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ABSTRACT

Mobile device based human-centric sensing and user state
recognition provide rich contextual information for various
mobile applications and services. However, continuously
capturing this contextual information consumes significant
amount of energy and drains mobile device battery quickly.
In this paper, we propose a computationally efficient algo-
rithm to obtain the optimal sensor sampling policy under the
assumption that the user state transition is Markovian. This
Markov-optimal policy minimizes user state estimation er-
ror while satisfying a given energy consumption budget. We
first compare the Markov-optimal policy with uniform peri-
odic sensing for Markovian user state transitions and show
that the improvements obtained depend upon the underly-
ing state transition probabilities. We then apply the algo-
rithm to two different sets of real experimental traces per-
taining to user motion change and inter-user contacts and
show that the Markov-optimal policy leads to an approx-
imately 20% improvement over the naive uniform sensing
policy.
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1. INTRODUCTION

Mobile devices permeate our daily lives and their utility
is further enhanced with mobile applications and services.
A growing number of these mobile services rely on accu-
rate and automatic detection of user state. User state is
obtained by sensing the user’s surroundings and deriving
contextual information from the sensed data. Current gen-
eration mobile devices integrate a wide range of sensing and
networking features such as GPS, microphone, camera, light
sensor, accelerometer, WiFi, Bluetooth, GPRS, and so on.
These sensors collectively enable us to obtain user’s con-
textual information, such as user’s activity, location, back-
ground sound, and number of peering devices. Throughout
our study, we use the term “user state” to represent human
context information, which evolves over time.

While incorporating user’s contextual information brings
mobile application personalization to new levels of sophis-
tication, a major impediment to collecting and determin-
ing user context is the limited battery capacity on mobile
phones. Since the integrated sensors can consume significant
amount of energy, continuously collecting context informa-
tion through sensor activation will make even the most com-
pelling mobile application less than desirable to users. For
example, our experiments show that a fully charged battery
on Nokia N95 device would be completely drained within six
hours if its GPS is operated continuously [33]. Therefore, en-
ergy efficient mobile sensing is critical in order to maintain
the lifetime of mobile device battery and to continue to take
advantage of mobile applications and services.

This paper addresses the critical issue of energy efficient
mobile sensing by making the following two contributions:
First, we formulate the problem of sampling Markovian user
state sequence under energy constraint as a constrained op-
timization problem. We develop a framework based on Con-
strained Markov Decision Process (CMDP) in order to ob-
tain the Markov-optimal sensor sampling policy. Second, we
analyze and evaluate the Markov-optimal policy, and com-
pare its performance against uniform periodic sampling on
real user state traces.

In our prior work [32], we studied how to energy efficiently
sample a discrete time Markovian user state sequence by
proposing a stationary deterministic sensor sampling policy.
The policy assigns different but fixed duty cycles to the sen-
sor at different user states. We investigated its performance
in terms of the tradeoff between two conflicting performance
metrics: the expected energy consumption and the expected
user state estimation error. However, this prior work re-
quires exponential run-time and computes a sub-optimal



policy. Motivated by these shortcomings of the previous
work, in this paper we address the following question: Given
a certain device energy consumption budget and user state
transition probabilities, what is the optimal sensor sampling
policy that leads to the minimum expected state estimation
error, while satisfying the energy budget constraint? We for-
mulate this constrained optimization problem as an infinite-
horizon CMDP. The expected average cost of the CMDP is
considered as the cost criteria to be minimized (as compared
to the discounted cost), with the sensor energy consumption
serving as the constraint. Solving such CMDP yields a glob-
ally optimal sensor sampling policy u* which guarantees the
minimum expected user state estimation error while satisfy-
ing the given energy budget for Markovian user state tran-
sitions (we thus name this policy “Markov-optimal”). The
Markov-optimal policy is stationary and randomized (shown
in [2, 11, 12]) and can be obtained by solving the correspond-
ing Linear Programming (LP) of the CMDP formulation,
which requires only polynomial run-time for any number of
user state inputs.

To evaluate the performance of the Markov-optimal pol-
icy, we compare it to uniform periodic sampling for Marko-
vian user state transitions. The expected user state esti-
mation error in both cases is computed for different transi-
tion probabilities and energy budget values. The numeric
comparison results show that the Markov-optimal policy al-
ways leads to a non-negative gain over uniform sampling.
We then apply both the Markov-optimal policy and peri-
odic sampling to real user context data traces pertaining to
user motion change (“Stable” vs. “Moving”) and the sta-
tus of user contact (“In contact” vs. “Not in contact”). We
show that although the user state transitions in these real
data traces are not strictly Markovian, the Markov-optimal
policy still leads to approximately 20% improvement over
uniform periodic sampling. The reason for energy efficiency
improvement is that even when the state transitions do not
strictly follow Markovian, Markov-optimal policy is able to
reduce the expected estimation error by sampling more fre-
quently when state transition is more uncertain, and on the
other hand, increasing the length of the idle interval as state
transition becomes more predictable.

