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Abstract— We investigate the problem of energy efficiency in
TDMA link scheduling with transmission power control using
a realistic SINR-based interference model, given packets of a
set of links to be transmitted within a latency bound. First
we formulate a fundamental optimization problem (TJSPC)
that provides tunable tradeoffs between energy, throughput and
latency through a single parameter β. We present both expo-
nential and polynomial complexity solutions to this problem and
evaluate their performance. Our results show that for moderate
traffic loads, with appropriate tuning of parameters, major
energy savings can be obtained without significantly sacrificing
throughput. We then investigate the scheduling and power control
problem with the objective of minimizing the total transmission
energy cost under the constraint that all transmission requests are
satisfied (JSPC-TR). We present an iterative approach to solve
JSPC-TR that leverages the heuristics for TJSPC and converges
rapidly to the setting of β which achieves energy efficiency while
guaranteeing data delivery.

I. INTRODUCTION

TDMA scheduled medium access is generally more energy
efficient than random access, and is particularly suitable for
implementation with low overhead when traffic is predictable
or slowly changing. Several studies have investigated TDMA
scheduling techniques for ad hoc and sensor networks [1],
[2], [3], [6], [4], [5], [7]. In these studies, typically a simple
model for interference is used where a receiving node sees
interference from another transmitter if and only if it is within
some nominal range RI . This model, while useful in providing
a simple graph-coloring approach to TDMA scheduling, can be
quite misleading in practice. In reality, simultaneous wireless
transmissions within the nominal range do not necessarily col-
lide if the signal to interference plus noise ratios (SINR) at the
corresponding receivers are sufficiently high; and, at the other
extreme, aggregate interference from multiple transmitters that
are well beyond the nominal range can be high enough to cause
collisions.

Another concern with many studies of TDMA in wireless
ad hoc and sensor networks is that they ignore the possibility
of variable transmission power. In practical systems this can
be an important tunable parameter for reliable and energy-
efficient communication, because higher transmit powers can
increase the SINR at the receiver to enable successful reception
on a link, and lower transmission power can mitigate interfer-
ence to other simultaneously utilized links.

We treat in this work TDMA link scheduling using a
realistic SINR-based interference model, explicitly taking

transmission power control into account. This approach to joint
scheduling and power control was first taken by ElBatt and
Ephremides [9], [10], followed by others including [11], [12],
[13], [14], [18]. Given a set of one-hop links and number of
packets that need to be transmitted within a certain number
of slots, the scheduling problem is to decide in each time
slot which source-destination pairs communicate while power
control problem is to decide the transmission power of source
nodes in a given slot.

In these prior works, the primary objective of the link
scheduling algorithm is to maximize the number of simul-
taneous transmissions which maximize the throughput. While
the power control phase minimizes transmission powers on
the scheduled links, link scheduling can not guarantee power
efficiency, because maximizing the concurrent transmissions
increases inter-sender interference and hence the total required
transmission power. Potentially significant energy savings are
possible through alternate link schedules. Even further energy
savings may be achievable by trading off throughput and
latency.

In this paper, we study the energy efficient joint scheduling
and power control problem. Our contributions in this work
are four-fold. First, we formulate joint scheduling and power
control as a novel optimization problem that provides tun-
able tradeoffs between throughput, energy and latency. We
show that the prior formulations in [9], [11] can in fact be
treated as special cases of our formulation. Second, while
the optimization problem that we formulate is NP-hard, we
present both exponential and polynomial complexity greedy
based heuristic algorithms. Third, we show the performance
of these algorithms through simulation results and demonstrate
the energy-latency-throughput tradeoffs that can be achieved
with joint link scheduling and power control. Interestingly,
we find that, at least for moderate loads, major energy savings
can be obtained without significantly sacrificing throughput.
Finally, we study the the energy efficient joint scheduling
and power control problem with the objective of minimizing
the total energy cost subject to all packets of the links are
transmitted within a latency bound.

The rest of the paper is organized as follows. We discuss
the related works in section II. In section III, we define the
energy efficient joint scheduling and power control problem.
We study the tunable joint link scheduling and power control
problem in section IV. In section V, we investigate the prob-
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lem of joint scheduling and power control with transmission
request constraint. We evaluate the performance by simulations
in section VI. Concluding comments are presented in section
VII.

II. ENERGY, LATENCY AND THROUGHPUT TRADEOFFS IN

JOINT SCHEDULING AND POWER CONTROL

A. Application Scenario

We first describe the basic application scenario and as-
sumptions.

1) We consider a static wireless sensor network, where all
nodes are equipped with same radio with omni-directional
antennas and share the same channel. The transmission
power of the radio can be adjusted continuously 1, with
constraints on the minimum and maximum transmission
power levels. The radio data rate is fixed.

2) We consider a general application in wireless sensor net-
work, where each sensor node samples the environment
periodically. A node either reports to sink or communicate
with neighbors when an interesting event is detected.
Sensing data need to be processed or reported before a
latency deadline, such as in fire detection or real time
target tracking applications.

3) The deadline can be per-hop deadline or end-to-end dead-
line. In case of end-to-end deadline, we divide the end-
to-end deadline by the number of hops so we have a per-
hop deadline for each link on the path. This is reasonable
since end-to-end deadline should be proportional to the
number of hops on the path.

4) Time is divided into equal sized slots that are long enough
for one packet transmission and grouped into frames.
Some works on TDMA focus on minimizing the length of
the frame subject to the constraint that every node or link
is assigned at least one slot. In this work, however, the
frame length is chosen according on the per-hop latency
deadline.

