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Abstract

In this paper we consider medium access scheduling
in ad hoc networks as a distributed constraint sat-
isfaction problem (DCSP), and present experimental
results on the solvability and complexity of this prob-
lem. We show that there are “phase transitions” in
solvability and complexity with respect to the trans-
mission power of the wireless nodes. The phase tran-
sition curves indicate that there is a critical maximum
power level for certain arrangements of nodes and a
given availability of spectrum in an ad hoc network
beyond which the problem of channel allocation be-
comes intractable.

1 Introduction

In this paper we consider a specific instance of an
NP-hard constraint-satisfaction problem that arises
naturally in the context of ad hoc wireless networks.
Constraint satisfaction is a useful formalism for mod-
elling a large class of problems with applications in
engineering design, planning, scheduling, resource al-
location, fault diagnosis [6]. In a constraint satisfac-
tion problem (CSP), there are a number of variables,
each of which has an associated domain of values. A
number of constraints are specified on subsets of these
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variables restricting the set of values they can take on
jointly. The objective of the problem is to find out if
each of these variables can be assigned a value from
its domain in such a way that all the constraints are
satisfied.

The original NP-complete problem, satisfiability
(SAT) [8], is a special kind of CSP. We briefly de-
scribe SAT for the purpose of illustration. Let X =
{x1, x2, . . . , xn} be a set of Boolean variables. Each
variable xi and its negation xi constitute literals. A
clause is a disjunction (OR) of one or more literals
(e.g. (x1 ∨ x2)) and is said to be satisfiable if there
exists some truth assignment of 0/1 values to all vari-
ables such that at least one of its literals evaluates to
true under that assignment. Two special cases are
the unit clause, represented (l), that contains only
one literal, and the empty clause, represented (2),
which contains no literals and is by definition unsat-
isfiable. A conjunctive normal form (CNF) formula
over X consists of the conjunction (AND) of a num-
ber of clauses, and is said to be satisfiable if there
exists some truth assignment to the variables in X
such that all the clauses are satisfied.

An instance of SAT consists of a CNF formula Γ with
the goal to determine if there exists a satisfying truth
assignment for Γ. For example, the formula Γ = (x1∨
x2)∧(x1∨x2) is satisfied by setting both x1 and x2 to
1; the formula (x1) ∧ (x1) is unsatisfiable since only
one of the clauses can be satisfied by setting x1 to
either 0 or 1. SAT is a constraint satisfaction problem



as the clauses in the formula represent constraints on
the Boolean variables.

For many CSPs, including SAT, it is known that as
the ratio of constraints to variables is increased, the
fraction of (randomly generated) instances that are
solvable undergoes a one to zero “phase transition”
[3, 11, 14]. Further, the computational cost of de-
termining whether or not an instance is satisfiable
shows an easy-hard-easy pattern, with the complex-
ity peaking in the phase transition region. It is easy
to solve CSPs when they are under-constrained, and
easy to show that they have no solution when they
are over-constrained. The hardest instances lie in the
critically-constrained phase transition region. In the
context of engineering design, it is our goal to in-
corporate into adaptive systems those network con-
figuration problems that fall into the ”good,” under-
constrained region of the complexity spectrum.

In the remainder of this paper we consider ad hoc
networks that are characterized by randomly placed
nodes with a fixed transmitter power level. Given
the assumption of limited spectral resources, we show
that the problem of medium access scheduling, when
interpreted as a distributed constraint satisfaction
problem, exhibits the same phase transitions as the
SAT problem. We conclude that there is a max-
imum power level for the nodes beyond which the
problem of medium access scheduling becomes over-
constrained and intractable.

2 DCSPs

A Distributed Constraint Satisfaction Problem
(DCSP) [18], is a generalization of a CSP to the
framework of distributed problem solving. In a
DCSP, there are a set of n Agents A = {1, 2, · · · , n}.
Each agent has its own variables with correspond-
ing domains for each of them. There are intra-agent
constraints between the variables of each individual
agent, and inter-agent constraints between the vari-
ables of different agents. A solution to the DCSP is

an instantiation of values to all the variables of each
agent such that every intra and inter-agent constraint
is satisfied.

For solving a DCSP, in order to satisfy the inter-agent
constraints, agents need to use some communication
mechanism for exchanging the value of their variables
to other agents. Thus in addition to the computa-
tional effort expended at each node, we also need to
consider the communication complexity involved in
solving a DCSP. One measure of the communication
complexity for a DCSP is the number of messages ex-
changed by the agents in order to solve the problem
or to detect that no solution exists.

