Self-Organized Fault-Tolerant Feature Extraction
in Distributed Wireless Sensor Networks *

Bhaskar Krishnamachari†† and Sitharama Iyengar²

1 Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California
bkrishna@usc.edu

2 Department of Computer Science
Louisiana State University
Baton Rouge, Louisiana
iyengar@bit.csc.lsu.edu

September 2, 2002

---

*This research was funded in part by DARPA-N66001-00-1-8946, ONR-N00014-01-0712, and DOE through Oak Ridge National Lab.
††Corresponding Author.
Abstract

We propose a distributed solution for a canonical task in wireless sensor networks – the extraction of information about interesting environmental features. We explicitly take into account the possibility of sensor measurement faults and develop a distributed Bayesian algorithm for detecting and correcting such faults. Theoretical analysis and simulation results show that 85-95% of faults can be corrected using this algorithm even when as many as 10% of the nodes are faulty.

1 Introduction

Wireless sensor networks are envisioned to consist of thousands of devices, each capable of some limited computation, communication and sensing, operating in an unattended mode. According to a recent National Research Council report, the use of such networks of embedded systems “could well dwarf previous revolutions in the information revolution” [45]. These networks are intended for a broad range of environmental sensing applications from vehicle tracking to habitat monitoring [11, 21, 25, 45].

In general sensor networks can be tasked to answer any number of queries about the environment [34]. We focus on one particular class of queries: determining regions in the environment with a distinguishable, “feature” characteristic. As an example, consider a network of devices that are capable of sensing concentrations of some chemical $X$; an important query in this situation could be “Which regions in the environment have a chemical concentration greater than $\lambda$ units?” We will refer to the process of getting answers to this type of query as feature extraction.

Feature extraction is useful in and of itself as a useful application of a sensor network. It can be considered a canonical task since it is quite easy to envision any number of applications involving environmental sensing in which this query is extremely important. While feature extraction can certainly be conducted on a static sensor network, it is worthwhile pointing out that it can also be used as a mechanism for non-uniform sensor deployment. Information about the location of feature regions can be used to move or deploy additional sensors to these regions in order to get finer-grained information.
Wireless sensor networks are often unattended, autonomous systems with severe energy constraints and low-end individual nodes with limited reliability. In such conditions, self-organizing, energy-efficient, fault-tolerant algorithms are required for network operation. These design themes will guide the solution proposed in this paper to the problem of feature extraction.

To our knowledge, this is the first paper to propose a solution to the fault-feature disambiguation problem in sensor networks. Our proposed solution, in the form of Bayesian fault-recognition algorithms, exploits the notion that measurement errors due to faulty equipment are likely to be uncorrelated, while environmental conditions are spatially correlated. We show through theoretical and simulation results that the optimal threshold decision algorithm we present can reduce sensor measurement faults by as much as 85 – 95% for fault rates up to 10%.

We begin with a short introduction to some of the prior work in the area of wireless sensor networks, before proceeding to discuss the feature extraction problem and our solution in greater detail.

1.1 Wireless Sensor Networks

A number of independent efforts have been made in recent years to develop the hardware and software architectures needed for wireless sensing. Of particular note are UC Berkeley’s Smart Dust Motes [18], TinyOS [17], and the PicoRadio [22] project; the Wireless Integrated Network Sensors (WINS) project [21] and PC-104 based sensors [11] developed at UCLA;
and the µAMPS project at MIT [20]. The challenges and design principles involved in networking these devices are discussed in a number of recent works [1, 4, 19, 21, 45].

Self-configuration and self-organizing mechanisms are needed because of the requirement of unattended operation in uncertain, dynamic environments. Some attention has been given to developing localized, distributed, self-configuration mechanisms in sensor networks [12, 31] and studying conditions under which they are feasible [35].