Although in this paper, we limit the analysis and theory
development to discrete user state transitions, it is worth
mentioning that continuous context such as location can
be divided into discrete space and thus fits in our frame-
work well. In addition, while the approach presented in this
paper is centered around mobile sensing, the problem for-
mulation can be generalized easily to many other monitor-
ing/detection/probing problems where certain performance
metric needs to be optimized with energy consumption limi-
tations. For example, in the field of environmental monitor-
ing using wireless sensors, it is ideal to improve the detection
accuracy while maintaining long device lifetime.

The rest of this paper is organized as follows. In section 2,
we discuss relevant prior work. In section 3, we introduce the
background of our study, including the model and assump-
tions, the mechanism that estimates user state for missing
observations, the formal definition of expected energy con-
sumption and expected user state estimation error, as well
as the constrained optimization problem. In section 4, we
propose our CMDP formulation and the algorithm that finds
the optimal sensing policy and associated state estimation
error by solving the corresponding LP. We also show some

of the properties of the optimal policy for special Markov
transition probabilities. In section 5, we compare the op-
timal policy with uniform periodic sampling both through
numerical analysis and by applying them to real user state
traces. Finally, we conclude and present directions for future
work in section 6 and 7.

2. RELATED WORK

In the context of using mobile device to sense and recog-
nize user state, it is worth noting that Schmidt et al. [25] first
propose to incorporate low level sensors to mobile PDAs to
demonstrate situational awareness. Several works have been
conducted thereafter by using the commodity cell phones as
sensing, computing or application platforms [5, 13, 20, 21,
27, 34]. For example, “CenceMe” [21] uses the integrated
as well as external sensors to capture the user’s status such
as activity, disposition, and surroundings and enables mem-
bers of social networks to share their sensing presence. Sim-
ilarly, “Sensay” [27] is a context-aware mobile phone that
uses data from a number of sources to dynamically change
cell phone ring tone, alert type, as well as determine users’
“un-interruptible” states.

The study of energy efficiency in mobile sensing has been
conducted in works such as [18] and [17]. Krause et al. [18]
investigate the topic of trading off prediction accuracy and
power consumption in mobile computing, and the authors
showed that even very low sampling rate of the accelerom-
eter can lead to competitive classification results while de-
vice energy consumption can be significantly reduced. The
hierarchical sensor management concept is explored by the
“SeeMon” system [17], which achieves energy efficiency by
only performing context recognition when changes occur dur-
ing the context monitoring. More recently, energy manage-
ment in personal health care system using mobile devices is
studied by Aghera et al. [1]. The authors aim to address
the tradeoff between energy efficiency and data uploading
latency by implementing a task assignment strategy capa-
ble of selecting different levels of operation. Constandache
et al. [9] study energy efficiency in mobile device based lo-
calization, and the authors show that human can be profiled
based on their mobility patterns and thus location can be
predicted. The proposed “EnLoc” system achieves good lo-
calization accuracy with a realistic energy budget.

Besides in mobile sensing, energy efficient monitoring and
event detection has been widely studied in a much broader
context such as communication, data collection, and so on.
For example, Stabellini and Zander [29] propose a new en-
ergy efficient algorithm for wireless sensor networks to de-
tect communication interference. Shin et al. [26] propose
DEAMON, an energy efficient distributed sensor monitor-
ing algorithm where sensors are controlled using a Boolean
expression and energy is conserved by selectively turning
on/off the nodes and limiting communication operations.
Similarly, Silberstein et al. [28] investigate suppression tech-
nique (reducing the cost for reporting changes) and take ad-
vantage of temporal and spatial data correlation to reduce
data reporting therefore enlarge the lifetime of sensors.

The work in this paper is originated from [33] and [32].
In [33], we present an Energy Efficient Mobile Sensing Sys-
tem (EEMSS) that recognizes user states as well as detects
state transitions. EEMSS significantly improves device bat-
tery life, by powering a minimum set of sensors at any given
time and applying appropriate sensor duty cycles. However,



in [33], sensors still adopt pre-determined, fixed duty cycles
whenever activated, which is not adjustable to different user
behaviors. We address this issue in [32], where we model
the user state as a discrete time Markov chain (DTMC),
and propose a stationary deterministic sensing policy to in-
crease energy efficiency by assigning different sensor duty
cycles at different user states. In this paper, we study how
sensor duty cycles can be optimized in order to minimize
the expected user state estimation error, while maintaining
an energy consumption budget. We propose an efficient al-
gorithm that obtains the optimal sensing policy for Marko-
vian user state, by formulating the constrained optimization
problem as a infinite-horizon CMDP and solving its corre-
sponding LP.