5) Each node generates random number of packets of fixed
length which need to be transmitted in one TDMA
frame. This is called a transmission request. Packets not
transmitted within current time frame are dropped.

6) For end-to-end data packet (e.g, from a sensor to the
sink), every TDMA frame, it will be forwarded one hop
to a neigh node. In the next TDMA frame, the packet
will then be counted as the transmission request of the
neigh node until it reaches the sink.

B. Interference Model

The interference model that we consider is a SINR-based
TDMA system. Let G = (V,E) be the wireless sensor
network, with V representing the set of nodes in the network
and E, the set of communication links. Given a link (i, j) ∈ E,
i is the sending node and j is the receiving node. A link is

1In practice, there may only be several discrete transmission power levels.
This assumption, however can simplify the analysis and does not affect the
correctness of the algorithm.

called active in a slot if node i transmits data packet to node
j in that slot. We refer all active links in a single time slot
as a transmission scenario, or transmission set. The signal to
interference and noise ratio (SINR) for link (i, j) is defined
as:

SINRij =
αijPi

Nj +
∑

k �=i αkjPk
(1)

where αij is the propagation attenuation of the signal from
node i to node j, which is proportional to 1

dn
ij

, where n is the
path loss factor. We assume αijs changes slowly so that we
can regard αij as constant for the duration of a time frame
in the following discussion. We present an iterative approach
to solve JSPC-TR that leverages the heuristics for TJSPC
and converges rapidly to the setting of β which achieves
energy efficiency while guaranteeing data delivery. . Nj is
the environment noise power at receiver j. Pi and Pk are the
transmission powers of sending node i and k separately.

A data transmission on a link (i, j) can be successfully
received at the receiver only if the corresponding SINR on
that link is equal or greater than a given threshold γ:

SINRij ≥ γ (2)

C. Power Control

If there is only one active link (i, j), node i only needs
to transmit at a power level just high enough to satisfy
SINRij ≥ γ. However, if there are multiple active links in
the same time slot, because of the interfere among each other
each node has to transmit at higher power in order to meet
the SINR ≥ γ requirements, which increases the interference
in return. The power control problem is to compute a set of
transmission power for all links in a transmission scenario by
solving the following optimization problem:

minimize
∑

ij Pij

subject to SINRij ≥ γ

Pmin ≤ Pij ≤ Pmax, ∀ij links (3)

Some distributed power control algorithms have been
proposed for cellular network [8] and wireless ad hoc net-
works [9], which we will use directly in this paper.

We call a transmission scenario/set feasible if a set of
transmission powers are available such that the SINR require-
ments of all receivers in the transmission scenario are satisfied.
A set is called a maximal transmission set if adding any
additional active link will result in an infeasible transmission
set. All subsets of a maximal transmission set are also feasible
transmission sets. We refer the sum of the transmission power
of all active links in a transmission scenario as its energy cost.

We make two important observations about the total trans-
mission power of a feasible transmission scenario.

1) Two feasible transmission scenarios with same number of
concurrent transmissions could have significantly differ-
ent costs because of the different interference among the
the links, depending on the location and wireless channel
of the links.



Fig. 1. Illustration of energy efficient scheduling. �b is the number packets
need to be transmitted for each link. S are all possible feasible transmission
scenarios. C are the total transmission power of the transmission scenarios.

2) A feasible set’s cost is always larger or equal to sum of
the costs of its subsets.

If Sj =
⋃

k Sjk

then Cj ≥
∑

k Cjk (4)

The first observation needs no further clarification. We use
a single example to explain the second observation. Consider
a set S and its subset S − l (remove link l from S) and l.
Suppose the costs are CS−l and Cl. Now add l to subset S−l.
l’s transmission power will interference with links in S−l and
vice versa. Therefore both link l and links in S − l have to
increase their transmission power respectively. Clearly, CS >
CS−l + Cl. The subsets in the right hands do not need to
be exclusive to each other, as the redundant links will only
increase the transmission cost.

D. State of the Art of Joint Scheduling and Power Control

In previous works on joint scheduling and power control
[9], [10], [11], [18], the scheduling policy is to pack the
maximum number of links that can be active simultaneously
in each time slot. The objective is to maximize the spatial
reuse of system resources and the throughput. Although the
power control phase minimizes the transmission powers on the
scheduled links, this scheduling policy does not take energy
into consideration and thus may not be energy efficient.

Figure 1 shows an example of energy efficient joint
scheduling and power control2. Given�b, the number of packets
need to be transmitted and all feasible transmission scenarios
and their related costs, there are three possible schedules that
satisfy the �b constraint:

1) Option 1: Choose S1, S3 and S7. The transmission
request is finished in three slots. The total energy cost
is 7.56.

2) Option 2: Choose S2, S3 and S6. The transmission
request is also finished in three slots. The total energy
cost is reduced to 6.2.

3) Option 3: Choose S2, S5, S6 and S7. The transmission
request now is finished in four slots. The total energy cost
is further reduced to 4.42.

2The data is collected by simulations described in section V

This example shows that the scheduling policy that
maximizes the number of concurrent transmissions is not
energy efficient and suggests two ways to achieve energy
efficient schedule:

1) Choose energy efficient combination of feasible transmis-
sion sets. In the example, compare option 2 to option 1,
the combination of S2 +S6 is more energy efficient than
S1 + S7. This is because the interference between link 1
and 4 is higher than the interference between link 1 and
5.