Sensor networks are characterized by severe energy constraints because the nodes will often operate with finite battery resources and limited recharging. The energy concerns can be addressed by engineering design at all layers. Some of the energy concerns are being addressed at the hardware and architecture level [18, 32, 36]. At the physical layer, there is now a significant body of work on minimizing energy costs by adjusting the transmit powers of nodes while achieving global network properties such as connectivity [37, 38, 39, 40, 41, 42, 43]. At the link layer, some of the work has focused on energy-efficient medium access schemes suitable for sensor networks [13, 23, 26, 46]. At the networking layer, meta-naming of data and data-aggregation during routing has been proposed and analyzed as a significant means for energy savings [2, 9, 10, 15, 16]. At the application layer, it has been recognized that energy savings can be obtained by pushing computation within the network in the form of localized and distributed algorithms [4, 33, 34].

One of the main advantages of the distributed computing paradigm is that it adds a new dimension of robustness and reliability to computing. Computations done by clusters of independent processors need not be sensitive to the failure of a small portion of the network.
Wireless sensor networks are an example of large scale distributed computing systems where fault-tolerance is important. For large scale sensor networks to be economically feasible, the individual nodes necessarily have to be low-end inexpensive devices. Such devices are likely to exhibit unreliable behavior. Therefore it’s important to guarantee that faulty behavior of individual components does not affect the overall system behavior. Some of the early work in the area of distributed sensor networks focuses on reliable routing with arbitrary network topologies [28, 29], characterizing sensor fault modalities [5, 6], tolerating faults while performing sensor integration [30], and tolerating faults while ensuring sensor coverage [27]. A mechanism for detecting crash faults in wireless sensor networks is described in [44]. There has been little prior work in the literature on detecting and correcting faults in sensor measurements in an application-specific context. We now discuss the canonical problem of feature extraction.

1.2 Feature Extraction

Consider a wireless network of sensors placed in an operational environment. We wish to task this network to identify the regions in the network that contain interesting features. For example, if the sensors monitor chemical concentrations, then we want to extract the region of the network in which these concentrations are unusually high. This could be true for other sensing modalities as well (high/low temperature regions, high/low acoustic regions etc.). It is assumed that each sensor knows its own geographical location, either through GPS, or through RF-based beacons [47].
It is helpful to treat the trivial centralized solution to the feature extraction problem first in order to understand the shortcomings of such an approach. We could have all nodes report their individual sensor measurements, along with their geographical location directly to a central monitoring node. The processing to determine the feature regions can then be performed centrally. While conceptually simple, this scheme does not scale well with the size of the network due to the communication bottlenecks and energy expenses associated with such a centralized scheme. Hence, we would like a solution in which the nodes in a feature region organize themselves and perform some local processing to determine the extent of the region. This is the approach we will take.

Even under ideal conditions this is not an easy problem to solve, due the requirement of a distributed, self-organized approach. However, if we take into account the possibility of sensor measurement faults, there is an additional layer of complexity. Can unreliable sensors decide on their own if their measurement truly indicates a high “feature” value, or if it is a faulty measurement? In general, this is an intractable question. It is true, however, that the sensor measurements in the operation region are spatially correlated (since many environmental phenomena are) while sensor faults are likely to be uncorrelated. As we establish in this paper, we can exploit such a problem structure to give us a distributed, localized algorithm to mitigate the effect of errors in sensor measurements.

Figure 1 shows a sample scenario. In this situation, we have a grid of sensors in some operational area. There is a feature region with unusually high chemical concentrations. Some of the sensors shown are faulty, in that they report erroneous readings.
Figure 1: Sample scenario: a distributed sensor network with uncorrelated sensor faults (denoted as ‘x’) deployed in an environment with a single feature region (dashed circle)
The first step in feature extraction is for the nodes to determine which sensor readings are interesting. In general, we can think of the sensor’s measurements as a real number. There is some prior work on systems that learn the normal conditions over time so that they can recognize unusual feature readings [48]. We will instead make the reasonable assumption that a threshold that enables nodes to determine whether their reading corresponds to a feature has been specified with the query, or otherwise made available to the nodes during deployment.

A more challenging task is to disambiguate features from faults in the sensor readings, since an unusually high reading could potentially correspond to both. Conversely, a faulty node may report a low measurement even though it is in a feature region. In this paper we present probabilistic decoding mechanisms that exploit the fact that sensor faults are likely to be stochastically uncorrelated, while features are likely to be spatially correlated. In analyzing these schemes, we will show that the impact of faults can be reduced by as much as 85-95% even for reasonably high fault rates.