CMDP [2] is a variant of Markov Decision Processes [4]
(MDP) which provides a framework for constructing opti-
mal policies for a stochastic process. CMDP considers a
situation where one type of cost is to be optimized while
keeping others below some pre-defined bounds. For example,
Lazar [19] used CMDP to analyze the problem of maximizing
throughput subject to delay constraints in telecommunica-
tion applications. In traffic applications, Nain and Ross [23]
studied the problem where different traffic types compete
for the same resource. Some weighted sum of average de-
lays of certain traffic types is to be minimized while some
other traffic types need to satisfy certain delay constraints.
More recent studies of CMDP include [10], where Dolgov
and Durfee limit the optimal policy search to stationary de-
terministic policies coupled with a novel problem reduction
to mixed integer programming, and the method yields an
algorithm that finds computationally feasible policies (i.e.,
not randomized).

It has been shown by Feinberg and Shwartz [11, 12] that
stationary deterministic policies are not guaranteed to be
optimal due to the constraints added to the classical MDP
model. In order to solve for the optimal stationary random-
ized policy in polynomial time, Kallenberg [16], and Heyman
and Sobel [14], propose the use of LP where adding con-
straints with the same discount factor does not increase the
complexity of the problem. In our study, we utilize this con-
cept and rewrite the constrained optimization problem as an
LP, and obtain the optimal randomized policy in polynomial
time.

3. BACKGROUND

3.1 Modd and assumptions

We assume that time is discretized and the user state
evolves as a N-state discrete time Markov chain (DTMC)
with transition probabilities p;;(i,7 € {1,2,...,N}) from
state i to j.The discrete time horizon is denoted as T =
{t,t =0,1,2,...}. At each time slot during the process, a
sensor may be sampled, in which case user state is detected
with 100% accuracy and a unit of energy consumption is
associated. On the other hand, the sensor can also stay
idle to save energy. This process is illustrated in figure 1.
We define O as the set of time slots when the sensor makes
observation and O is thus a subset of T', as shown by fig-
ure 1. Ideally, if the sensor can be sampled in each time slot
(O =T), the user state sequence can be obtained perfectly.
However, in general, since sensor duty cycles are required to
extend mobile device lifetime, there exist durations where
user state needs to be estimated using only observed data
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Figure 1: Illustration of the Markovian user state
sequence, sampled at certain time slots.

and the knowledge of the user state transition dynamics.

3.2 User state estimation

A user state estimation mechanism has been proposed in
one of our previous works [32]. Here we give a brief intro-
duction of the method, which estimates the most likely user
state for each time slot between two subsequent observa-
tions. In particular, given the sensor detects state ¢ at time
tm, and detects state j at time t, (tm,tn € T and tm < tn),
the probability of being in state k (k € 1,2, ..., N) at time ¢
(tm <t < tn), is given by:

plse = klst,, =1, ¢, = J] (1)
plse =k, st,, = jlst,, =
_ o = ISt )
plst, = jlst, =]
= p[st = k|st'm. = 7'] 'p[stn = j|st = k] (3)
plstn, = jlst,, = 1]
(t—tm) (tn—t)
Pik : ij

(tn—tm)
P
where s; denotes the true user state at time ¢. In order to
select the “most likely” state (denoted by s;) at time ¢, the
quantity given in (1) needs to be maximized:

(t—tm) (tn—1t)
r_ P 'ij 5
s = argmax§ K )

ij
The expected estimation error for time slot ¢, denoted
by e, is defined as the probability of incorrect estimation,
which is given by:

et = 1—plsi = st|st,, =1i,5t, =] (6)
(t—tm) (tn—t)
- 1— P By 7
- mka‘x (t —t ) ( )
P. .7L m
iJ

3.3 Expected energy consumption £[c] and ex-
pected user state estimation error E[R]

Throughout our study, we address two important perfor-
mance metrics: (a) the expected energy consumption and
(b) the expected user state estimation error. These two in-
trinsically conflicting metrics are fundamental performance
measures of mobile sensing applications, as the former char-
acterizes the device lifetime and the latter is directly related
to the quality of the application in terms of providing high
user state detection accuracy. The formal definitions of the
two are given as follows:



Definition 1. The expected energy consumption E[C] of
the user state sampling process is defined as

1
ElC] = == 8
€= 717 (®)
where E[I] is the expected sensor idle interval, i.e., the av-
erage number of time slots the sensor waits before the mext
sample.

