WIRELESS SENSOR NETWORKS AND APPLICATIONS
SECTION III Data Management
Y. Li, M. Thai and W. Wu (Eds.) pp. 572-591

(©2005 Springer

Chapter 15

Modeling Data Gathering in Wireless Sensor
Networks

Bhaskar Krishnamachari
Department of Electrical Engineering-Systems
Viterbi School of Engineering, University of Southern

California, Los Angeles, CA 90089
E-mail: bkrishna@usc.edu

1 Introduction

The predominant protocol development methodology in the
area of wireless sensor networks today can be character-
ized as being one of design-by-intuition/validate-through-
simulation. However, a concurrent development of comple-
mentary theoretical models for these protocols is essential
for the rapid advancement of this technology. This is be-
cause the severe resource constraints on energy, computa-
tion, and storage that are characteristic of these networks
make it crucial to optimize protocols, in order to maximize
network lifetime while providing an acceptable quality of
sensed information.

972

We survey in this chapter some examples drawn from
recent studies pertaining to data gathering in sensor net-
works. These examples demonstrate the importance of op-
timizing protocol parameters carefully to maximize perfor-
mance. We emphasize the use of a first-order mathematical
modeling approach. The optimizations are all based on sim-
ple expressions that are intended to capture the impact of
essential environmental and protocol parameters. This ap-
proach is motivated by the desire to understand easily the
key design tradeoffs that are involved in each context. As
we shall see, even such simple models can yield fundamen-
tal design insights to improve the performance of practical
protocols.

This style of modeling is nicely described in an essay
written by the noted economist, Prof. Hal Varian, titled
“How to build an economic model in your spare time” [1]:

“The critical advice here is KISS: keep it simple,
stupid. Write down the simplest model you can
think of, and see if it still exhibits some interesting
behavior. If it does, then make it even simpler.

... keep at it till it gets simple. The whole point
of a model is to give a simplified representation of
reality. Einstein once said ‘Everything should be
as simple as possible... but no simpler.” A model
is supposed to reveal the essence of what is going
on: your model should be reduced to just those
pieces that are required to make it work.”

The methodology employed in these studies can be sum-
marized as follows:

273

1. Identify the unique functionality of the protocol to be
modeled. What exactly does it do — does it provide for
routing with data aggregation from a set of sources to
a common sink, or is it for gathering information from
the network to resolve a query for a specific named
attribute?

2. Identify the primary performance metric of interest in
analyzing this protocol. For battery-constrained sen-
sor networks this often translates to minimizing the
total number of transmissions required to accomplish
the specified networking task. This is because under
the assumption that idle listening and overhearing can
be minimized through appropriate MAC-level schedul-
ing, transmissions of packets (and their corresponding
receptions) are the primary source of energy consump-
tion.

3. Identify the building blocks of the model. It is typical
in these models to assume some simple topology such
as uniform random placement with a fixed radius for
connectivity, or a carefully placed grid of sensors, each
communicating with just their four cardinal neighbors.
Other significant building blocks for the model are the
environmental and protocol parameters that have an
significant impact on performance. As we are aiming
to build an abstracted, simplified model of reality, this
need not be an exhaustive list, but should include key
parameters. This is more of an art than a science in
many respects, and often entails an iterative process
to refine the components of the model.

o574

4. Derive a simple mathematical expression that gives the
performance metric for that protocol, as a function of
the variables corresponding to key environmental, net-
work, and protocol parameters. Along with the previ-
ous step, this is part of the core work of building the
model.

5. Refine the model, by adding, discarding, or modifying
variables corresponding to environmental, protocol or
network settings. The goal is to obtain an expression
for the protocol performance metric that illustrates the
core tradeoff.

6. Solve for the value of the protocol parameter which
optimizes the performance metric of interest. There
are often opposite trends in different components of
the model that are in tension with each other. As a
result, performance loss may be incurred in setting a
key protocol parameter to too low a value or too high
a value. In most cases, determining the optimum pa-
rameter setting requires just finding the zero of the
derivative of the metric with respect to the parame-
ter in question. The obtained result reveals how the
optimal protocol parameter setting depends upon en-
vironmental and network conditions.