2 Fault-recognition

Without loss of generality, we will assume a model in which a particularly large value is considered unusual, while the normal reading is typically a low value. If we allow for faulty sensors, sometimes such an unusual reading could be the result of a sensor fault, rather than an indication of the feature. We assume environments in which features are typically spread out geographically over multiple contiguous sensors. In such a scenario, we can disambiguate
faults from features by examining the correlation in the reading of nearby sensors.

Let the real situation at the sensor node be modelled by a binary variable $T_i$. This variable $T_i = 0$ if the ground truth is that the node is a normal region, and $T_i = 1$ if the ground truth is that the node is in a “feature” region. We map the real output of the sensor into an abstract binary variable $S_i$. This variable $S_i = 0$ if the sensor measurement indicates a normal value, and a $S_i = 1$ if it measures an unusual value.

There are thus four possible scenarios: $S_i = 0, T_i = 0$ (sensor correctly reports a normal reading), $S_i = 0, T_i = 1$ (sensor faultily reports a normal reading), $S_i = 1, T_i = 1$ (sensor correctly reports an unusual/feature reading), and $S_i = 1, T_i = 0$ (sensor faultily reports an unusual reading). While each node is aware of the value of $S_i$, in the presence of a significant probability of a faulty reading, it can happen that $S_i \neq T_i$. We describe below a Bayesian fault-recognition algorithm to determine an estimate $R_i$ of the true reading $T_i$ after obtaining information about the sensor readings of neighboring sensors.

In our discussions, we will make one simplifying assumption: the sensor fault probability $p$ is uncorrelated and symmetric. In other words,

$$P(S_i = 0|T_i = 1) = P(S_i = 1|T_i = 0) = p$$  \hspace{1cm} (1)

Figure 2 shows how the binary model can result from placing a threshold on the real-valued readings of sensors. Let $m_n$ be the mean normal reading and $m_f$ the mean feature reading for a sensor. A reasonable threshold for distinguishing between the two possibilities would
Figure 2: Converting noisy, real-valued, sensor measurements into binary readings
be $0.5(m_n + m_f)$. If the errors due to sensor faults and the fluctuations in the environment can be modelled by Gaussian distributions with mean 0 and a standard deviation $\sigma$, then we get an overlap between the regions as shown in figure 2. In this case the fault probability $p$ would indeed be symmetric and can be evaluated using the tail probability of a Gaussian, the Q-function, as follows:

$$p = Q\left(\frac{(0.5(m_f + m_n) - m_n)}{\sigma}\right) = Q\left(\frac{m_f - m_n}{2\sigma}\right)$$  \hspace{1cm} (2)$$

We know that the Q-function decreases monotonically. Hence (2) tells us that the fault probability is higher when $(m_f - m_n)$ is low (when the mean normal and feature readings are not sufficiently distinguishable) or when the standard deviation $\sigma$ of the sensor measurement errors.

We also wish to model the spatial correlation of feature values. Let each node $i$ have $N$ neighbors (excluding itself). Let’s say the evidence $E_i(a, k)$ is that $k$ of the neighboring sensors report the same binary reading $a$ as node $i$, while $N - k$ of them report the reading $\neg a$, then we can decode according to the following model for using the evidence:

$$P(R_i = a|E_i(a, k)) = \frac{k}{N}$$ \hspace{1cm} (3)$$

In this model, we have that a sensor gives equal weight to the evidence from each neighbor. More sophisticated models are possible, but this model commends itself as a robust mechanism for unforseen environments.
Now, the task for each sensor is to determine a value for \( R_i \) given information about its own sensor reading \( S_i \) and the evidence \( E_i(a, k) \) regarding the readings of its neighbors. The following Bayesian calculations provide the answer:

\[
P(R_i = a | S_i = b, E_i(a, k)) = \frac{P(R_i = a, S_i = b | E_i(a, k))}{P(S_i = b | E_i(a, k))}
\]

\[
= \frac{P(S_i = b | R_i = a) P(R_i = a | E_i(a, k)) + P(S_i = b | R_i = \neg a) P(R_i = \neg a | E_i(a, k))}{P(S_i = b | R_i = a) P(R_i = a | E_i(a, k))}
\]

\[
\approx \frac{P(S_i = b | T_i = a) P(R_i = a | E_i(a, k)) + P(S_i = b | T_i = \neg a) P(R_i = \neg a | E_i(a, k))}{P(S_i = b | T_i = a) P(R_i = a | E_i(a, k))}
\]