Definition 2. The expected user state estimation error
E[R] is defined as the long term average of per-slot estima-
tion error:

E[R] = im 2t=1€t

n— 00 n

3.4 The optimization problem

In practical system operations, a device energy consump-
tion budget is often specified in order to ensure a long enough
device lifetime. We define £ (where 0 < &€ < 1) as the energy
budget which is the maximum expected energy consumption
allowed. Let u denote a sensor sampling policy, which spec-
ifies how sensor duty cycles should be assigned when differ-
ent user states are detected, i.e., how long the sensor should
stay idle after each observation. We investigate the follow-
ing constrained optimization problem: Considering a long
user state evolving process, given a device energy consump-
tion budget € and user state transition matriz P, what is
the optimal sensor sampling policy u* such that the expected
user state estimation error E[R] is minimized, and the ex-
pected energy consumption is maintained below the budget,
e, E[C] <7

4. THE MARKOV-OPTIMAL POLICY

We formulate the optimization problem as a infinite-horizon
CMDP with expected average cost. Solving such CMDP
yields a Markov-optimal policy «* which is stationary and
randomized [2, 11, 12], i.e., u™ does not vary over time and
decision is randomized over several actions. Meanwhile, the
algorithm that finds the Markov-optimal policy ©* is compu-
tationally efficient, since u* can be obtained by solving the
corresponding LP, which is a polynomial time computation.

41 TheCMDP formulation

We use an infinite-horizon CMDP to model the sensor
duty cycle selection problem, whose major components are
explained as follows:

9)

e Decision Epochs O. Decision is made immediately
after each sensing observation. The set of decision
epochs is defined as O = {d,d = 1,2, ...}. Note that
this is the same O defined in section 3.1.

e System State Space X. The system state at deci-
sion epoch d is the detected user state sy;. The set of
system states is denoted by X = {1,2,..., N}.

e Action Space A. The set of actions is denoted by
A. An action a € A is the number of time slots the
sensor waits until making the next observation. Note
that the potential number of actions could be infinity,
i.e., A = N*, the set of positive integers. However, in
order to facilitate the study, we limit the set of actions
to positive integers under some threshold a.,, in our
study. As & decreases, a,, needs to be increased in
order to meet the energy budget constraint.

e System Transition Probabilities P. Define Piq;
as the probability of moving from system state i to j,
when action a is taken. Given the user state transition
probability matrix P, it is easy to conclude that P;q; =
P,

ij

e Intermediate Cost c(y,a). The intermediate cost
c(y, a) is defined as the expected aggregate state esti-
mation error when action a is taken on state y, where
y € X and a € A. ¢(y,a) can be calculated as:

) = DR e (10)
J
a—1 (t) pla—t)
PP
_ (a) _ yk kj
= LR [ me ()]
J t=1 yj
where e is the aggregate state estimation error for

vyi
a length-a observation interval starting at state y and

ending at state j.

e Expected Average Cost FE,[R]. under policy u,
the expected average cost of infinite-horizon CMDP is
defined as:

n E?L X A
LR = tim D= P X A

n— oo n

(11)

where n is the total number of decision epochs, and
E" is the corresponding expectation operator of the
intermediate cost, under the policy wu.

e Intermediate Sampling Interval d(y,a). The in-
termediate sampling interval when action a is taken on
state y, satisfies d(y,a) = a.

e Expected Sampling Interval E,[I]. Similar to E[R],
the expected sampling interval E,[I] is defined as:

| E"d(Xa, A
lim 2zt 27X, Aa)

n—oo n

E,[I] =

(12)

e Constraint £. The maximum allowed expected en-
ergy cost. Therefore E[C] < & or E[I] > 1/€.

4.2 Finding the optimal policy u*

Let p(y,a) denote the “occupation measure” of state y
and action a, i.e., the probability that such state-action pair
ever exists in the decision process. It is shown in [16, 14, 2]
that the optimal policy of the CMDP with expected average
cost criteria can be obtained by solving the corresponding
LP. Inspired by these works, we rewrite the sensor duty cy-
cle optimization problem defined above as the following LP
(denoted as LP1):

LP1: Find min{ Z Zp(y,a)c(y,a)} (13)

yeEX acA
subject to:

>N p(y,0)(00(y) = Pyaz) =0,V € X, (14)

yeEX acA
> py,a) =1, (15)
yeEX acA
p(y,a) > 0,Vy,a, and (16)

> py,a)d(y,a) >

yeX acA

(17)

M| =



where 0. (y) is the delta function of y concentrated on z. The
constraint given in (14) emphasizes the property for ergodic
processes and describes that the outgoing and incoming rate
for a state need to be the same. The constraints (15) and
(16) define p(y,a) as a probability measure. The inequality
constraint given in (17) guarantees that the expected energy
usage is less than the energy constraint value £, by setting
the expected idle interval greater than 1/¢.