2) Tradeoff latency for energy efficiency. In the example,
compare option 3 to option 2, S3 is divided into S5 +S7.
Instead of being scheduled simultaneously in one slot,
link 2 and 5 are scheduled separately in two slots. Be-
cause of the elimination of interference, the total energy
cost is further reduced.

To better understand the two approaches to save energy,
figure 2(a) and 2(b) show two different schedules. Each
column is a slot and each colored box represents an active link
during that slot. The color of the boxes in a column indicates
the the energy cost of the transmission set in that slot. Red
color means high energy cost while green color means low
energy cost. The meaning of β will be explained later. When
β = 0, the transmission request is finished in less than 50 slots
and many transmission sets have high energy cost. While in
the schedule chosen by β = 10, the transmission request is
finished in more than 70 slots. Even for two sets having the
same number of active links, the energy cost of the set chosen
by β = 10 has much lower energy cost compared to the set
chosen by β = 0.

In the following sections, we will investigate two differ-
ent problems of energy efficient joint scheduling and power
control.

III. TJSPC: TUNABLE JOINT SCHEDULING AND POWER

CONTROL

A. Mathematical Formulation

In this section, we will formulate the tunable joint schedul-
ing and power control problem and show that prior works [9],
[11] can be treated as special cases of our formulation. First
we describe the notation used.

Assume that a TDMA time frame contains T slots. Here
T models the per-hop delay tolerance of the application. The
duration of a slot is normalized to 1. Let b(e) denote the
number of packets need to be sent on link e = (i, j) ∈ E
in a time frame. Denote �b as a vector of size |E| with each
element corresponding to a link. At the source node, b(e)
equals to the number of samplings in T , but not all packets are
available at the beginning of the time frame. In intermediate
node, however, we assume b(e) packets are already available at
the beginning of a time frame. Packets received at the current
time frame will be buffered for transmission in next frame.

We denote S as the collection of all feasible transmission
sets and |S|. Each feasible transmission set Sk is a vector
of size E, with Sk(e) equal to 1 if e is active in the set
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Fig. 2. An example of two different schedules under β = 0 and β = 10.

TABLE I

SUMMARY OF THE NOTATIONS

e = (i, j) A link with i the sender and j the receiver
T Number of slots in a TDMA frame
�b Transmission request: Number of packets need to be

sent for each link
S The collection of all feasible transmission set, Sk being

one of the set
Sk(e) 1 if link e is active in transmission set Sk

M |S|, number of feasible transmission set
Ck Energy cost of transmission set Sk

�x The scheduling solution: xk is the number of times Sk

is chosen
β Parameter to tune between throughput and energy

Sk. For each feasible set Sk, there is an energy cost Ck =∑
Sk(e)=1(Pe) which is the sum of the energy cost all active

links in that set in a single slot. Here, Pe is the transmission
power of link e from i to j. We ignore the reception power
as it is almost constant regardless of the transmission power.
Let �x denote the solution, with xk being the number of times
that set Sk is chosen. The maximum number of sets allowed
to be chosen is T .

The three important metrics of a sensor network system
can be easily represented using the above parameters.

• Energy: The total communication energy cost in T slots:∑
k xkCk.

• Throughput: We use the number of packets transmitted
in T slots to represent the throughput. The number of
slots that a link e is scheduled to be active is

∑
k xkSk(e).

However if a link is assigned a slot but there is no
more packet to transmit, it is a waste of resource and
should not be counted. So the actual number of packet
a link e transmits is max(

∑
k xkSk(e),�b(e)) The to-

tal number of packets transmitted by all links is then:∑
e∈E max(

∑
k xkSk(e),�b(e)).

• Latency: T is the worst per-hop latency of a packet if

it is transmitted. A smaller T means that a packet need
to be transmitted in a shorter time frame, and hence a
smaller per-hop delay.

It is clear that it is not possible to optimize these three metrics
simultaneously. Depending on the application requirements,
different tradeoff strategies may be used. Some applications
may need all transmission requests be satisfied before the
deadline, while others may tolerate a certain number of packet
drops. We will study the energy cost minimizing problem
subject to transmission request guarantee in section IV. In this
section we first form a problem that allows the applications to
choose different tradeoffs among energy, latency and through-
put.

Problem TJSPC:

max gain = α
∑

e∈E

max(
∑

k

xkSk(e),�b(e))

−β
∑

k

xkCk

s.t.
∑

k

xk ≤ T (5)

By tuning α, β and T , we can achieve different tradeoffs
between throughput and energy given the latency constraint.
Specially, if α is 0, the problem is reduced to minimizing
energy consumption with no constraint on throughput. Then
the policy of the scheduling algorithm is to always search
the set with minimum energy cost. If β is 0, the problem
is reduced to maximizing throughput with no constraint on
energy consumption. Then the objective of the scheduling
algorithm is to maximize the throughput, same as previous
scheduling algorithms[9], [11]. Without loss of generality, we
will assume α = 1 in the following discussion. As β increases,
to maximize the gain it is better to choose transmission
scenario with less energy cost. So the application can increase
β when it is more interested in saving energy and decrease β



when the throughput is a more important metric. The choice
of T would be based on application-specific worst hop-to-hop
latency requirements.