Figure 1: Satisfiable

Boolean DCSP

Figure 2: Unsatisfiable

Boolean DCSP

Figure 1 gives an example of a satisfiable DCSP, i.e.
one that has at least one solution. This DCSP con-
sists of three agents, it has one variable for each agent
and there are inter-agent constraints, but no intra-
agent constraints. The domain of all the variables is
{0, 1}. The interagent constraints are represented in
the figure as edges with a binary relation symbol. The
relation symbol specifies the relation that must hold
between the variables of the two connected agents. A
possible solution for this DCSP is for all agents to set
the same value (0 or 1) to their variables. Figure 2
gives an example of an unsatisfiable DCSP. There is
no possible solution for this DCSP, because the fact
that x1 = x2 and x1 = x3 must be true implies that
x2 = x3 should also be true, which would violate the
inter-agent constraint between agents 2 and 3.

An algorithm is said to be complete if, when applied
to a given problem, it either provides a solution to
the problem or determines that the problem has no



solution. Two complete algorithms have been devel-
oped for solving any distributed problem that can
be formalized as a DCSP: the distributed backtrack-
ing algorithm (DIBT) [9] and the asynchronous back-
tracking algorithm (ABT) [18]. These two algorithms
work by using a generalization of systematic com-
plete search in the distributed setting. Because we
are working in an asynchronous environment (there is
no central control) all the agents can decide by them-
selves when to change the values assigned to their
variables.

At the beginning, both algorithms proceed as follows.
All the agents choose a value for all their variables
such that their intra-agent constraints are satisfied 1

Before the search can proceed, we need also to as-
sign an unique identifier number to every agent. This
identifier is used to establish a priority order between
agents. One agent has a greater priority than other if
its identifier is smaller. Given a inter-agent constraint
between two agents, the highest priority agent has
priority to change the value of a variable that appears
in the constraint (and that belongs to him). It must
inform the other agent about any change to the vari-
able by sending an information message. When the
other agent receives the information message, it must
try to find an assignment to its own variables such
that all the inter-agent constraints that it has with
higher priority agents, and its own intra-agent con-
straints, are satisfied. If it changes the value of some
of its variables, it will send information messages to
all its own, lower priority, agents such that they have
some inter-agent constraint with him. However, if
there is no possible assignment consistent with the
inter-agent constraints of higher priority agents, it
will send a backtracking message to the lowest pri-
ority agent among all its higher priority agents that
have an inter-agent constraint that is not satisfied.
This message tells the higher priority agent that it
must try to find a different value for the variable that
is causing a conflict with the lower priority agent, be-
cause the lower priority agent cannot do anything for
fixing the conflict.

1They can achieve this using any existing centralized CSP
algorithm.

For the details of the specific algorithms, the reader
is referred to the references [9] [18].

3 DCS in Wireless Networks

Figure 3: Solvable channel scheduling with small trans-

mission radius (n =7, C = 3, R = 0.40)

Figure 4: Unsolvable channel scheduling with large trans-

mission radius (n =7, C = 3, R = 0.55)

The multiple access problem arises in wireless ad-hoc
networks because transmissions by one node can in-
terfere with transmissions by nearby nodes. Multiple



Figure 5: Phase transitions in the fraction of solvable
problems and the average complexity for the channel
scheduling problem using a complete backtracking al-
gorithm

access techniques can be categorized as random ac-
cess, scheduled access, or hybrids. Most randomized
access algorithms proposed for ad-hoc networks are
variations of ALOHA [1] and Busy Tone Multiple Ac-
cess (BTMA) [17], both of which are useful for bursty
traffic conditions. In these techniques, nodes share
the same broadcast channel and transmit whenever
they need to. The scheduled access techniques that
have been proposed for ad-hoc networks [12, 15, 2]
are better suited for non-bursty traffic conditions. In
scheduled access techniques the available bandwidth
is typically divided into multiple time, frequency, or
code division multiple access channels. Each node
schedules its transmission on different channels in
such a way as to avoid conflicts with neighboring
nodes and achieve efficient spacial reuse. The prob-
lem of scheduled access in ad-hoc networks in general
is NP-hard [15].