Solving LP1 yields the ideal occupation measure of each
state/action pair that minimizes the quantity given in (13).
The algorithm for selecting the optimal policy u* is given as
follows:

Algorithm 1 Pseudo code for selecting the Markov-optimal
sampling policy u* and calculating the corresponding ex-
pected user state estimation error Ey«[R)]

1: Input: &, P

2: Output: u*(§, P), Eu=|R]

3: Initialize: Select a large enough a™ € N* such that the
energy constraint can be sufficiently satisfied. Let A =
{1,2,...,a™}, X ={1,2,...,N}

4: Solve LP1 for the optimal occupation measure
p*(y,a),Vy € X,Va € A

5: Calculate p, = > .4 p"(y,a),Vy € X

6: Constructing u*: Assign %

Y
taking action a at state y, Vy € X,Va € A
7: Calculate the expected user state estimation error:
_ El.[R] _ X, Yaca P (y,a)e(y,a)
E.<[R] = e = yeXx 61/5

as the probability of

In Algorithm 1, the optimal occupation measure of each
state-action pair can be obtained by solving LP1 in step 4.
Step 5 of Algorithm 1 calculates the overall probability of
seeing a particular state y in the decision process under the
optimal policy, and this quantity p;, is used later in step 6
as the normalization to the optimal occupation measure
p*(y,a) in order to compute the probability of taking ac-
tion a whenever state y is detected, in the optimal sampling
policy w*. This normalization step is needed to guarantee
that

y gy (3"*’ 9D _1wyex (18)
Py

a

In step 7, the optimal expected user state estimation error
E.+[R] can be calculated once the optimal expected average
cost E,«[R] of the CMDP is obtained. Here we illustrate
the relationship between E[R] and E’[R]. Recall that E[R]
is defined as the long-term, average per-slot error, i.e., the
ratio of incorrect estimations over total number of time slots;
therefore, under policy u, it can be written as:

> a1 B'e(Xa, Ag)

E. = i 1
[R] A S Fud(X, Ag) (19)
_ g pzam P dd o
n— 00 % . 22:1 Eud(Xd,Ad)

where n denotes the total number of decision epochs, whereas
E¥c(Xg4,Aq) and E*d(Xg4, Ag) denote the aggregated state
estimation error and the sampling interval (action) size for
the dth decision epoch under policy u, respectively. Con-
sidering the Law of Large Numbers, equation (20) can be

further written as

B[R]
E,[I]
where E,[I] is the expected sampling interval (action) size
under policy u. Since the optimal policy u* needs to be fully

utilizing the energy budget, its expected sampling interval
size satisfies:

E.[R] = (21)

B[] = 1/¢. (22)

Algorithm 1 is able to return the Markov-optimal policy u*
in polynomial time for any number of states input. It can be
seen that although step 4 is the most time-consuming pro-
cedure, it is able to obtain the optimal occupation measures
in polynomial time.

4.3 A case study: Selecting «* for two-state
Markov chains

While Algorithm 1 returns the optimal policy u* for any
number of user state inputs, in this section, as a case study,
we apply Algorithm 1 to two-state Markov chains and find
the optimal policy u* by solving the corresponding LP in
MATLAB. We test six different user state transition matri-
ces, namely:

0.9 0.1 0.9 0.1 0.9 0.1

0.1 09 0.5 0.5 0.9 0.1

0.5 0.5 0.5 0.5 0.1 09

0.5 0.5 0.9 0.1 0.9 0.1
Different energy budget constraint values ranging from 0 to
1 are used as different inputs to Algorithm 1.

The solution of the LP returns a randomization over all
possible state-action pairs, which essentially constructs the
stationary randomized optimal policy v*. Since it is difficult
to visualize the randomization of multiple actions, we com-
pute the mean value of actions taken at each decision epoch
for different user states, i.e., the expected average idle in-
terval at each state according to the optimal policy v*, and
show the result of the average actions in figure 2.

It can be noticed that when p12 = 0.1 and p21 = 0.9, the
Markov chain degenerates to an independently and identi-
cally distributed (i.i.d.) user state sequence, where the user
state transition does not depend on any current or previous
state information. In this case, the expected state estimation
error Ey+[R] under the optimal policy u* can be quantified

in terms of user state transition probability matrix P and
the energy budget £. The following theorem holds.