As β increases, the solution tends to choose transmission
sets with smaller energy cost. However, to prevent a trans-
mission set from being chosen because of its low energy
cost even if it does not contribute any throughput, there
should be an upper bound for β. Let Cmin = mink Ck and
Cmax = maxk,|Sk|=1 Ck. It is easy to see that to guarantee
that a transmission set that can at least contribute 1 to the
throughput is preferable to the set with minimum cost, we
have:

−Cmin < 1− βCmax ⇒ β <
1

Cmax − Cmin
(6)

This problem is NP-hard as it can be easily reduced
from the Maximum Coverage problem [17]. However based
on the fast greedy heuristic algorithm with constant factor
approximation in [17], we propose greedy based heuristic
algorithms and evaluate the performance by simulations.

B. Heuristic Approaches

1) Exponential Complexity Greedy Approximation: In this
section, we present a greedy algorithm that has a constant
factor approximation to the optimum solution. Given the col-
lection of all feasible transmission sets S, the greedy algorithm
selects T transmission sets by iteratively choosing the set that
maximize the total gain (defined in problem TJSPC) of the
already chosen sets plus the current chosen set. We denote this
algorithm as Greedy.

The greedy heuristic can be proved to be a (1 − 1
e )-

approximation algorithm.
Proposition 1: wt(�x) ≥ [1 − (1 − 1

k )k]wt(OPT ) > (1 −
1
e )wt(OPT )

This follows from the LEMMA 3.13 in [17]. For complete-
ness, we show the proof in Appendix IX.

When β is 0, to maximize the gain, the greedy algorithm
will choose a feasible transmission set which can maximize
the throughput, which leads to the solution to choose the set
with maximum concurrent transmission. This is exactly the
scheduling algorithm in [9], [11].

The complexity of the greedy algorithm is upper-bounded
by O(T |S|). A loose upper bound on |S| is 2E , which means
that the complexity of the algorithm is exponential to the
number of links. With the feasibility constraint, |S| can be
greatly reduced. Cluster hierarchical structures which have
been proposed widely for wireless sensor networks (e.g. in
[15], [16]) can further reduce |S|. Since cluster size are chosen
to accommodate event monitor range, it is expected that at
any time if an event happens, most of the time only one
cluster may need to be active. Each cluster only schedules
its own data transmission while treating interference from
other clusters as ambient noise. Interference from clusters far
away is negligible. Because only links within one cluster need
to be considered, the number of feasible transmission sets
is reduced considerably. We can further limit the maximum

number of concurrent transmission links to a small number k,
since in practice as it is difficult to sustain a large number of
simultaneously active links in a given region. In this case, the
number of feasible sets is upper bounded by 2k+1.

Even |S| can be reduced, the greedy algorithm needs
to compute all possible transmission sets S and their en-
ergy cost in advance and has an exponential complexity of
O(T |S|) whenever the wireless channel condition changes,
which makes it infeasible for practical use. However, it could
be used as a framework or offline algorithm to give good
insight on the performance of the network. In the next section,
based on the greedy approximation algorithm, we propose a
greedy based heuristic which does not need to pre-compute
all feasible transmission sets with polynomial complexity.

2) Polynomial Greedy Heuristic: Assume that the link
gain αij changes slowly compared to time frame T , the
nodes need only to collect such information until a significant
change of αij happens. The parameters can also be updated
incrementally. Therefore, we assume αij is available in each
node. Secondly, at the beginning of each time frame, source
nodes will generate a control packet that contains the number
of packets intended to its receivers. Therefore all source nodes
are aware of �b. We assume the control packet is smaller
compared to the data packet and the overhead is small. We
will not discuss the details of the control message exchange
protocol here.

Given a transmission scenario, a source node first check
whether it is feasible. If it is infeasible, a link with min-
imum SNR or Maximum Interference to Minimum Signal
Ratio(MIMSR) [11] is deferred. Then the new transmission
scenario is checked again. Previous scheduling algorithms will
stop once an feasible transmission set is found. The proposed
algorithm, however, continues to search for a transmission set
that can maximize the gain. Suppose the first admissible set is
Sk, it will continue to drop the link with maximum MIMSR
until there is only one active link. Suppose the following
transmission sets the node gets are Sk1, Sk2, ..., Skn. It is clear
all these transmission sets are still feasible and Sk ⊃ Sk1... ⊃
Skn. For each feasible set Ski, the node computes the re-
lated gains by α

∑
e∈E max(

∑
k xkSk(e),�b(e))−β

∑
k xkCk.

Then the transmission set with the maximum gain is chosen
and �b is updated. The whole process is repeated again until
either �b = 0 or T sets are chosen. We denotes the algorithm
as DiGreedy.
Algorithm DiGreedy
1. Collect �b.
2. for i ←1 to T
3. m ←number of unzero element in �b
4. S(e) ←1 if b(e) ≥ 1
5. for j ←m to 1
6. Run power control algorithm for S
7. gain ←α

∑
e∈E max(

∑
k xkSk(e),�b(e))

8. −β
∑

k xkCk if S is feasible
9. defer the link k with MIMSR
10. S(k) ←0
11. Select the feasible transmission set S with maxi-
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mum gain
12. �b ←(�b− S)
13. if �b == �0
14. break;

The proposed DiGreedy algorithm has a complex-
ity of O(T |E|) which is polynomial to the number of
links. However, unlike the greedy algorithm which al-
ways choose the transmission scenario that maximizes
α

∑
e∈E max(

∑
k xkSk(e),�b(e))− β

∑
k xkCk from all pos-

sible transmission sets, the DiGreedy algorithm only choose
one from the transmission sets that are obtained by deferring
the MIMSR link one by one. Therefore, it does not necessarily
guarantee a (1 − 1

e )-approximation to the optimal solution.
However it is practically implementable and we will show by
simulations that it achieves comparable performance to the
greedy algorithm.