In the following sections, we shall present models for
three specific problems pertaining to data gathering in wire-
less sensor networks. In the first case study, we optimize
the look-ahead parameter for an active querying mechanism
that provides a tunable tradeoff between trajectory-based
and flooding-based querying. In the second case study, we

275

optimize the cluster size for joint routing and compression
that minimizes the total transmitted information for a pre-
scribed level of correlation between the sources. Finally, in
the third case study, we look at a problem of querying for
replicated information and identify the optimal number of
replicas that minimizes the total energy cost involved.

2 Active Querying with Look-Ahead

The ACQUIRE mechanism [2] is an active querying tech-
nique designed for sensor networks. In essence, it consists
of the following repeated sequence of steps: (i) An active
node which receives the query checks its local cache to see
if it contains the information requested. (ii) If the informa-
tion in the local cache is not fresh, the active node sends a
controlled flood of the query to all nodes within d hops of
it to obtain a fresh update of the information. (iii) If the
query is still not resolved, the query is forwarded to a suc-
ceeding active node that is 2d hops away along a trajectory
(which could be random or guided in some way). Finally,
when the information being sought is obtained, the query
response is routed back to the original querying node. This
is illustrated in figure 1.

One interesting observation about the ACQUIRE query-
ing mechanism is that the look-ahead parameter d essen-
tially allows for tuning across a wide range of behaviors.
When d = 0, then the query is simply forwarded along
some path until it is resolved (e.g., a random walk query,
or a geographic trajectory based query). When d is large
enough to be the diameter of the network, then the query is

976

LEGEND

Active node
Query forwarding

Cache updates

Returned response

Figure 1: Nlustration of ACQUIRE

essentially performed as a network-wide cache-based flood-
ing.

A key question in this setting that we shall address
with first-order analysis is what should determine the op-
timal setting of this look-ahead parameter d. It turns out
that, since caching is employed, this is affected primarily
by the ratio of updates to queries, which we denote by c.
(When ¢ = 0.01, for example, on average one update is re-
quested every 100 queries. Alternately, we could say that
the cache at each active node remains valid on average for
100 queries). This parameter quantifies the level of dynam-
ics in the environment relative to the rate at which queries
are posed.

We will use, as the metric of interest, the average total
number of transmissions required to resolve a query. For
ACQUIRE this is essentially the product of two factors,
the expected number of steps (i.e. the number of active

277

query nodes visited in the trajectory), and the expected
total number of transmissions incurred at each step. Inter-
estingly, each of these factors depends in a different manner
on the look-ahead parameter d. The expected number of
steps is smaller when the look-ahead parameter is large, be-
cause each step would cover a larger portion of the network
and make it more likely that the query is resolved in fewer
steps. However, with a larger look-ahead parameter, the
expected number of transmission incurred at each step is
larger as the controlled flood has to reach a larger number
of nodes.

Let S(d) be the expected number of steps, and T'(d)
be the expected number of transmissions incurred at each
step. Let us denote by n the expected number of nodes that
must be searched in order to resolve the query (we assume
here that this is a constant regardless of how the query is
implemented in practice. This is reasonable if the query
is essentially a blind, unstructured search). For randomly
deployed nodes with a uniform distribution, the number of
nodes “covered” at each step with a look-ahead of d is 7 - d?
(here v = pmR?, where p is the deployed density of nodes
per square meter and R the nominal radio range for each
hop). Then the expected number of steps needed to resolve
the query can be expressed as:

U
S(a) = (1)

The expected number of transmissions incurred at each
step depends on ¢, since this determines how frequently
the local controlled flood is invoked. When the flood is
invoked, we assume that all nodes in the d — 1 hops forward

978

the flood, and all nodes within the d hops respond back
with messages providing their respective information. The
expected number of nodes at hop i is vi* — y(i — 1)? =
v - (2¢ — 1). These must all send their information back
to the active node through ¢ transmissions. The expected

number of transmissions at each step is therefore:

T(d) = c(y(d—1)*+~ é(%—l)i) = c'y((d—l)2+zl))d(d2—1))
(2)