Theorem 1. For two-state Markov chain that degener-
ates to an i.i.d. user state sequence, given its tramsition
probabilities p;;(i,j € {1,2}) and the energy budget £, the
following holds for optimal sampling policy u™ :

Eu-[R] = (1 =€) - min{p1a, p21 } (23)
t.e., B[R] is linear in &.
ProoOF. For ii.d. transition probability matrix the fol-
lowing holds:
p=pPY =p® = —pDyreN (24)

that is, the state transition probability matrix in I steps,
denoted by PU)| is equal to the original state transition
probability matrix P, for any positive integer I.
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Figure 2: The average idle intervals in u* for dif-
ferent energy budgets. [; and I are the average
idle interval lengths when state 1 and 2 is observed,
respectively.

Let p,q be such that p = p12a =1 —p11 = p22 =1 —po1 =
1 —g. As equation (24) holds, the term e: in equation (7)
can be further written as:

2 2
o = I,max{p_,q_,ﬁ,@} (25)
P q9 p q
= min{p,q} (26)
= min{plg,pgl} (27)

i.e., e; stays constant no matter what sample interval is used.
This illustrates the fact that the estimation error for each
time slot with missing observation is constant. Recall that
E[R] is defined as the expected per-slot estimation error, and
that the optimal policy utilizes the full energy budget with
expected sensor sampling interval 1/&, therefore, E,«[R] can
be expressed as:

1/6 -1
1/€

for optimal policy v*. O

Eux[R] = cer = (1—¢) -min{pi2,p21}  (28)

It can be easily concluded that for all Markov chains that
degenerates to an i.i.d. user state sequence, there exist more
than one optimal policy due to the fact that any randomiza-
tion of actions that leads to the optimal sampling interval
results in the same expected state estimation error.
Another observation from figure 2 is that, whenever the
two-state Markov chain is symmetric, i.e., p12 = p21, the
average sampling intervals for both state 1 and 2 are equal.
In fact, the following theorem describing the property of op-
timal policy holds for all symmetric two-sate Markov chain:

Theorem 2. For two-state symmetric Markov chain where
pi2 = pa21, there exists an optimal sampling policy that makes
the same decision, i.e., selects the same randomization of
actions at each decision epoch.

PROOF. Let S = {s;,i = 1,2,3,...} be the user state se-
quence in the original decision process, where s; € {1, 2}, Vi.
Define T™ as the set of time slots where sensing is performed
under the optimal policy u*. We label the original process
as S* ={sj,1=1,2,3,...}, in which sj is defined as follows:

Sf_{ si, ifi€T*
YT 0, ifigT”
S™ is a process that characterizes the sampled process based
on the policy u*, by retaining the original state sequence
when observations are made, and labeling “0” for the rest
time slots. Note that the numbers of consecutive zeros in all
estimation intervals need not necessarily be the same, due to
the fact that u* adopts randomized decision at each decision
epoch u”™.

We then define the process S** = {s;*,i = 1,2,3,...}
where

sit=2, if si=1
sit=2% s*=1, ifs;=2
s;* =0, if s; =0

S** is a state sequence containing the “flipped” state from
S™ for all observed time slots, and zeros otherwise.

Since p12 = po1, it immediately follows that Pl(;) = Pé?,Vi
=1,2,3.... Recall equation (10) where the aggregated error
for an observation interval with a certain length is calcu-
lated. It can be concluded that e{%) = e{) and e{2) = e{®,
since the following equalities hold:

t a—t t a—t
max 7P1(’“) : PIEQ : = max 7%(’“) : Plil : (29)
P e
(t) (a—t) (t) (a—t)
max 4 Tm Do P — max{ 2 D 7 Py (30)
P P

where k € {1,2}. It follows that the relabeled process S**
produces the same expected error as S*, which implies that
by swapping all decisions made at state 1 with all decisions
made at state 2 in the original decision process, the expected
state estimation error remains optimal. Therefore, the opti-
mal policy decision at state 1 is able to be applied to state 2,
and vice versa, while maintaining the optimal error. This in-
dicates that for symmetric two-state Markov chain, no mat-
ter what state is observed at each decision epoch, there exists
an optimal policy that makes the same decision. []

5. PERFORMANCE COM PARISON:
MARKOV-OPTIMAL VS. UNIFORM

Researchers have proposed many sophisticated sampling
schemes such as [30] and [8], aiming at energy efficient event
detection in mobile and wireless networks. However, in the
context of mobile sensing for user state detection and esti-
mation, there does not exist an established framework that
aims to achieve the best tradeoff between energy consump-
tion and state estimation error and select the best sampling
intervals correspondingly. A baseline performance evalua-
tion of the optimal policy u*, therefore, is to compare it
with a uniform policy @ where the sensor simply performs
periodic sampling.