IV. JSPC-TR: JOINT SCHEDULING AND POWER CONTROL

WITH TRANSMISSION REQUEST CONSTRAINT

A. Problem Formulation

In TJSPC, we investigate the tradeoffs between through-
put and energy efficiency. However, some applications may
require all the transmission requests be satisfied. So in this
section, we study the problem of joint scheduling and power
control with transmission request constraint (JSPC-TR): Given
a transmission request, minimize the energy cost subject to the
constraint that all transmission requests are satisfied within the
latency bound:

Problem JSPC-TR:

min
∑

k xkCk

s.t.
∑

k xkSk(e) ≥ b(e), ∀e
∑

k xk ≤ T (7)

This is still a NP-hard problem as it can also be reduced
from the maximum coverage problem. Even the scheduling

policy which always schedules maximum number of concur-
rent transmissions in each slot cannot guarantee all transmis-
sion requests be satisfied. However, here we assume that the
traffic load of the transmission requests are relatively low
compared to the capacity of the network so that at least the
scheduling policy that maximizes the concurrent transmissions
can schedule all transmission requests in T slots.

The JSPC-TR problem need to minimize the energy cost
subject to the constraint of guaranteeing a certain throughput
requirement. In TJSPC, we use a single parameter β to balance
the tradeoff between low latency, high throughput and energy
efficiency. We can achieve the highest throughput possible
by choosing β = 0. Thus, for any throughput requirement,
we can always find a right β. Further by simulation results
showed later in section IV for TJSPC, we will find that for
moderate traffic loads, with appropriate tuning of parameters,
major energy savings can be obtained without sacrificing
throughput. This motivates us to solve JSPC-TR using the
heuristic of TJSPC. The idea is to choose the optimum β
that has minimum energy cost and transmission requests are
satisfied within the latency bound. We leverage the heuristic
solution of problem TJSPC to solve JSPC-TR. First consider
the following problem:

max gain =
∑

e∈E max(
∑

k xkSk(e),�b(e))

−β
∑

k xkCk∑
e∈E max(

∑
k xkSk(e),�b(e))

s.t.
∑

k xkSk(e) ≥ b(e), ∀e (8)

In contrast to TJSPC, there are two differences. First since
the transmission requests have to be satisfied, to minimize the
energy cost, we need to choose more energy efficient sets. So
we change the energy metric to energy efficiency metric which
is the average cost of sending one packet. Second, there is no
constraint on the total number of slots but the transmission
request. This problem can be solved using the same greedy
algorithm for TJSPC. Suppose for each β, the solution is �xβ .
Define E(β) =

∑
k xβ

kCk. Then we need to find an optimum
β that has the minimum energy cost:

E′ : min
β

E(β)

s.t.
∑

k xβ
k ≤ T (9)

Suppose β∗ is the optimum β, then �xβ∗
is the heuristic

solution to JSPC-TR. In the next section, we discuss the
algorithm to find the optimum β∗.

B. β∗-search Algorithm

Generally, as β increases, equation 8 tends to find solutions
that are more energy efficient. We will assume in the following
that E(β) is a decreasing function (although there may be rare
exceptions when this is not strictly true).

Consider a typical curve in Figure 3 3 which shows the
energy and number of slots used to transmit a transmission
request. Let T = 100, so transmission request should be

3The figure is obtained by simulations discussed in section V.



finished in 100 slots. As shown in the energy curve, the energy
cost reduces as β increases, however at the same time, the
number of used slots also increase. The optimum operation
point is point A in which exactly 100 slots are used and the
energy cost is minimized. For practical purpose, we define a
tolerance zone of width ε, as shown in Figure 3. Here, ε is
a protocol parameter that determine the converge rate of the
protocol which we will show later. We denote u as the number
of used slots. The number of packets need to be transmitted
in a transmission request �b is N =

∑
k
�b(k).

From figure 3, similar to [20], we identify four character-
istic operation regions(bounded by dotted line):

• small-β: u < T − ε. In this sate, transmission requests
are satisfied within T slots. The energy cost is high. It is
clear that in order to reduce the energy cost, we need to
increase β. However, this reduction must be performed
carefully so that the transmission request is always satis-
fied. Intuitively, we need to achieve a balance between
saving energy and satisfying transmission request. By
the heuristic assumption that the relationship of u vs. β,
for u < N , is near linear, this prompts the use of the
following increase strategy:

βi+1 =
βi

2
(1 +

ui

T
)

We will show later that such an update policy can re-
duce the energy cost while guaranteeing the transmission
request satisfaction.

• opt-β: T − ε ≤ u ≤ T . In this state, the network is
operating within ε tolerance of the optimal point, where
transmission request is satisfied and energy cost is a
slightly higher. Hence the β is left unchanged for the
next frame:

βi+1 = βi

• large-β: T < u < N . In this state, the network is
operating in a region that not all transmission requests
can be satisfied within T slots. It is clear that we need to
decrease β aggressively. Since the relationship of u vs.
β is near linear, we use a decrease strategy as follows:

βi+1 = βi
T

ui
δ1

We will show later by choosing δ1 < 1, we can guarantee
that policy will converge to the opt-β region.

