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We investigate a price-based reliable routing game in a
wireless network of selfish users. Each node is characterized
by a probability of reliably forwarding a packet, and each link
is characterized by a cost of transmission. The objective is to
form a stable and reliable routing path between a given source
and destination pair. The pricing mechanism involved in this
routing game is destination-driven and source-mediated: for
each successfully delivered packet, the destination node pays
the source, which in turn compensates all nodes that participate
in routing the packet. We develop a polynomial-time algorithm
for deriving an efficient Nash equilibrium routing path. We
also present simulations to evaluate the reliability of the
obtained path with respect to prices and source-destination
cooperation for different network settings.

I. I NTRODUCTION

Recently, there has been increasing interest in applying the
tools of game theory to the design of wireless ad hoc networks.
This is because a central problem in this domain is providing
incentives for selfish users to cooperate with each other in
moving information through the network.

We consider a reliable routing game for wireless networks
of selfish users that is based on the game-theoretic models
proposed and investigated by Kannan, Sarangi, and Iyen-
gar [1], [2], [3], [4], with some modifications. Each node in
the network is able to forward a given packet sent to it with
some probability (we treat this probability in the abstract in
this work, but in practice this unreliability could be caused by
processor utilization, sleep cycling, buffer overflow, bandwidth
limitation, etc.). The delivery probability of a packet from the
source to the destination is then the product of the intermediate
node forwarding probabilities. Further, the transmission of a
packet at each hop has a cost that depends upon the link
quality. The nodes in the network are essentially selfish in
that they need compensation if required to relay information
for others.

We present and investigate a pull-based routing game that
is destination-drivenand source-mediated. This means the
destination node will pay some amount of virtual credit/money
as payment to the source node for each packet of information
that is delivered to it. To motivate nodes on the path, the source

node then offers some kind of payment to every node on its
path for every packet it forwards. Given this payment from the
source, each node on the path has an incentive to participate in
this routing game if it receives more payment in expectation
than it pays for each transmission. We consider two kinds
of behaviors for the source with respect to the destination:
cooperative and selfish. Acooperative sourcewill accept any
positive payoff, and cooperates with the destination because
it is also interested in seeing this information routed end-to-
end with optimal reliability. Aselfish sourceis interested only
in maximizing its own expected profit and is even willing to
select a path of potentially suboptimal reliability in order to
get that maximum profit.

It is important for the route that is determined to be stable.
This means every participating routing node should be faithful
and keep forwarding packets along the chosen routing path.
From a Game Theory perspective, such a stable configuration
corresponds to a Nash equilibrium. The prior literature on
this topic has suggested that finding the Nash equilibrium for
related reliable routing problems can be NP-hard. We show
that for the problem we consider here, a polynomial-time
solution exists to find efficient Nash Equilibria; this is based on
a suitable modification of Dijkstra’s shortest path algorithm.

We also present simulations to evaluate the reliability of
the obtained route as a function of the destination and source-
offered payments and degree of source-destination cooperation
for different network parameter settings.

II. RELATED WORK

The problem of obtaining cooperative routing behavior in
wireless ad hoc networks consisting of inherently selfish nodes
has received considerable attention in recent years. Two main
avenues of research in this regard are (a) reputation and
punishment-based techniques and (b) pricing and payment-
based techniques.

Reputation-based techniques provide mechanisms to track
the behavior of nodes and punish those that behave in a selfish
manner. Along these lines, Martiet al. [6] present the watch-
dog and path-rater mechanisms that punish nodes which don’t
relay packets correctly; the CONFIDANT protocol [7], [8]
and the CORE mechanism [22] are also distributed reputation



systems that seek to identify and deal with misbehaving nodes.
The OCEAN mechanism [9] seeks to obviate some of the
complexity associated with second-hand reputation exchange-
based schemes by relying on first-hand observations alone.
Srinivasanet al. [18], provide a formal game-theoretic frame-
work for reputation/punishment and show that the generous
tit-for-tat mechanism can be used to obtain Nash equilibria
that converge to Pareto optimal, rational solutions. Equilibrium
conditions obtained using similar generous tit for tat strategies
taking into account the multihop network topology for static
and dynamic scenarios are investigated in [12], [13]. Altman
et al. advocate a less aggressive punishment policy to improve
performance [14]. Urpiet al. [10] and Nurmi [17] model the
situation as dynamic Bayesian games, which allow effective
use of prior history in enforcing cooperation.