(4)

Where the last relation follows from the fact that \( R_i \) is meant to be an estimate of \( T_i \). Thus we have for the two cases \((b = a)\), \((b = \neg a)\):

\[
P_{aak} = P(R_i = a | S_i = a, E_i(a, k)) = \frac{(1 - p)^k}{(1 - p)^k + p(1 - \frac{k}{N})}
\]

\[
= \frac{(1 - p)^k}{(1 - p)k + p(N - k)}
\]

(5)

\[
P(R_i = \neg a | S_i = a, E_i(a, k)) = 1 - P(R_i = a | S_i = a, E_i(a, k))
\]

\[
= \frac{p(N - k)}{(1 - p)k + p(N - k)}
\]

(6)

Equations (5), (6) show the statistic with which the sensor node can now make a decision about whether or not to disregard its own sensor reading \( S_i \) in the face of the evidence \( E_i(a, k) \) from its neighbors.

Each node could incorporate randomization and announce if its sensor reading is correct.
with probability $P_{aak}$. We will refer to this as the randomized decision scheme.

An alternative is a threshold decision scheme, which uses a threshold $0 < \Theta < 1$ as follows: if $P(R_i = a | S_i = a, E_i(a, k)) > \Theta$, then $R_i$ is set to $a$, and the sensor believes that its sensor reading is correct. If the metric is less than the threshold, then node $i$ decides that its sensor reading is faulty and sets $R_i$ to $\neg a$.

The detailed steps of both schemes are depicted in table 1, along with the optimal threshold decision scheme which we will discuss later in the analysis. It should be noted that with either the randomized decision scheme or the threshold decision scheme, the relations in 5 and 6 permit the node to also indicate its confidence in the assertion that $R_i = a$.

We now proceed with an analysis of these decoding mechanisms for recognizing and correcting faulty sensor measurements.

2.1 Analysis of Fault-recognition algorithm

In order to simplify the analysis of the Bayesian fault-recognition mechanisms, we will make the assumption that for all $N$ neighbors of node $i$, the ground truth is the same. In other words, if node $i$ is in a feature region, so are all its neighbors; and if $i$ is not in a feature region, neither are any of its neighbors. This assumption is valid everywhere except at nodes which lie on the boundary of a feature region. For sensor networks with high density, this is a reasonable assumption as the number of such boundary nodes will be relatively small. We will first present results for the randomized decision scheme.
Randomized Decision Scheme

1. Obtain the sensor readings $S_j$ of all $N_i$ neighbors of node $i$.
2. Determine $k_i$, the number of node $i$’s neighbors $j$ with $S_j = S_i$.
3. Calculate $P_{aak} = \frac{(1-p)^{k_i}}{(1-p)^{k_i} + p(N_i - k_i)}$.
4. Generate a random number $u \in (0,1)$.
5. If $u < P_{aak}$, set $R_i = S_i$ else set $R_i = \neg S_i$.

Threshold Decision Scheme

1. Obtain the sensor readings $S_j$ of all $N_i$ neighbors of node $i$.
2. Determine $k_i$, the number of node $i$’s neighbors $j$ with $S_j = S_i$.
3. Calculate $P_{aak} = \frac{(1-p)^{k_i}}{(1-p)^{k_i} + p(N_i - k_i)}$.
4. If $P_{aak} > \Theta$, set $R_i = S_i$, else set $R_i = \neg S_i$.

Optimal Threshold Decision Scheme

1. Obtain the sensor readings $S_j$ of all $N_i$ neighbors of node $i$.
2. Determine $k_i$, the number of node $i$’s neighbors $j$ with $S_j = S_i$.
3. If $k_i \geq 0.5N_i$, set $R_i = S_i$, else set $R_i = \neg S_i$.