Now taking into account that the resolved response to
the query must then be returned to the original querying
node by incurring about S(d) * 2d additional transmissions
(assuming S(d) > 1, else it would be 0), we have the total
expected number of transmissions N(d) required by AC-
QUIRE with a look-ahead setting of d to be as follows:

N(d) = S(d)(T(d)+2d) = 77;2(cv((d—1)2+;d(d2—1))+2d)
(3)

This expression is plotted in figure 2(a) for different val-
ues of ¢ (assuming n = 400,y = 10m. We can see that for
a fixed value of ¢, the optimal setting of the look-ahead
parameter that minimizes the total number of transmis-
sions varies. We can determine the optimal d by taking the
derivative of the above expression with respect to d and
setting it to zero (the resulting real value is then rounded
to the nearest integer). The numerical solution for the op-
timal d is plotted as a function of ¢ in figure 2(b). This fig-
ures quantifies the insight that a smaller look-ahead (cor-
responding to a trajectory based search) is favored when

979

Expected Search Cost

Look-ahead Parameter (d)

40

n
a1
T

n
o
T

o
T

c=0.0017

c=00003

! ! ! ! ! !

1
4 6 8 10 12 14 16
Look-ahead Parameter (d)

(a)

20

o
T

I

107
Update to Query Ratio (c)

(b)
Figure 2: Performance of ACQUIRE

580

the environmental dynamics are so high that caching is not
effective (high ¢), whereas a larger look-ahead (resembling
flooding) is favored when caches can be used with high fre-
quency (low ¢).

3 Cluster-Based Joint Routing and Compression

Because of their application-specificity, sensor networks are
capable of performing data-centric routing, which allows
for in-network processing of information. In particular, to
reduce total energy consumption, data from correlated sen-
sors can be compressed at intermediate nodes even as they
are routed. We examine now how the appropriate joint
routing and compression strategy can depend on the de-
gree of correlation between the sources.

We first need a model to quantify the amount of infor-
mation generated by a set of sources. We use here a simple
model that has been previously validated with some real
data [3]. In this model, there is a tunable parameter §
which varies from 0 to 1 and provides an indicator of the
level of correlation between the sources. We use the joint
entropy H,, of the sources as the measure of the total infor-
mation they generate, assuming that each individual source
has an identical entropy of Hi:

H,(5) = Hi(1+6(n— 1)) (4)

Thus, when 6 = 0, the correlation is the highest (the
sources sensing identical readings), resulting in a joint en-
tropy that is equal to the entropy of a single source. On
the other extreme, when § = 1, there is no correlation at

581

all, with a joint entropy that is equal to the sum of the
entropies of each source.

To illustrate the tradeoffs involved in joint routing and
compression, we consider a simple network scenario illus-
trated in figure 3. The n sources are equally spaced and
each having D additional intermediate nodes between them
and the sink. The way the information is routed from each
source to the sink is as follows.

First the set of sources is divided into clusters of s nodes.
Within each cluster, the data is routed sequentially from
node to node, with compression at each successive step.
Thus the H; bits of data from the first sensor move to
the second sensor, where they are compressed jointly with
the data at that node (we assume an idealized entropy
coding that achieves the maximum compression possible);
then Hs bits are transmitted from the second sensor to the
third, and so on till the last node within the cluster. Then
the jointly compressed H, bits of data from each cluster
are routed to the sink along the shortest path. Thus we
have a family of cluster-based joint routing and compres-
sion strategies that span from one extreme (s = 0) where
no compression is performed and each node routes its in-
formation along the shortest path to the sink, to the other
extreme (s = n) where the data from every source is com-
pressed sequentially before routing to the sink.

The key question we address in this modeling effort is:
what is the correct setting of the cluster size? The energy
metric we use is the total number of bits that are transmit-
ted over the air to deliver sensed data from all sources to
the sink. We can intuit the tradeoff that is involved here:

582

LEGEND
@ Sources
O Relays
@ sink

Figure 3: Hlustrative Scenario for Cluster-based Routing with Compression

a strategy that uses a small cluster size favoring shortest
path routing may perform best when the correlation is low
(high ¢§), while a strategy using a large cluster size may
perform best when the correlation is high (low ¢§). This is
because when the correlation is high, the savings due to
compression of data near the sources outweigh the benefits
of shortest-path routing.

