
straints - each tracker agent must select exactly k
sensor variables to be 1, and these k sensors must be
able to communicate with each other in a pairwise

manner. The inter-agent constraint in this model
is that no two tracker agents may select the same
sensor. This is because of the assumption that each
sensor can only track one mobile node at the same
time.

Figure 6 shows an example variable assignment for
the mobile node-centered DCSP. Each row represents
the variables of a particular mobile tracker agent, in
such a way that the variables corresponding to the
same sensor node are placed in the same column. In
each row, the elements corresponding to sensor nodes
that cannot track this mobile node are crossed out
since these variables are not available to the mobile
tracker agent. For example, row one corresponds to
the mobile tracker agent t1 which can assign values
to variables corresponding to sensors s1, s2, s3, and
s9 (since k = 3). In the current assignment agent t1
has chosen to assign a 1 to the variables for s1, s3,
and s9. In this example, agents t2 and t3 have a con-
straint violation because they have both assigned a 1
to their respective variables corresponding to sensor
s4. This inter-agent constraint violation is depicted
by the solid-line oval in the figure.

We assume that each mobile tracker agent is located
in one of the sensors that the mobile node is within
range of. We also assume without loss of general-
ity that this agent is able to communicate directly
with the other sensors that can potentially track the
same mobile node 2. Tracker agents for two mobiles
can communicate directly with each other through
common sensor nodes that are within range of both
mobiles.

3.3 Comparison of the two DCSP
models

Table 1 compares the two models. We observe that in
both models we have the constraints “Only one mo-
bile per sensor” and “k communicating sensors per

2Even if this is not the case, the tracker agent will only
consider assigning communicating sensors to track the mobile
node.



DCSP Model Sensor-centered Mobile node-centered
Agents Sensors (s) Mobiles (m)
Variables Mobiles (m) Sensors (s)
Intra-agent Constraints Only one mobile per sensor k communicating sensors per mobile
Inter-agent Constraints k communicating sensors per mobile Only one mobile per sensor

Table 1: Dual models for distributed SensorCSP

mobile”. The difference is that in the sensor-centered
model the first one is a intra-agent constraint and
the other is a inter-agent constraint, but in the mo-
bile node-centered model the situation is exactly the
reverse. This difference can be significant from the
point of view of solution, because DCSP algorithms
must make use of the agents’ communication re-
sources in order to check that the inter-agent con-
straints are satisfied. Hence the solution of a DCSP
formulation which involves more complex inter-agent
constraints is likely to incur a greater communication
cost.

It is expected that, in realistic settings, the number
of sensors is much greater than the number of mo-
bile nodes to be tracked. Under these circumstances
the number of sensors that can possibly track a given
mobile node is likely to be greater than the number
of mobile nodes within range of each sensor. Thus
the number of variables in the two different DCSP
models can be quite different. Sensor-centered agents
would have typically fewer variables than mobile
node-centered agents, but there will be more agents
in total in the former case. When each agent has
fewer variables, its computational requirements are
reduced since there are fewer intra-agent constraints
to be satisfied. In fact, in the case of the sensor-
centered model, the intra-agent constraints are very
easy to satisfy since it only requires each sensor agent
to assign a 1 to exactly one of its variables.

Thus we see that there is a tradeoff between the
communication and computational complexity in the
two formulations. The sensor-centered model may re-
quire less computation at each node, at the expense
of greater communication costs, as compared to the
mobile node-centered model.

4 Distributed Solution of Sen-
sorCSP

Complete search algorithms to solve constraint satis-
faction problems are based on backtracking [3]. Re-
cently such algorithms have been modified for use
in solving distributed CSPs as well. Two such ap-
proaches are the asynchronous backtracking algo-
rithm (ABT) [13] and the distributed backtracking
algorithm (DIBT) [4]. These are both known to be
sound and complete algorithms.

In these algorithms, a priority order is first induced
among the distributed agents. When solving the
problem, each agent tries to solve its own CSP first
and inform its neighboring agents of the current as-
signment of its variables . Lower priority agents are
expected either to modify their current assignment to
be consistent with the assignments and notify their
neighbors in turn, or if this is not possible, to request
higher priority agents to perform a backtrack step.

We make a distinction in SensorCSP between explicit
and implicit inter-agent constraints. Explicit inter-
agent constraints are the ones that are originally de-
fined in the problem. For the mobile-node centered
approach, the explicit inter-agent constraint between
two tracker agents is that they may not both assign a
1 to variables corresponding to the same sensor. We
assume in our test-bed that the tracker agents for
these mobile nodes will communicate through the set
of common sensors, hence all agents with explicit con-
straints can communicate directly with each other.
Implicit constraints are those that are implied by a
set of explicit constraints. What is different about
this test-bed is that two agents with implicit con-



straints may not necessarily be able to communicate
with each other directly.