Table 1: Decision Schemes for Fault Recognition
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n$</td>
<td>Total number of deployed nodes.</td>
</tr>
<tr>
<td>$n_f$</td>
<td>Number of nodes in the feature region.</td>
</tr>
<tr>
<td>$n_o$</td>
<td>Number of other nodes = $n - n_f$.</td>
</tr>
<tr>
<td>$N$</td>
<td>The number of neighbors of each node</td>
</tr>
<tr>
<td>$T_i$</td>
<td>The binary variable indicating the ground truth at node $i$.</td>
</tr>
<tr>
<td>$S_i$</td>
<td>The binary variable indicating the sensor reading. Sensor is faulty $\iff S_i = \neg T_i$.</td>
</tr>
<tr>
<td>$R_i$</td>
<td>The binary variable with the decoded value. Decoding is correct $\iff R_i = T_i$</td>
</tr>
<tr>
<td>$E_i(a,k)$</td>
<td>The event that $k$ of node $i$’s $N$ neighbors have the same sensor reading $a$.</td>
</tr>
<tr>
<td>$P_{aak}$</td>
<td>The conditional probability $P(R_i = a</td>
</tr>
<tr>
<td>$p$</td>
<td>The (symmetric) fault probability $P(S_i = 1</td>
</tr>
<tr>
<td>$g_k$</td>
<td>The probability that $k$ of node $i$’s $N$ neighbors are not faulty.</td>
</tr>
<tr>
<td>$\Theta$</td>
<td>The decision threshold</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>The average number of errors after decoding</td>
</tr>
<tr>
<td>$\beta$</td>
<td>The average number of errors corrected</td>
</tr>
<tr>
<td>$\gamma$</td>
<td>The average number of errors uncorrected</td>
</tr>
<tr>
<td>$\delta$</td>
<td>The average number of new errors introduced</td>
</tr>
</tbody>
</table>

Table 2: Summary of Notation for Analysis of Fault-Recognition
Let \( g_k \) be the probability that exactly \( k \) of node \( i \)'s \( N \) neighbors are not faulty. This probability is the same irrespective of the value of \( T_i \). This can be readily verified:

\[
g_k = \binom{N}{k} P(S_i = 0|T_i = 0)^k P(S_i = 1|T_i = 0)^{N-k}
\]

\[
= \binom{N}{k} P(S_i = 1|T_i = 1)^k P(S_i = 0|T_i = 0)^{N-k}
\]

\[
= \binom{N}{k} (1-p)^k p^{N-k}
\]

(7)

With binary values possible for the three variables corresponding to the ground truth \( T_i \), the sensor measurement \( S_i \), and the decoded message \( R_i \), there are eight possible combinations. The conditional probabilities corresponding to these combinations are useful metrics in analyzing the performance of this fault-recognition algorithm.

Consider first the probability \( P(R_i = 0|S_i = 0, T_i = 0) \). This is the probability that the algorithm estimates that there is no feature reading when the sensor is not faulty and indicates that there is no feature.

\[
P(R_i = 0|S_i = 0, T_i = 0) = \sum_{k=0}^{N} P(R_i = 0|S_i = 0, T_i = 0, E_i(0, k)) = \sum_{k=0}^{N} P_{aak} g_k
\]

(8)

In a similar manner, we can derive the following expressions for all these conditional probabilities:

\[
P(R_i = a|S_i = a, T_i = a) = 1 - P(R_i = -a|S_i = a, T_i = a) = \sum_{k=0}^{N} P_{aak} g_k
\]

(9)
Figure 3: Metrics for the Bayesian fault-recognition algorithm with randomized decision scheme \((N = 4)\)
Figure 4: Metrics for the Bayesian fault-recognition algorithm with optimal threshold decision scheme (N=4)
\[ P(R_i = \neg a | S_i = \neg a, T_i = a) = 1 - P(R_i = a | S_i = \neg a, T_i = a) = \sum_{k=0}^{N} P_{oak} g_{N-k} \quad (10) \]

These metrics suffice to answer questions such as the expected number of decoding errors \( \alpha \), obtained by marginalizing over values for \( S_i \).

\[ \alpha = P(R_i = 1 | T_i = 0) n_o + P(R_i = 0 | T_i = 0) n_f \]
\[ = (1 - \sum_{k=0}^{N} P_{oak} (g_k - g_{N-k})) n \quad (11) \]

The reduction in the average number of errors is therefore \( (np - \alpha)/np \).