We need to consider the two components of the cost in
terms of the total number of bits required to transport in-
formation from all sensors to the sink. Within each cluster
the cost is '2831 H;(§). To carry the combined information

from each él_uster to the sink requires a cost of another
HD, and there are n/s clusters in all. Therefore the to-
tal cost for first compressing within clusters of size s and
then transporting the information to the sink is given by
the following expression:

983

Crorar(.6) = =(3_ Hi(8) + H.D) (5)

- (s —sd +ds(s — 1)/82—|—D—|—D5(3— 1))

= nHy(1—38+ D5+ (s—1)5/2+ D(1 - 5)/s) (7)

The minimization of the above expression for the total
cost yields the optimal cluster size to be

supl8) = 2D)

The above applies for all intermediate values of J in
(0,1). For the two extreme cases, we get that when § = 0,
Sopt(0) = n and when 6 = 1,s,,; = 1. Figure 4(a) shows
the performance for different cluster sizes as a function of
the correlation level, for a scenario with n = 100, D = 100.
Figure 4(b) shows the optimal cluster size s,, decreasing
with . This quantifies the tradeoff mentioned above, that a
high correlation favors large clusters, while low correlations
favor small clusters.

In [3], this analysis is validated for more general topolo-
gies through simulations involving random placement of
sensors in a 2D region. Another interesting finding of that
study is that while the optimal cluster size is indeed a func-
tion of the level of correlation, it is also possible to use a
static cluster size that provides near-optimal performance
regardless of the correlation. While we do not go into the
analysis of the near-optimal clustering here, it is interesting
to note that figure 4(a) suggests such a result — the clus-

584

15000

s=10!

10000 Bl

Total transmission cost

5000 - b

0 ! ! ! ! ! ! ! ! !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Correlation parameter (5)

(a)

100%

N 2 @ Py ® ©
o o o o o o
T T T T T T
Il Il Il Il Il Il

Optimal cluster size (s

w
=}
T
*
I

S
T
*
*
Il

* %
10 * Kk x]
ok xox 5
* %

0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Correlation parameter ()

(b)

Figure 4: Performance of Clustering

285

ter size of 20 provides good performance for all correlation
levels.

4 Joint Search and Replication

As a third case study to illustrate first-order modeling, we
examine the problem of querying a sensor network for in-
formation that can be replicated.

In this scenario, each node that senses a unique event
(e.g. "there is a bird at location (x,y)”) not only stores this
information at its own location, but also creates additional
replicas of this information and sends it to & — 1 other
(randomly selected) locations in the network for a total of
k replicas of the information. In this problem, we assume
that any random node (not just a single pre-identified sink)
can be the source of a query for this information, so that
there is no incentive to store the replicas in any particular
locations.

To simplify the analysis we will focus on a simple grid
network where each node can communicate with its four
cardinal neighbors. A more sophisticated version of the
analysis described here, considering expanding ring searches
for a randomly deployed network, is presented in [4]. In the
simple grid network, we assume that each query proceeds
sequentially in a pre-determined trajectory that (if a so-
lution is not obtained) eventually visits all nodes in the
network. Figure 5 shows how several queries for the same
event originating from different location are resolved at dif-
ferent replicas of that event.

We aim to minimize the total expected cost of search and

586

T @)
O R2 @)
Ql
O R1 O O

@ R4 O O @ R3

Figure 5: Illustration of Search with Replication

replication for each event. While there is an energy cost to
be paid for moving each replica of the information to its
location, having more replicas reduces the expected search
energy cost. The search energy cost is measured in terms
of the total number of transmissions needed for the query
to locate the nearest replica. We could also account for
the number of transmissions needed to return the response
back to the querier by doubling this number, assuming that
the response is returned along the reverse path.