The alternative to enforcing cooperation is providing nodes
with an incentive to cooperate through payment and pric-
ing mechanisms. Buttyan and Hubaux introduce the notion
of NUGLETS, a form of virtual currency that provide an
incentive for nodes to cooperate [16]. The use of pricing
to obtain incentives for cooperation is also advocated in the
works by Crowcroftet al. [21] and Ileri et al. [15]. In all
these schemes, nodes which forward data for others receive
credits that can be used to pay others to carry their own
data. DaSilva and Srivastava [11] study the tradeoffs between
cost and benefit in a game theoretic context to determine how
they impact cooperation. Our work can be viewed as closely
related to these approaches, as we too provide incentive to
the intermediate nodes to cooperate in the routing through the
payment offered by the source node, and evaluate the impact
of pricing upon cooperation and the utility provided to the
source.

With payment-based schemes, however, there is an associ-
ated risk of cheating due to false claims by nodes trying to
obtain payments they do not deserve. While we do not explic-
itly tackle this issue in our work, researchers have proposed
solutions for handle this potential abuse. The micropayment
scheme presented in [20] incorporates an audit mechanism to
prevent false claims. SPRITE is another cheat-proof mecha-
nism that uses a credit clearance server to provide payments to
nodes for cooperation. Anderegg and Eidenbenz [19] propose
the use of the Vickrey-Clark-Groves mechanism to obtain
truthful claims for payments.

Our investigations are motivated by the works of Kannan,
Sarangi and Iyengar on reliable query routing [1], [2], [3],
[4]. They are the first to formulate a game where the node
utilities show a tension between path reliability and link costs,
and they have considered different interesting variants of this
problem. A key difference in this work is that we explicitly
allow the null strategy in which nodes may choose not to
forward packets to any next-hop neighbor. This allows us to
provide a polynomial time algorithm for obtaining an efficient
Nash equilibrium path. Another key difference in our work is
that we consider the notion of destination and source payments
and incorporate them into the utility functions.

III. PROBLEM DEFINITION

In this section, we define the destination driven pricing
routing problem formally. A wireless network is modeled as
an undirected graphGraph(V,E) where V denotes all the
nodes in the network andE represents the link set. Each
node vi in V is associated with a reliability parameterRi

(0 ≤ Ri ≤ 1). Ri indicates the node availability and stability
– the probability that it can forward a packet sent to it. Each
edgee = (vi, vj) ∈ E has a link cost parameterCi,j , which
represent the communication set up cost between two end
nodes.

There are three kinds of nodes in the network: destination
node dst, source nodesrc and other intermediate nodesvi

(wherevi ∈ V \{src, dst}) that are candidates for participating
in a route between the source and the destination. We assume
that both destination node and source node always have
node reliability1. The destination node offers to the source
a payment amountG for every packet that is successfully
delivered to it. The source in turn offers a paymentp (for
each successfully delivered packet) that will be given to any
intermediate node if it participates in the routing path.

To formulate the core game, we now give the definition of
the triplet (I, (Si)i∈I , (ui)i∈I) whereI is the set of players;
(Si)i∈I is the set of available actions withSi be the non-empty
set of actions for playeri; and (ui)i∈I) is the set of payoff
functions.

In this game, we defineI = V \ {dst} which means
that all nodes except the destination are players1. In an
n nodes network (including source and destination nodes),
for each nodevi ∈ V \ {dst}, its strategy is ann-tuple
Si = (si,1, si,2, ...si,n) where

si,j =

{
1 , if node vj is v′is next hop in path

0 , otherwise

Note thatvi ∈ V \ {dst} andvj ∈ V .
Each strategy tuple has at most one1. That is,

∀vi,
n∑

j=1

si,j ≤ 1

If node vi’s strategy tuple contains all zeros, nodevi does
not participate on packet forwarding in the game. A system
strategy profile(Si)i∈I is a profile which contains all players’
strategies in the network. Given this strategy profile, there is
either no path from the source to the destination, or else,
there is exactly one pathP (since each node can point
to only next-hop). Without loss of generality, let’s denote
P = (src, v1, v2, . . . , vh, dst). Hereh denotes the number of
hops between the source node and the destination node (not
inclusive). The utility function for each player is defined as
follows:

1While the destination does play a role in offering the paymentG, this is
a constant that only affects the utility for the source.