We can also now talk meaningfully about \( \beta \), the average number of sensor faults corrected by the Bayesian fault-recognition algorithm. The conditional probabilities in equations (9) and (10) tell us about this metric:

\[ \beta = (1 - \sum_{k=0}^{N} P_{oak} g_{N-k}) np \quad (12) \]

A related metric is \( \gamma \), the average number of faults uncorrected:

\[ \gamma = (\sum_{k=0}^{N} P_{oak} g_{N-k}) np \quad (13) \]

The Bayesian fault-recognition algorithm has one setback - while it can help us correct sensor faults, it may introduce new errors if the evidence from neighboring sensors is faulty. This
effect can be captured by the metric $\delta$, the average number of new errors introduced by the algorithm:

$$
\delta = P(R_i = 1|S_i = 0, T_i = 0)(1 - p)n_o + P(R_i = 0|S_i = 1, T_i = 1)(1 - p)n_f
$$

$$
= (1 - \sum_{k=0}^{N} P_{aak}g_k)(1 - p)n
$$

These metrics are shown in figure 3 with respect to the sensor fault probability $p$. While it can be seen that for $p < 0.1$ (10% of the nodes being faulty on average), over 75% of the faults can be corrected. However, the number of new errors introduced $\delta$ is seen to increase steadily with the fault-rate and starts to affect the overall reduction in errors significantly after about $p = 0.1$.

Let us now consider the threshold decision scheme. The following theorem tells us that we can view the threshold scheme from an alternate perspective.

**Theorem 1** The decision threshold scheme with $\Theta$ is equivalent to picking an integer $k_{\text{min}}$ such that node $i$ decodes to a value $R_i = S_i = a$ if and only if at least $k_{\text{min}}$ of its $N$ neighbors report the same sensor measurement $a$.

**Proof** Recall that in this scheme, $R_i = a \iff P_{aak} > \Theta$. It suffices to show that $P_{aak}$ increases monotonically with $k$, since in this case, for each $\Theta$, there is some $k_{\text{min}}$ beyond which $R_i$ is always set to $a$. We can rewrite equation (5) as follows:
The monotonicity can be shown by taking the derivative of this with respect to a continuous version of the variable \( k \):

\[
\Rightarrow \frac{d(P_{aak})}{dk} = \frac{p(1-p)N}{(k(1-2p) + pN)^2} > 0
\]  

(16)

Specifically, \( k_{min} \) is given by the following expression, derived by relating equation (15) to the parameter \( \Theta \):

\[
k_{min} = \left\lceil \frac{pN\Theta}{1-p - (1-2p)\Theta} \right\rceil
\]  

(17)

The first question this previous theorem allows us to answer is how the metrics described in equations (8)-(14) change for the decision threshold scheme. In this scheme, we have that if \( k \geq k_{min} \) of its neighbors also read the same value \( a \), the node \( i \) decides on \( R_i = a \). Thus, we can replace \( P_{aak} \) in equations (8)-(14) with a step function \( U_k \), which is 1 for \( k \geq k_{min} \) and 0 otherwise. This is equivalent to eliminating the \( P_{aak} \) term and summing only terms with \( k \geq k_{min} \). Thus for the decision threshold scheme we have that:

\[
P(R_i = a | S_i = a, T_i = a) = 1 - P(R_i = \neg a | S_i = a, T_i = a) = \sum_{k=k_{min}}^{N} g_k
\]  

(18)
\[
P(R_i = \neg a | S_i = \neg a, T_i = a) = 1 - P(R_i = a | S_i = \neg a, T_i = a) = \sum_{k=k_{\text{min}}}^{N} g_{N-k} \quad (19)
\]

\[
\alpha = (1 - \sum_{k=k_{\text{min}}}^{N} (g_k - g_{N-k}))n \quad (20)
\]

\[
\beta = (1 - \sum_{k=k_{\text{min}}}^{N} g_{N-k})np \quad (21)
\]

\[
\gamma = \left( \sum_{k=k_{\text{min}}}^{N} g_{N-k} \right)np \quad (22)
\]

\[
\delta = (1 - \sum_{k=k_{\text{min}}}^{N} g_k)(1 - p)n \quad (23)
\]

The following is a strong result about the optimal threshold decision scheme.