• xlarge-β: u ≥ N . In this sate, in all time slots, only one
link is active. This consumes the least energy, however
transmission request can not be satisfied within T slots
when T < N . It is clear we need to decrease β
aggressively. However in this region, u and β is no longer
linear and we have no idea how large β is now. In order
to converge to opt-β region and guarantee transmission
request, β need to be decreased more aggressively than
in the region of large-β:

βi+1 = βi
T

ui
δ2

N =
∑

e
�b(e)

Solve JSPC-TR using equation 8 with β
if u < T − ε /*State is small-β*/
β = β

2 (1 + u
T )

else if T − ε ≤ u ≤ T /*State is opt-β*/
β = β
else if T < u < N /*State is large-β*/
β = β T

u δ1

else if T ≥ N /*State is xlarge-β*/
β = β T

u δ2

end

Fig. 4. JSPC-TR protocol and β∗-search algorithm.

with δ2 ≤ δ1.

We will show in next subsection that starting from any region,
the above β∗-search algorithm converges to opt-β region.

The entire JSPC-TR protocol is summarized in figure 4.
The basic process is following: at a TDMA time frame, under
the current β and transmission request, the scheduler decides
the state of the network then adjusts β according to the β∗-
search algorithm. The updated β is then used for next TDMA
frame. Here we assume the traffic requests change slowly
compared to the converge rate of the β∗-search algorithm.

C. Analysis

First we present some analysis of the β∗-searching algo-
rithm. Under the assumption of linear relationship of u vs.
β in small-β region/state, we are able to prove that network
will converge to the opt-β state. Another assumption is that
the traffic load in TDMA frame does not change abruptly. The
proof is similar to the one used in [20].

Proposition 2: Starting from small-β, with linear relation-
ship between u and β, the state will remain small-β until it
converges to opt-β in �u0−1

ε 	 iterations.
Proof: Suppose the linear behavior for u < T − ε is

u = aβ and ui < T − ε. So the β is increased by:

βi+1 =
βi

2
(1 +

T

ui
)

Thus,

ui+1 =
ui

2
(1 +

T

ui
) =

ui + T

2

Since βi+1 > βi, the next state can either be small-β,
opt-β, large-β or xlarge-β. Suppose the next state is neither
small-β nor opt-beta, then ui+1 > T . Then,

ui+1 =
ui + T

2
> T

Hence, ui > T . However this contradicts with ui < T − ε
since the starting state is small-β. Thus, the state can only be
small-β before it reaches opt-β.



Now we prove that the converge takes �u0−1
ε 	 iterations.

Let j be the first one when the network is in opt-β state.

uj =
uj−1 + T

2
> T − ε

uj−1 =
uj−2 + T

2
> T − 2ε

...

u1 =
u0 + T

2
> T − 2j−1ε

Thus, it takes j > log2(u0−1
2 ) iterates before uj > T −

ε. In the whole process, the transmission request is always
guaranteed.

Proposition 3: Starting from large-β or xlarge-β, the state
will converge to opt-β.

Proof: Suppose the linear behavior for u < T − ε is
u = aβ. For large-beta state, u > T . So β is decreased by:

βi+1 = βi
T

ui
δ1 = β0

T i

∏i
k=0 uk

δi
1

Since δ1 < 1 and uk > T , β will keep decreasing until
it change to either opt-β region or small-β region which will
converge to opt-β by Lemma 2.

Similarly, starting from xlarge-β, the network can also
converge to opt-β.

V. SIMULATION RESULTS

We simulate the performance of the algorithms for a
stationary network consisting of a grid of 49 nodes. The
distance between adjacent nodes is set to 20 meter. The radio
parameters are set according to the CC1000 radio used in
Mote MICA2 [21], [22]. The minimum transmission power
is Pmin = −20dBm and the maximum transmission power
is Pmax = 5dBm. According to [19], The path loss factor
in a typical outdoor environment is 4 and the noise floor is
around −105dBm. The SNR threshold γ for successfully
packet reception is set to be 10dB. We choose 42 links and
pre-computed all feasible transmission sets and their energy
costs. The maximum number of active links in a transmission
scenario is 5.

A. Simulation Results for TJSPC

Besides the Greedy and DiGreedy algorithms, we also sim-
ulate the scheduling algorithm (referred as MIMSR) proposed
in [11]. We simulated 20 time frames which consist of T slots.
Each node randomly generates 1 to 6 packets to be transmitted
in each time frame. All results are averaged over 10 seeds.
From the simulations, we learned three key lessons, described
below.

Lesson 1: By relaxing the latency bound, we can get
significant energy savings4. In the simulation, we fix b(e) for
each link while increasing the latency bound T , which means

4The unit of energy is 12.7τ mJ, where τ is the transmission time of one
packet
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Fig. 5. Energy cost reduces as latency constraint increases as a function of
T with varying β.

lower traffic load since T and b(e) are closely related. Figure
5 shows the impact of T on the energy cost performance of
the algorithms. The packet reception ratio (which is directly
proportional to the throughput) remains above 95% for all
T and β. Larger β can be used for higher latency bound
because preference can be given to feasible transmission set
with smaller energy cost. As T increases, the energy cost
of Greedy and DiGreedy decreases significantly. Compared
to MIMSR which remains around 435 regardless of β, the
savings can be as high as 50%.