In this section, we compare the expected user state esti-
mation error, and visualize the gain (which is the ratio of



the reduced amount of error over the original error of uni-
form sampling) of the Markov-optimal policy on two-state
Markov chains with different transition probabilities. We
then apply both policies to real user state traces, and iden-
tify the expected state estimation error by comparing the
state estimation result against the ground truth.

5.1 Numerical comparison on Markov models

5.1.1 Deriving E;[R] for uniform sampling

We first formally define the uniform policy @ and derive its
corresponding expected state estimation error E3[R]. Since
time is discretized, a randomization of actions is required
in the uniform policy such that the average idle interval
length can achieve 1/¢, i.e., the energy budget can be fully
utilized. Although the potential number of randomization
choices could be infinite, we restrict the randomization to
choose from two neighboring integer values as the sampling
interval size. More strictly, the uniform sampling policy @ is
defined as follows: After each observation, the sensor waits
for I time slots with probability u, and I+1 time slots with
probability 1 — p, such that the following constraint holds:

1
§
where I € N* and 0 < p < 1. Equation (31) guarantees
that the energy budget ¢ is fully utilized by randomizing

the action over two subsequent integer values. Given &, it

is straightforward to obtain p and I. In particular, [ = L%J

and p = (%] - % would satisfy equation (31).

We derive the expected state estimation error Egz[R] for
uniform sampling policy with energy budget £. First, denote
pi as the steady state probability of detecting a particular
state 7 in any observation. Since the state transition follows
the Markovian rule, the current state observation result de-
pends on the previous observed state, and the number of
time slots being idle:

pi= pi-ln-P+(1
J

pol+(—p)-(I4+1)= (31)

—w- P32

Equation (32) accounts for all possible cases of last observa-
tion that may lead to state ¢ in the current observation. It
is obvious to see that:
dopi=1 (33)
i

Therefore, the results of pi1,p2, ..., and py can be obtained
by solving the N + 1 simultaneous equations given in (32)
and (33).

The expected state estimation error for uniform sampling
policy with energy budget £ can be expressed as the ex-
pected aggregate error per estimation interval divided by
the average interval size:

Ei[R) (34)

I I I+ I
szpz {u- P() ()+(1_M)'Pi(j+l) (+1)}
1/¢
where 4,5 € {1,2,..., N}, and eg}) is defined similarly as in

equation (10).
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Figure 3: Policy comparison in terms of E[R] for
different energy budgets.

5.1.2 Comparing«* with « on 2-state Markov chains

We compare the performance of u* and 4 on two-state
Markov chains. The results are summarized in figure 3 and 4
for different user state transitions and energy budget values.
Figure 3 shows the policy comparison in terms of expected
state estimation error with respect to different energy bud-
gets. Figure 4 shows the average improvement of the optimal
policy for different energy budgets, and the state entropy
difference, on a matrix of user state transition probabilities
ranging from 0.05 to 0.95, with interval 0.05.

It can be seen that uniform periodic sampling is optimal
for both symmetric and i.i.d. two-state Markov chains, i.e.,
it leads to the same expected error as the optimal policy
obtained by Algorithm 1. This is illustrated by both the
overlapping curves in figure 3 and the zero performance dif-
ference on the diagonals of the matrix in figure 4. In fact,
in Theorem 1 and 2 we have shown that there exists an uni-
form policy which is optimal for symmetric and i.i.d. chains.
However, for Markov chains that are neither symmetric nor
i.i.d., u* leads to a positive gain except for £ = 1, in which
case the sensor is sampled in every time slot. For exam-
ple, in figure 3, when p12 = 0.1 and p21 = 0.5, u™ produces
12.58% less error than the uniform policy on average.

We find that the improvement of the optimal policy in-
creases as the difference of state entropy between the two
states increases. Figure 5 illustrates the positive correlation
between the two metrics. Recall that in information the-
ory, the entropy of a state measures the uncertainty related
to that state. As a result, as the difference of state en-
tropy grows, more frequent sampling is required at the one
with high entropy to provide lower estimation error. Unlike
the uniform policy, the optimal policy is able to implement
different sampling frequencies at different states to achieve
better performance.

5.2 Policy comparison onreal user statetraces

The “Markovian user state transition” assumption enables
us to provide a state estimation mechanism in case of miss-
ing observations, a way similar to the Forward-Backward



(a)The average optimal policy improvement.
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Figure 4: Given different state transition probabilities, left figure shows the average improvement over
different energy budgets, by applying optimal policy as compared to periodic sampling, and right figure

shows the difference of state entropy.
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Figure 5: The gain of the optimal policy over uni-
form sampling (averaged over different energy bud-
gets) vs. the state entropy difference.

algorithm [24] that estimates hidden state sequence in tra-
ditional Hidden Markov Model (HMM) problems. More-
over, by assuming that the state transition is Markovian,
the Markov-optimal sensor sampling policy can be obtained
in polynomial time.