**Theorem 2** The optimum threshold value which minimizes \( \alpha \), the average number of errors after decoding, is \( \Theta^* = (1 - p) \). This threshold value corresponds to \( k_{\text{min}}^* = 0.5N \).

**Proof** As the goal is to find the \( k_{\text{min}} \) and \( \Theta \) which minimize \( \alpha \), it is helpful to start with the definition of \( \alpha \). From equation (23), we have that:

\[
\alpha = (1 - \sum_{k=k_{\text{min}}}^{N} (g_k - g_{N-k}))n
\]

\[
= (1 - \sum_{k=k_{\text{min}}}^{N} \binom{N}{k} ((1 - p)^k p^{(N-k)} - p^k (1 - p)^{(N-k)}))n \quad (24)
\]

We examine the behavior of the expression in the summand:

\[
((1 - p)^k p^{(N-k)} - p^k (1 - p)^{(N-k)}) = p^k (1 - p)^k (p^{(N-2k)} - (1 - p)^{(N-2k)}) \quad (25)
\]
For \( p < 0.5 \), this expression is negative for \( N > 2k \), zero for \( N = 2k \), and positive for \( N < 2k \).

In the expression for \( \alpha \), as we vary \( k_{\text{min}} \) by decreasing it by one at a time from \( N \), we get additional terms with negative contributions while \( k_{\text{min}} > 0.5N \), and positive contributions once \( k_{\text{min}} < 0.5N \). It follows that \( \alpha \) achieves a minimum when \( k_{\text{min}} = k^*_{\text{min}} = 0.5N \).

To determine what value of \( \Theta \) this corresponds to, we can utilize equation (17). We have that

\[
\frac{pN\Theta^*}{1 - p - (1 - 2p)\Theta^*} = 0.5N
\]

\( \Rightarrow p\Theta^* = 0.5(1 - p - (1 - 2p)\Theta^*) \)

\( \Rightarrow \Theta^*(p - p + 0.5) = 0.5(1 - p) \)

\( \Rightarrow \Theta^* = (1 - p) \)  \hspace{1cm} (26)

\( \square \)

The above theorem says that the best policy for each node (in terms of minimizing \( \alpha \), the average number of errors after decoding) is to accept its own sensor reading if and only if at least half of its neighbors have the same reading. This is an intuitive result, following from the equal-weight evidence model that we are using (equation (3)). This means that the sensor nodes can perform an optimal decision without even having to estimate the value of \( p \). This makes the optimal-threshold decision scheme presented in table 1 an extremely feasible mechanism for minimizing the effect of uncorrelated sensor faults.
Figure 5: A snapshot of the simulator showing the errors before and after fault-recognition with optimal threshold \( (p = 0.1) \)
Figure 6: Normalized number of errors corrected and uncorrected with the optimal threshold decision scheme
Figure 7: Normalized number of new errors introduced with the optimal threshold decision scheme.
Figure 8: Normalized reduction in average number of errors for the optimal threshold decision scheme
Figure 9: Normalized reduction in average number of errors with respect to the threshold value in the threshold decision scheme ($p = 0.25$, $\Theta^* = 1 - p = 0.75$)
2.2 Simulation Results

We conducted some experiments to test the performance of the fault-recognition algorithms. The scenario consists of \( n = 1024 \) nodes placed in a \( 32 \times 32 \) square grid of unit area. The communication radius \( R \) determines which neighbors each node can communicate with. \( R \) is set to \( \frac{1}{\sqrt{n-1}} \), so that each node can only communicate with its immediate neighbor in each cardinal direction. All sensors are binary: they report a ‘0’ to indicate no feature and a ‘1’ to indicate that there is a feature. The faults are modelled by the uncorrelated, symmetric, Bernoulli random variable. Thus each node has an independent probability \( p \) of reporting a ‘0’ as a ‘1’ or vice versa. We model correlated features by having \( l \) single point-sources placed in the area, and assuming that all nodes within radius \( S \) of each point-source have a ground truth reading of 1, i.e. detect a feature if they are not faulty. For the scenario for which the simulation results are presented here, \( l = 1, S = 0.15 \).