Figure 6(d) shows that total number of used slots for the
algorithms with the same traffic load and fixed T = 100. As
MIMSR always schedules the maximal feasible set, it uses
less slots in transmitting the traffic. However, by increasing β,
Greedy and DiGreedy would give higher and higher preference
on low energy cost transmission sets, thus increase the number
of slots used. The more slots used means more packets will be
transmitted at the end of a time frame, thus a higher average
latency, but still within the latency bound.

Go back to figure 2(a) and 2(b) which show the schedules
computed by β = 0 and β = 10 separately. Clearly β = 10 is
able to choose more energy efficient transmission sets.

Lesson 2: By varying β, the algorithm is able to save
significant energy without hurting throughput. Figure 6(a)
and 6(b) shows the number of packets delivered and the
total energy cost in 20 frames which consists of 100 slots
respectively. When β ≤ 10, Greedy and DiGreedy can deliver
almost same number of packets. The energy cost decreases as
β increases even though the number of packets delivered is
the same. The energy savings can be as much as 50%. This
shows the algorithms’ ability to choose a better combination of
transmission scenarios. When β > 10, the number of packets
delivered by Greedy and DiGreedy begins to decrease. When
β > 15, the algorithms will always choose the transmission
scenario with only one link active that is most energy efficient.
Thus the total number of packets can be delivered in 2000
slots remains 2000. Figure 6(c) shows the energy efficiency in



0 5 10 15 20
2000

2200

2400

2600

2800

3000

3200

β

N
um

be
r 

of
 P

ac
ke

ts
 T

ra
ns

m
itt

ed

MIMSR
Greedy
DiGreedy

(a) Packet Transmitted in 2000 slots.

0 5 10 15 20
100

150

200

250

300

350

400

450

β

T
ot

al
 E

ne
rg

y 
U

se
d

MIMSR
Greedy
DiGreedy

(b) Energy cost.

0 5 10 15 20
6

7

8

9

10

11

12

13

14

15

16

β

P
ac

ke
t/E

ne
rg

y MIMSR
Greedy
DiGreedy

(c) Energy efficiency in terms of number of packets transmitted per unit
of energy.

0 5 10 15 20
1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

β

T
ot

al
 U

se
d 

S
lo

ts
MIMSR
Greedy
DiGreedy

(d) Total used slots for delivered packet.

Fig. 6. Performance of MIMSR, Greedy and DiGreedy as a function of β with T = 100.

terms of the number of packets delivered in units of energy.
Clearly as β increases, the energy efficiency of the scheduled
set increases.

Lesson 3: DiGreedy algorithm has comparable perfor-
mance to the Greedy approximation algorithm. For all the
simulations, Greedy and DiGreedy can save more energy
than MIMSR while maintaining relatively same throughput
or at a little sacrifice of the throughput. As we can see
from all figures, DiGreedy, as a heuristic solution with no
approximation guarantee, has almost the same performance as
the Greedy which is (1 − 1

e approximate to the optimization
solution.

B. Simulation Results for JSPC-TR

We simulated the β∗-searching algorithm under various
traffic load requests to find the β∗. Then we compared the
performance of two different schedules computed by β =
0 and β∗. All results are averaged over 10 seeds. In the
simulation, δ1 = δ2 = 0.8 and ε = 10.

0 50 100 150 200 250
10

20

30

40

50

60

70

80

90

100

N
um

be
r 

of
 S

lo
ts

 U
se

d

β=0
β*

Fig. 7. The number of slots used under different traffic request load.
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Figure 7 and 8 show the number of slots and energy used
to finish the transmission request under different traffic load
separately. Under all traffic load request, our algorithm is able
to operate in opt-β region and thus consume much less energy
while all transmission requests are satisfied within T = 100
slots. The number of used slots by β∗ are always between 90
and 100, except for very low traffic load when the number of
packets is less than 100.

VI. RELATED WORKS

Recently there have been several works ([9], [11], [12],
[13], [14]) on jointly scheduling and power control in wireless
sensor networks. In the following, we discuss in detail about
those works as they are closely related to our work.

ElBatt and Ephremides [9], [10] considers the problem of
joint scheduling and power control in multi-hop networks.
Their solution has two alternating phases: scheduling and
power control. A transmission scenario (the selection of a
particular set of links to transmit data) is defined as valid
if no node is to transmit and receive simultaneously and no
node is to receive from more than one neighbor at the same
time. An admissible transmission scenario means that a set of
transmission power is available to satisfy the SNR constraints
for all links in the scenario. In each slot the scheduling
algorithm first searches a maximum valid scenario, which then
is verified by the distributed power control algorithm to see
if it is admissible. If the valid scenario is not admissible,
the scheduling algorithm drops the link with minimum SNR
and the power control algorithm is rerun. Once an admissible
transmission scenario is found, the sources will transmit data
packets using the computed transmission powers in current
slot. They also proved that the power control algorithms
proposed for cellular network can be applied directly into
wireless multi-hop networks. As the scheduling algorithm is to
schedule as many links as possible to be active at each slot, it
can not guarantee energy efficiency as discussed in our paper.

The authors in [11] proposed a distributed joint scheduling

and power control algorithm for multi-casting in wireless Ad
Hoc Networks. As in [9], the algorithm in [11] also tries to
schedule all links with data transmission requirement. If a set
of transmission power can not be found to satisfy the SNR
constraints for all the links, the link with Maximum Interfer-
ence to Minimum Signal Ratio (MIMSR, the ratio between
interference and signal strength received at the receiver of
the link) is deferred until a feasible power control solution
is available. In both [9] and [11], while the power control
algorithm is optimal in mimizing the transmission power of a
single transmission scenario, the scheduling algorithm which
tries to find a maximum valid scenario may result in a non-
optimal solution in terms of total energy consumption in
multiple slots.