For the source node:

usrc =

{
0 , if no path exists

(G− h · p)
∏

vi∈P Ri − Csrc,v1 , otherwise
(1)

The utility of the source node equals to the difference between
the expected income of the source and the link set up cost
from the source node to the first next hop routing node. The
expected income of the source is the destination payment
minus the source pay to all the intermediate nodes times the
probability that the packet is successfully delivered.

For each other nodevi:

uvi =

{
0 , if no path exists or if vi /∈ P
p

∏vh

vi+1
Ri − Cvi,vi+1 , otherwise

(2)

(where we are denotingvi as theith node in the path if it
participates in it).

The utility of each intermediate routing node equals to
the expected payment it obtains from the source node times
the ongoing route reliability minus the transmission cost per
packet to its next hop neighbor. If the node does not participate
in the routing, it gains (and loses) nothing.

We now develop an algorithm to obtain an efficient Nash
equilibrium for this game.

IV. T HE ALGORITHM

Our goal is to develop an algorithm for computing an effi-
cient Nash equilibrium path that provides maximum reliability
while ensuring that all nodes obtain non-negative payoffs2. The
link between non-negative payoffs and the equilibrium path is
given by the following simple lemma.

Lemma 1 If a path exists and it is a Nash Equilibrium,
every node on the path must have non-negative payoff.

The proof for this lemma is straightforward. According to
the payoff function, a node would rather choose not to partic-
ipate in routing (with payoff0) if joining the routing makes
its payoff negative. However, note that it is not necessary for
all the paths with non-negative payoff to be Nash equilibrium.
We will term such a path a PPP (Positive Payoff Path). We
will correspondingly term a path with all routing nodes having
non-positive payoff an NPP (negative payoff path).

To find a positive payoff path, we first simplify the problem
to a more concise representation. According to the definition,
we need that for each intermediate routing nodevi, its utility
uvi

≥ 0. This implies

n∏
k=i

Rk ≥
Ci,i+1

p

2We should note that in our model even any shortest-hop path that ensures
non-negative payoffs to all nodes is in Nash equilibrium. The algorithm we
present could be potentially modified to provide such a shortest-hop Nash
equilibrium path; however, our interest is in finding an efficient equilibrium
path that also provides maximum reliability. This allows us to characterize
the performance of the most efficient equilibrium path that can be obtained
under different prices.

To convert the product to summation, we take the logarithm
of both sides and get

n∑
k=i

logRk ≥ log
Ci,i+1

p

Notice that0 ≤ Rk ≤ 1; we take the inverse of eachRk

to make each term in the summation positive. The original
formula now transforms to

n∑
k=i

log
1

Rk
≤ log

p

Ci,i+1

for eachvi. Replacinglog 1
Rk

by rk (rk ≥ 0) and replacing
log p

Ci,i+1
by ci,i+1, we formulate the problem of finding a PPP

in the original graph to an equal problem of finding an NPP in
a transformed network graph, where each node has a positive
value ri and each edge is assigned a valueci,j , according to
the following transformed utility functions̃u.

For the intermediate node,

ũvi
=

n∑
k=i

rk − ci,i+1

For the source node, we get

n∑
k=1

log
1

Rk
≤ log

G− hp

Csrc,v1

Replacinglog 1
Rk

asrk as before and also replacinglog G−hp
Csrc,v1

ascsrc,nbr, we have:

ũsrc =
n∑

k=1

rk − csrc,nbr

With these log-transformed formulae, in the following, we
will first find an NPP of smallest

∑
rk from eachneighbor

of source node. Then, if the source node is selfish, it picks
up a feasible path provided by neighbors that gives it smallest∑

rk − csrc,nbr or else if cooperative with the destination,
it picks the path with the smallest

∑
rk. In either case, the

source only participates in routing if its own original expected
utility will be positive.