We now describe the simulation results. The most significant way in which the simulations differ from the theoretical analysis that we have presented thus far is that the theoretical analysis ignored edge and boundary effects. This can play a role because at the edge of the deployed network, the number of neighbors per node is less than that in the interior, and also the nodes at the edge of a feature region are more likely to erroneously determine their reading if their neighbors provide conflicting information. Such boundary nodes are the most likely sites of new errors introduced by the fault-recognition algorithms presented above. In general, because of this, we would expect the number of newly introduced errors to be higher than that predicted by the analysis.
Figure 5 shows a snapshot of the results of a sample simulation run. The sensor nodes are depicted by dots; the nodes indicated with bold dots are part of the circular feature region. An ‘x’ indicates a faulty node (before the fault-recognition algorithm), while an ‘o’ indicates a node with erroneous readings after fault-recognition. Thus nodes with both an ‘x’ and ‘o’ are nodes whose errors were not corrected, while node with an ‘x’ but no ‘o’ are nodes whose errors were corrected, and nodes with no ‘x’, but an ‘o’ are nodes where new error has been introduced by the fault recognition algorithm. It can be seen that many of the remaining errors are concentrated on the boundaries of the feature region on the top right.

Figures 6, 7, and 8, show the important performance measures for the fault recognition algorithm with the optimal threshold decision scheme from both the simulation as well as the theoretical equations. The key conclusion from these plots is that the simulation matches the theoretical predictions closely in all respects except the statistic of newly introduced errors, where understandably the border effects in the simulation result in higher values. More concretely, these figures show that well over 85% - 95% of the faults can be corrected even when the fault rate is as high as 10% of the entire network.

Figure 9 illustrates the performance of the threshold decision scheme with respect to the threshold value $\Theta$. Again, the simulation and theoretical predictions are in close agreement. The optimal value of the threshold $\Theta$ is indeed found to correspond to a $k_{\text{min}}$ of $0.5N$. 
3 Conclusions

With recent advances in technology it has become feasible to consider the deployment of large-scale wireless sensor networks that can provide high-quality environmental monitoring for a range of applications. In this paper we developed a solution to a canonical task in such networks – the extraction of information about regions in the environment with identifiable features.

One of the most difficult challenge is that of distinguishing between faulty sensor measurements and unusual environmental conditions. To our knowledge, this is the first paper to propose a solution to the fault-feature disambiguation problem in sensor networks. Our proposed solution, in the form of Bayesian fault-recognition algorithms, exploits the notion that measurement errors due to faulty equipment are likely to be uncorrelated, while environmental conditions are spatially correlated.

We presented two Bayesian algorithms, the randomized decision scheme and the threshold decision scheme and derived analytical expressions for their performance. Our analysis showed that the threshold decision scheme has better performance in terms of the minimization of errors. We also derived the optimal setting for the threshold decision scheme for the average-correlation model. The proposed algorithm has the additional advantage of being completely distributed and localized - each node only needs to obtain information from neighboring sensors in order to make its decisions. The theoretical and simulation results show that with the optimal threshold decision scheme, faults can be reduced by as much as 85 to 95% for fault rates as high as 10%.
There are a number of directions in which this work on fault-recognition and fault-tolerance in sensor networks can be extended. We have dealt with a binary fault-feature disambiguation problem here. This could be generalized to the correction of real-valued sensor measurement errors: nodes in a sensor network should be able to exploit the spatial correlation of environmental readings to correct for the noise in their readings. Another related direction is to consider dynamic sensor faults where the same nodes need not always be faulty. Much of the work presented here can also be extended to dynamic feature extraction to deal with environmental phenomena that change location or shape over time. We would also like to see the algorithms proposed in this paper implemented and validated on real sensor network hardware in the near future.
References