Bhatia and Kodialam [12] derive a performance guaran-
teed polynomial approximation algorithm for jointly solving
routing, scheduling and power control. Given a source and
destination, they are interested in making three decisions:
the paths the data has to take between the source and the
destination, the power with each link transmission is done and
the time slots in which specific link transmissions have to take
place. However, they consider a different interference model
in which the SINR level impacts the average rate rather than
the success or loss of individual packets. (In our paper, as
in [9], [11], we will assume an interference model in which a
radio can either successfully receive a packet or not depending
on the SINR threshold).

A closely related work by Cruz and Santhanam [13]
proposed a joint scheduling and power control algorithm to
minimize the total average transmission power in the wireless
multi-hop network, subject to the constraints on average data
rate per link and peak transmission power per node. Similar
to [12], they assume an interference model that SINR affects
the achieved data rate of the link in a slot. The long-term
average rate of a link is then defined as the sum of the
achieved data rate per slot divided by number of slots when
number of slots goes to infinity. They reduce the problem
to a convex optimization problem over a single slot using a
duality approach. However, this prior work did not consider
the latency metric explicitly. Although the long-term average
rate of a link is guaranteed, if there are latency deadline
requirements, many packets could be useless even if they reach
the sink.

The authors in [18] consider the problem of power con-
trolled minimum frame length scheduling for TDMA wire-
less networks. Given a set of one-hop transmission requests,
their objective is to schedule the transmission requests in a
minimum number of time slots. The consider per-slot and
per-frame versions of the problem and develop mixed integer
linear programming models. To minimize the frame length,
their approach is to schedule the maximal feasible active links
in each slots, same as [9], [10]. Thus energy efficiency can
not be guaranteed.



VII. CONCLUSION

In this paper, we studied the fundamental energy efficiency
problem of joint TDMA link scheduling and power control
in wireless sensor networks. We found that different trans-
mission scenario can have significantly different total trans-
mission powers. By carefully choosing different combinations
of feasible transmission scenarios in multiple slots, the total
energy costs can be reduced. This improves energy efficiency
compared to previously proposed joint scheduling and power
control algorithms, which always try to schedule maximum
concurrent transmissions.

We formulated a joint link scheduling and power control
problem that aims to maximize a function of throughput
and energy cost subject to latency constraint(TJPSPC). This
formulation allows a tunable performance tradeoffs between
throughput, latency and total energy cost. We showed this
NP-hard problem formulation can be solved using a greedy
algorithm which is an (1 − 1

e )-approximation to the optimal
solution with exponential approximation. We then presented
DiGreedy, a heuristic greedy algorithm with polynomial com-
plexity. Simulation results show that DiGreedy algorithm has
similar performance to the greedy algorithm, and can achieve
significant energy savings at no or little sacrifice of the
throughput. We also investigated the joint scheduling and
power control problem with constraint on the number of
packets to be sent on each link. We leverage the heuristics for
TJSPC to solve this problem by using the optimum β which
achieves energy efficiency while guaranteeing the satisfaction
of transmission requests. Simulation results show 50% energy
savings can be achieved without sacrificing throughput.
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IX. APPENDIX

Proposition 4: wt(�x) ≥ [1 − (1 − 1
k

k]wt(OPT ) > (1 −
1
e )wt(OPT )

Proof: Suppose �xi is the greedy solution in the first i
slots, let

Gi =
∑

k

xi
kSk

and

wt(Gi) =
∑

e

max(
∑

k

xi
kSk,�b(e))− β

∑

k

xi
kck

Suppose in i + 1 slot, transmission set Sj is chosen, Then
xi+1

j = xi
j + 1 and Gi+1 = Gi ∪ Sj , we have:

wt(Gi+1) =
∑

e

max(
∑

k

xi+1
k Sk,�b(e))− β

∑

k

xi+1
k ck

Now, the gain of the first selceted (i−1) sets is wt(Gi−1).
The difference between wt(Gi−1) to the gain of the optimal
solution is wt(OPT )−wt(Gi−1). Then at least wt(OPT )−
wt(Gi−1) worth of gain not covered by the first (i − 1)
sets are covered by the T sets of OPT . By the pigeonhole
principle, one of the T sets in the optimal solution must cover
at least wt(OPT )−wt(Gi−1)

T worth of gain. Since Sj is a set
that achieves maximum additional gain, it must also cover at
least wt(OPT )−wt(Gi−1)

T . That is:

wt(Gi)− wt(Gi−1) ≥ wt(OPT )− wt(Gi−1)
T



Now let us suppose for i = 1, wt(G1) ≥ wt(opt)
T , then,

wt(Gi+1) = wt(Gi) + (wt(Gi+1)− wt(Gi))

≥ wt(Gi) +
wt(OPT )− wt(Gi)

T

= (1− 1
T

)wt(Gi) +
wt(OPT )

T

≥ (1− 1
T

)(1− (1− 1
T

)i)wt(OPT ) +
wt(OPT )

T

= (1− (1− 1
T

)i+1)wt(OPT )

> (1− 1
e
)wt(OPT )


	Select a link below
	Return to Main Menu
	Return to Previous View