A polynomial time algorithm modified from Dijkstra’s al-
gorithm can be applied to find the NPP with the smallest∑

rk from each neighbor of the source to the destination.
The psuedocode for the algorithm is given below.

Note that the original source does not participate in this
algorithm, so we denote the neighbor in question assrc in the
algorithm. In brief, the algorithm starts labeling nodes from
the destination, applying Dijkstra’s algorithm, with adding
negative utility checking step. In the algorithm, each node has
a label which is a tuple(from, l(vi), ũvi

). The first item in the
tuple indicates from which node the label comes, i.e., the next
hop of current node starting from source. The second term in
the tuple records the summation ofrk, which is analogous to
the length in Dijkstra’s algorithm. The third term tracks the
current ũ value. This algorithm is applied in turn for each



Finding an NPP with Minimum
∑

rk in Trans-
formed Network Graph

1) Initialize: Feasible setFS = {dst}, all other
nodes labeled as(−,∞,−), l(dst) = 0

2) while src /∈ FS ∧N(FS) 6= ∅
• for eachvi ∈ N(FS)

– while (∃vk ∈ FS such that(vi, vk) ∈ E)

∗ l(vi) = min(l(vi),
minvj∈FS∧(vi,vj)∈E(l(vj) + ri)) let
vj be the corresponding next hop
node

∗ if ũvi
− ci,j ≥ 0: delete edge(vi, vj).

∗ else: update the label triplet to
(vj , l(vi), l(vi)− ci,j);
addvi to FS;
break

– end while

• end for

end while

neighbor of the source before the source picks one of these
neighbors to form the path, as described above.

Since ther value is related to nodes instead of the links, we
need a definition of neighborhood set for vertices in a given
graphG(V,E).

Definition 1 Given a graphG(V,E), I ⊂ V ,S ⊂ V , S
is the neighborhood set ofI (denote asN(I)) if and only if
∀vj ∈ S, vj /∈ I and∃vi ∈ I such that(vi, vj) ∈ E

Lemma 2 Given graphG(V,E), if (vi, vj) ∈ E is deleted
in some step in the Algorithm,(vi, vj) does not lie in any NPP
from src to dst in the original graphG(V,E).

Proof: (by contradiction) Assume that there is a link(vi, vj)
between nodesvi /∈ FS andvj ∈ FS deleted in some iteration
lies in an NPP pathP = (v1, ..., vi, vj , ..., vn). First consider
that the edge(vi, vj) is the first link we delete during the
algorithm. SinceP is an NPP, we have

∑n
k=i rk < ci,j , i.e.∑n

k=j rk + ri < ci,j . Recall that in the algorithm, we check
ũvi

for trying to labelvi asmin(l(vi),
minvj∈FS∧(vi,vj)∈E(l(vj)+ri)). And for nodevj , l(vj) is the
minimum summation ofr values from nodevj onwards since
vj is in the feasible set. Hence, we have

n∑
k=j

rk + ri ≥ l(vj) + ri ≥ min(l(vi), l(vj) + ri)

It follows that min(l(vi), l(vj) + ri) < ci,j . Then, according
to the algorithm, edge(vi, vj) should not be deleted. This
contradicts the assumption. Thus edge(vi, vj) does not lie in
any NPP fromsrc to dst in G(V,E). This argument can now
be inductively applied to the second edge that is deleted, the
third, and so on, because deleting an edge that does not lie

in any NPP from the graph does not affect the solution to the
NPP problem in any way.)�

Theorem 1 The algorithm to find an NPP path with
minimum

∑
rk in the transformed network graph is correct.