Consider an ad-hoc wireless network consisting of n
nodes each of which transmits with the same power.
We will assume that the transmission range of each
node can be modelled as a circle of some radius R
centered at the node. Let each node i in the network
have a specified traffic need for ti contiguous time

channels. A total number of C channels are avail-
able. The goal is to find an assignment of ti time
channels to each node i, such that no two neighboring
nodes j and k share the same channel. This can be
easily modelled as a DCSP. Imagine each node as an
agent, with ti multi-valued variables {xi,1, . . . xi,ti

}for
each agent i, corresponding to the allocated channels.
These variables can take on values from 1 to C. The
intra-agent constraint here is that each of these vari-
ables within an agent must take on distinct values.
The inter-agent constraints is that if there are two
neighboring (interfering) nodes i and j, their vari-
ables must not take on the same values.

Formulated as a DCSP, this problem can be solved
using one of the distributed backtracking algorithms
mentioned in the previous section. Although the
communication and computational costs involved can
be exponential in the number of nodes in the worst
case, as we have discussed before, the average com-
plexity can be within tolerable limits provided the
system as a whole is under-constrained.

Figure 3 shows a solvable instance of this problem
on a small, sparse network. An assignment to the
variables of each node agent that satisfies all con-
straints is indicated in the figure. Figure 4, on the
other hand, is an unsolvable instance of this prob-
lem on a dense network. Since there are only three
channels available, and the nodes 2,3,4, and 5 form a
clique of size 4, it is not possible for them to assign
values to their respective variables without violating
inter-agent constraints.

For a given average traffic per node, there are two
parameters that affect the problem complexity and
solvability: the transmission radius R, and the total
number of channels available C. In order to study the
effects of these parameters, we conducted the follow-
ing experiment. 7 nodes are placed at random in a
square region with unit sides. The transmission ra-
dius of all nodes is the same and is varied from 1 to√

2. A particular combination of node positions and
transmission radius corresponds to a unique network
graph. A traffic of 1 or 2 is generated at each node
with equal probability. The bandwidth C is tested



Figure 6: average computational complexity of solv-
ing the channel scheduling problem for satisfiable in-
stances using a randomized local search algorithm

for values 4,6, and 8. 100 instances are generated for
each value of transmission radius and bandwidth. A
complete CSP-solver was used to obtain statistics on
satisfiability and computational complexity of these
instances. Figure 5 contains the results of these ex-
periments, and shows that this problem undergoes a
phase transition with respect to the transmission ra-
dius2. There is a critical value of the transmission
radius below which a satisfying solution exists with
high probability, and above which it exists with negli-
gible probability. Figure 5 also shows the easy-hard-
easy phase transition in average complexity when
this constraint satisfaction problem is solved using
a backtracking algorithm. It is interesting to see that
when we increase the total number of channels, the
bandwidth available to the system - the phase tran-
sition threshold moves to the right. This is intuitive
– adding bandwidth resources to this system makes
it easier to provide a non-conflicting schedule to the
nodes.

2Note that in this problem the transmission radius increases
with the ratio of constraints to variables. This is because for a
given level of traffic, number of nodes, and number of channels,
the number of variables is fixed, and the number of constraints
increases with the density of the network graph which in turn
depends directly upon the transmission radius.

Another experiment makes it clear that we can also
expect some gains in complexity to result from the
increase in bandwidth. If we restrict the study of
complexity to only those instances in which there
is a solution, i.e. satisfiable instances, then we can
use a randomized local search algorithm to solve the
problem. Figure 6 shows the normalized average cost
for finding the satisfying solution for the three values
of the bandwidth C ranging from 4 to 8. For each
value of the transmission radius , the cost (which
is a measure of the time taken to obtain the solu-
tion) is averaged over 300 runs of the local search
algorithm, each starting from a random point in the
search space. Figure 6 reveals that an increase in
bandwidth not only increases the probability that a
solution, but also decreases the complexity of obtain-
ing the solution when it exists. In short, if we use our
knowledge of the fundamental limits of the resource
allocation problem to narrow the focus of the search,
we can take advantage of suboptimal random search
algorithms to obtain a rapid and effective solution.

4 Discussion and Conclusions

In this paper we have shown that one of the NP-hard
problems that underlie the design of self-configuring
ad hoc networks can be characterized in terms of a
critical transition in complexity. In the case studied
in the paper, it was seen that the number of channels
needed by the network to support a medium access
protocol was critically dependent on the transmitter
power level of the individual nodes. In general, truly
scalable networks require the availability of a critical
amount of bandwidth and energy resources.
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