Consider the example shown in figure 6, which
shows the mobile node-centered representation for
distributed SensorCSP. In this example, therefore,
the tracker agents for mobiles t2 and t3 have an ex-
plicit constraint that they cannot simultaneously as-
sign sensor s4 to track them, and the tracker agents
for t1 and t3 have an explicit constraint that they
cannot simultaneously assign sensor s9 to track them.
There is no explicit constraint between the tracker
agents for t1 and t2, since there is no common sensor
between them.

However, there is an implicit constraint between
agents t1 and t2. This can be seen as follows: in
the figure, currently t2 has a conflicting assignment
with t3, but is unable to resolve this conflict because
the only possible modification creates a conflict be-
tween t3 and t1. Thus, indirectly, there is a conflict
between the current assignments of t2 and t1. Thus
there is an implicit constraint between t2 and t1 that
is implied by the two explicit constraints in this situ-
ation. Observe that agents t1 and t2 in this situation
cannot communicate directly with each other since
they do not share any common sensors.

In ABT, such implicit constraints may be discovered
between two agents during the execution of the al-
gorithm. In this case, the ABT algorithm allows the
agents to create a constraint link to each other. It is
stated in [13] that “since a link in the constraint net-
work represents a logical relationship between agents,
adding a link does not mean adding a new physical
communication path between agents.” Similarly, in
DIBT, it is assumed that all agents which have con-
straints between them, explicit or implicit, can com-
municate directly with each other.

In our domain, communication between agents may
not be straightforward. It is true that because of the
way the implicit constraints are discovered between
two agents, there is guaranteed to be a chain of inter-
mediate agents which will provide a communication
path between them. But this will require the routing

of information through multiple sensors, increasing
the communication cost. Thus in studying communi-
cation complexity in this domain, we need to make a
careful distinction between explicit and implicit con-
straints.

This issue can have a big impact on the scalability of
the distributed system. One can envision a situation
where two tracker agents that are relatively far apart
in a large network have an implicit constraint be-
tween them. Communication between these agents,
which may be necessary to find the globally satisfying
solution, could involve an unacceptably large utiliza-
tion of the network’s communication resources. One
of our goals in comparing the two DCSP models is to
see in both cases what role the implicit constraints
play in their communication complexity.

A related question is what happens if the constraint
graph formed by the explicit constraints has a ”small
world” topology [12]. In other words what happens
when the nodes in the graph of explicit constraints
are highly clustered and we can find an implicit con-
straint between any two agents that is implied by
a relatively short chain of linked explicit constraints?
Some recent work [10] has suggested that under small
world topologies the solution of a constraint satisfac-
tion problem becomes hard because local changes in
the values of some variables impact the assignments
of a large number of variables.

5 Conclusions and Future
Work

In this paper, we have presented SensorCSP, an inter-
esting problem domain for studying distributed con-
straint satisfaction. We showed that this problem is
NP-complete, and that the communication between
sensors in this system is a key factor in its combinato-
rial complexity. We showed that this problem has two
DCSP representations that can be seen as duals. We
believe that these two representations effect different
tradeoffs between the communication and computa-



tional complexity. We also discussed the difference
between explicit and implicit constraints in Sensor-
CSP and how this might impact the scalability of the
distributed system.

We would like to emphasize that this is ongoing work.
We are currently in the process of applying versions
of known sound and complete DCSP algorithms such
as the asynchronous backtracking algorithm and the
distributed backtracking algorithm to this problem
to get a quantitative picture of the complexity issues
from a distributed agent point of view. There has
been some recent work showing phase transitions in
DCSP [5], and it would be interesting to see if simi-
lar results can be obtained with SensorCSP when it
is solved in a distributed fashion. As we discussed
earlier, the dual DCSP representations of SensorCSP
each have different numbers of inter-agent and intra-
agent constraints. We would also like to see how this
affects the communication and computational com-
plexity of the two approaches.

There are some interesting extensions of this work
that we would like to explore in the future. One ques-
tion that remains to be answered is how the problem
complexity might be affected by the model used to
generate the topology of the SensorCSP graph G∗.

The wireless sensor tracking network that Sensor-
CSP is based on, is of course, a real-time system.
We would like to extend our work to considering the
dynamic version of this problem. When the mobile
nodes are moving, the graph G* and the correspond-
ing constraints change with time. Even if there are
several satisfying assignments for the static case, one
of these might be more robust with respect to small
changes in the underlying graph. What kind of on-
line distributed constraint satisfaction algorithms are
required under these circumstances?

SensorCSP is clearly a promising benchmark problem
for distributed constraint satisfaction. We have dis-
cussed a number of interesting issues that arise in this
domain. We are currently in the process of obtaining
some concrete experimental results concerning these
issues.
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