Proof: (Soundness): the path found by the algorithm in the
transformed graph is guaranteed to be an NPP path since it has
a check step to make sure each node in the feasible set has a
non-positive payoff. The path is guaranteed to have minimum∑

rk since in the algorithm, we always label smallest feasible∑
rk first.
(Completeness): We need to prove that if there exists an

NPP in the graph, the algorithm will return one. According to
Lemma 1, since the edge deleted in the algorithm doesn’t lie in
any NPP, the algorithm doesn’t destroy any NPP path in the
graph. The algorithm terminates only under two conditions:
either it finds the NPP orN(FS) = ∅∧src /∈ FS. The latter
case indicates that the source and destination are separated
into two isolated parts of the graph, which implies that there
is no NPP in the original given graph.�

The computational complexity of the algorithm is polyno-
mial. The Dijkstra’s algorithm can be run in timeO(n2). For
each edge deletion in our algorithm, we need to retry the
labeling, which will cost at most extraO(n) time for each
node. So the running time of our algorithm is bounded by
O(n3).

Notice that when mapping the algorithm back to the PPP
problem, we always choose the most reliable path among all
the feasible paths. In the algorithm we keep adding the nodes
with minimum summation ofr that still satisfies the negative
utility constraints. This observation can be used to prove that
path returned by this algorithm is a Nash equilibrium path
(if all nodes not on the path choose the null strategy of not
picking any next-hop neighbor).

Theorem 2 The path found by the algorithm is a Nash
equilibrium path in the PPP finding problem.

Proof (by contradiction): Assume that the algorithm returns
a pathP = (v1, v2, ..., vi, vi+1, ..., vj , ...vn) which is not a
Nash equilibrium. Without loss of generality, suppose only
one nodevi wants to switch his next hop fromvi+1 to vj ,
where j > i + 1. Path P̂ = (v0, v1, ...., vi, vj , ..., vn) is also
a PPP, since the payoff of the nodes beforevj increases by
the increase of path reliability (remember0 ≤ Rk ≤ 1) and
the payoff aftervj (including vj) keep unchanged. Thus path
P̂ is one of the feasible paths. Since the path abandoned
some intermediate nodes, the path reliability ofP̂ is larger
than P. This would imply that the algorithm should return
path P̂ instead ofP, which contradicts the assumption. By
construction, the node has no incentive to switch its next hop
to a node that is not on the returned path since those nodes
do not pick any next-hop neighbor.�

As we mentioned before, the algorithm runs to obtain a
positive payoff path to destination from each neighbor of
the source node. If the source node is selfish, among all the
feasible paths reported from its set of neighbors, it will pick
the one that gives its maximum profit according to the source’s
utility function. If the source node is cooperative, it will pick



the path which gives the highest path reliability.

V. SIMULATION RESULTS

In this section, we present our simulation results. We have
two different simulation models that essentially yield different
link cost distributions: ARQ-based, and distance-based.

In the ARQ model, we generate the network topology
using a realistic link layer model [24]. The link layer model
output a directed graph with each edge has its own PRR
(packet reception rate). The link cost of edge(vi, vj) in our
model is calculated as the average of the expected number of
transmissions in each direction (assuming ARQ). However, we
find that most of the link costs are around 1 in this link layer
model.

In the distance-based model, each node has same transmis-
sion range, but the link cost is made proportional to the square
of the distance between two nodes if they are in each other’s
transmission range. If the two nodes are out of each other’s
transmission range, the link cost between these two nodes
are set to be infinity. The mathematical representation of the
distance-based model is as follows:

Ci,j =

{
α · d(i, j)2 if d(i, j) ≤ Γ
∞ otherwise

where d(i, j) is the distance between nodevi and nodevj ;
and Γ is the transmission range of the sensor nodes. In the
simulation settings,α is set to 0.1 (we also did extensive
simulations for differentα values, similar curve trends are
observed). The distance-based model shows greater variance
in the link costs and thus allows for more tradeoff between
link cost and node reliability than in the ARQ model where
the link costs are more uniform.

We use a fixed12×12 square meters area as our simulation
area. In the distance-based model, node’s transmission range
is set to5 meters. The node reliability is uniformly chosen at
random in interval[0.1, 1].

Figure 1 illustrates the path reliability versus source pay
for intermediate nodes when fixingG to 300 (a sufficient large
amount) for both models. From this figure, we can see that the
density of the deployments increases, the maximum reachable
path reliability increases. This result is expected. When the
source pays more to intermediate nodes, the expected path
reliability increase too. We notice in both cases that whenp
exceeds some threshold the path reliability will remain almost
constant. However, the curves for the distance-based model
increase a bit more gradually while those for the ARQ-model
are sharp — this reflects the greater variance of link costs in
the distance-based model.