Let us first consider the cost of replication. The expected
number of transmission required to place each replica at a
randomly selected location is the expected Manhattan dis-
tance (i.e. the L; distance, measured as the sum of the
absolute distance in the x-coordinate and the absolute dis-
tance in the y-coordinate) between any pair of nodes in the
nxn grid. The expected x-distance is n/3 and the expected
y-distance is n/3, hence 2n/3 transmissions are required on

087

average to place each replica. To place £ — 1 replicas, this

cost is then:

2
Creplication - gn(k - 1) (9)

We now look at the search cost. The expected number
of nodes visited on the trajectory till the nearest replica
is obtained is the expected value of the minimum of £ dis-
crete random variables chosen from values between 1 and n?
without replacement. A good approximation for this min-
imum is n?/(k + 1) (which can be obtained, for instance,
by considering a continuous distribution and using an inte-
gral to compute the corresponding integral expression for
the expected value). Taking into account the same cost for
the returned response, the expected search energy cost is
therefore

n2

E+1

Csearch =2 (10)

Combining the two components with variables f. and f,
to denote, respectively, the frequency with which the event
is generated (we can assume that an update of each replica
occurs whenever new information is obtained about that
event) and the frequency with which a query for the event
is sent, we have:

2

Ctotal() 2qu+1

+ fe(1n (11)

The combined cost of search and replication for different
values of the query frequency f, (assuming f. = 1) is shown
in figure 6(a) for a 100 x 100 grid. The optimal replication

588

Total Cost of Replication and Search

Optimal Number of Replicas

2 . M . M . M

10% 10
Number of Replicas

(a)

180 T

160 -

120

80

60—

401 *

20 *

% % K K 1 .

10'
Ratio of Query Frequency to Event Frequency (fq/fe)

(b)

Figure 6: Performance of Search with Replication

589

size can be determined from the above expression as

3
fa,,
Je
The variation of the optimal replication size with respect

to the ratio of query frequency to event frequency is shown
in figure 6(b).

(12)

kopt =

5 Conclusions

We have shown several examples of first-order analysis for
data gathering mechanisms in sensor networks. Such mod-
eling can provide a clear understanding of the key design
tradeoffs underlying such mechanisms, and give an insight
into how protocol parameters should be optimized to pro-
vide efficiency in terms of energy savings or latency im-
provements, or other relevant metrics.

We should caution, however, that the first order pro-
tocol analysis methodology, which emphasizes tractability,
abstraction, and simplicity, is by no means a complete sub-
stitute for other analytical and experimental tools which
emphasize detail, realism, and sophistication. While such
modeling provides a good starting point for understanding
the key design tradeoffs involved in parameter selection, it
is entirely complementary to other approaches. The trans-
lation of the insights obtained through mathematical anal-
ysis into practical protocols will certainly involve further
evaluation through more detailed simulations, as well as
through experiments on a test-bed and real-world imple-
mentations.

590

6 Acknowledgement

This work has been supported in part by the following
grants from the National Science Foundation: CNS-0435505
(NeTS-NOSS), CNS-0347621 (CAREER), CCF-0430061,
and CNS-0325875 (ITR). The author would like to acknowl-
edge the input of several colleagues and students in the orig-
inal development of the models described in this chapter,
including Narayanan Sadagopan, Ramesh Govindan, Sun-
deep Pattem, Joon Ahn, and Ahmed Helmy. More details
regarding these models can be found in the corresponding
papers listed as references.

References

[1] Hal R. Varian, “How to Build an Economic Model in your Spare Time,” Passion
and Craft: Economists at Work, Ed. M. Szenberg, University of Michigan Press,
1997.

[2] Narayanan Sadagopan, Bhaskar Krishnamachari, and Ahmed Helmy, “Active
Query Forwarding in Sensor Networks (ACQUIRE)”, Ad Hoc Networks Journal-
Elsevier Science, Vol. 3, No. 1, pp. 91-113, January 2005.

[3] Sundeep Pattem, Bhaskar Krishnamachari, and Ramesh Govindan, “The Im-
pact of Spatial Correlation on Routing with Compression in Wireless Sensor
Networks,” ACM/IEEE International Symposium on Information Processing
in Sensor Networks (IPSN), April 26-27, Berkeley, CA 2004.

[4] Bhaskar Krishnamachari and Joon Ahn, “Optimizing Data Replication for Ex-
panding Ring-based Queries in Wireless Sensor Networks,” USC Computer En-
gineering Technical Report CENG-05-14, October 2005.

991