Figure 2 plots the source gain versus the source pay to the
intermediate nodes with fixed number of nodes (30) and area
size. Recall that from the source utility function in Section
III, source utilities in most cases are dominated by the term
of (G−hp)

∏
vi∈Path Ri. Increasingp can lead to decreasing

of h and increment of
∏

vi∈Path Ri. Figure 2 shows that there
exists a best strategy point for the source to maximize its
payoff, which is at the same routing price no matter how

much destination pay is given in a fixed network topology.
The other observation of Figure 2 is that the portion of source
gain increases as the destination pay increases. This indicates
that even if the destination increase the pay to the source to
request a certain reliability path, most of the money goes to
the source instead of the routing nodes. It implies that even
if the destination increase the pay, it will not get a path with
more reliability.

If we examine Figure 1 and Figure 2 together, we will
find that at the maximum gain of the source node, the path
reliability is close to the maximum path reliability which
the network can reach. This gives us an important insight:
selfish behavior of source node in such system will not
hurt system performance much. Figure 3 shows a side-by-
side comparison of source node behaving cooperatively and
selfish, for the ARQ model. These figures demonstrate that
there is improvement of path reliability when source acts
cooperatively, but the improvement is not significant. We also
see that the maximum path reliability will not have significant
improvement for any fixed network parameter when desti-
nation pay exceeds some threshold (around 50 here) that is
necessary to obtain a path. On the other hand, the routing path
reliability will increase significantly (from 0.39 to 0.74) when
changing network parameters (in this particular simulation, we
increase the number of nodes in the fixed area).

Figure 4 shows the probability that a positive payoff Nash
equilibrium path exists as a function of the price offered by
the source under both models. For each curve of realistic link
layer model, corresponding to a fixed number of nodes (fixed
density), we see that the curve increases to a point where it
is close to 1. This shows the existence of critical threshold
prices (independent of the exact configuration) that ensure the
existence of a Nash Equilibrium path with high probability. We
also see that this price threshold decreases with the density, a
trend that is concrete visualized in the distance-based model
which is effected by node distance more seriously. This trend
is because with growing density there are more choices to pick
the path from, and there are a greater number of high quality
links which incur low transmission cost.

VI. CONCLUSION

In this paper, we described a destination-driven source-
mediated pricing routing scenario involving three different
kind of nodes: the destination, the source, and the intermediate
nodes. We presented a polynomial time algorithm which can
give us a Nash equilibrium path and used it to evaluate the
performance of the performance of the game with respect to
prices and source behaviors for different network settings.

The simulations results demonstrate several key findings:

• With the increment of the network density, routing paths
become cheaper and more reliable and the source payoff
will increase.

• Even if the source node acts selfishly, it doesn’t nec-
essarily downgrade the reliability of the routing path
significantly.



(a) (b)

Fig. 1. Path reliability versus source pay to each routing node when changing number of nodes in a fixed area: (a) ARQ model (b) distance-based model

(a) (b)

Fig. 2. Source gain versus source pay to each routing node for different destination pay, when fixing number of nodes and area size: (a) ARQ model (b)
distance-based model

(a) (b)

Fig. 3. Behavior of source node effect on the path reliability: (a) selfish source (b) cooperative source



(a) (b)

Fig. 4. Cumulative distribution function for the existence of Nash Equilibrium path when increasing source pay to each routing node: (a) ARQ model, (b)
distance-based model

• Given a network, the increment of destination pay won’t
improve path reliability after some threshold. The source
will eat up the margins beyond this point. Thus this is
the desired point of operation for the destination.

In ongoing work, we have been developing simple math-
ematical models to analyze the trends demonstrated here via
simulations. One direction to extend the game is to add the
destination as a player and explicitly incorporate the prices
G and p as strategies decided by the source and destination.
Another direction that is of interest for future work is to
consider scenarios where the destination can choose from
several source nodes for a given piece of information. This
will allow for an auction to be held among the source nodes
to optimize destination’s payoff.
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