There certainly are some kinds of user state transitions
that have been empirically shown previously to be Marko-
vian. A classic example is speech and silence patterns within
a monologue [15]. To further consolidate our study and eval-
uate the performance of Markov-optimal policy on real user
data, we consider data traces that pertain to user motion
change and status of inter-user contact, and answer the fol-
lowing questions: (a) Are these user state transitions strictly
Markovian? and (b) If not Markovian, does the Markov-
optimal policy still perform well? The data collection ex-
periments! are explained as follows:

User motion: We conducted the user motion trace col-

1The data set from our experiments is available at the fol-
lowing website: http://anrg.usc.edu/www/downloads.

0.0341

0.9659 @ @ 0.8531
0.1469
0.9962 & 30.7246

Figure 6: Top: Motion transition dynamics of a
graduate student during the daytime of one week-
day. Bottom: The transition dynamics of inter-user
contact status for an undergraduate student carry-
ing a mote over a weekly duration.

0.0038

0.2754

lection in fall 2009. We are particularly interested in the
transition between “Stable” and “Moving”, two motion states
that characterize the basic user activity. During the ex-
periment, one participant carried a Nokia N95 device with
a python program running in background to automatically
detect his activity, using the motion classification technique
introduced in [33]. Approximately 40 hours of running data
distributed in five different weekdays were collected. The
mobile device recorded user motion every 12 seconds, in
which, 10 seconds were consumed by the accelerometer for
data collection, and the classification algorithm ran at the
end of each sample duration.

Inter-user contact status: In fall 2006, twenty-five
Tmotes [22] with wireless communication capabilities were
handed out to an undergraduate class at USC for a week [31].
Each student carried the device during the whole experiment
and each mote automatically logged the information about
other devices within communication range. Specifically, the
time, duration and node IDs of each contact were stored in
the memory for off-line processing. Each node transmitted
a contact packet every 0.1 second and the nearby nodes re-



ceiving the contact packets recorded the contact information
immediately. We view the user as in one of the following two
states at any given time: “In contact” or “Not in contact”,
since the existence of neighboring devices is of importance
in mobile P2P networking.

We use a standard method proposed in [3] to find the prob-
abilities of the user state transition. Specifically, defining
n;; as the total frequency of state transition from ¢ to j, the
Markov transition probability matrix can be constructed,
with

Pij = nij/ny, (35)

where n; = >, ni;. We illustrate the resulting Markov
chains for two sample participants® in figure 6.

Both Markov chains illustrate that the user is more likely
to be staying in one state than the other. We first explore
the existence of Markovian property in real data trace, by
examining whether the time user spent in a state is geo-
metrically distributed. The state duration samples from
the trace data are compared to a randomly generated ge-
ometrically distributed set of data, with the state transition
probabilities shown in figure 6 being the success probabili-
ties. Figure 7 compares the cumulative distribution function
(cdf) of state duration in real data, to the corresponding ge-
ometric distribution. Moreover, table 1 shows the results
from Kolmogorov-Smirnov (K-S) test [7], which compares
the real data set with the corresponding geometrically dis-
tributed data sequence®. The results imply that the user
data gathered from our current experiments does not strictly
follow the Markovian property, as the duration of each state
is not strictly geometrically distributed. The difference on
both the median and the highest value between real data
and geometric distributed data indicates the fact that the
state duration in real case tends to show more concentration
on both small and some extra-large values. In fact, in terms
of inter-user contact, several previous studies such as [6, 30,
31] have shown that the inter-contact and contact time du-
ration distribution may exhibit heavy-tails in certain time
scale rather than memoryless decay.

Although the data we collected does not strictly follow the
Markov property, as far as our present knowledge extends,
there does not exist a framework that studies user state esti-
mation accuracy while tracking the energy consumption us-
ing a “better-than-Markovian” model, for sophisticated user
state transitions such as non-stationary or long range de-
pendent processes. Moreover, we believe that the user data
can be well divided into different “periods” such that in each
period, different transition matrices can be utilized to better
describe user state transition dynamics instead of trying to
fit all the data into a single Markov chain. Different Markov-
optimal policies can therefore be applied accordingly. For
example, in case of the bottom chain shown in figure 6, it
characterizes the inter-user contact state change over the
duration of an entire week, whereas user behavior is nor-
mally different in day and night time. We leave the study
of modeling user state sequence as a time-variant Markov
chain and then applying different Markov-optimal policies
for different periods to future work.

2The data from other participants and from different days
shows similar transition dynamics.

3The Kolmogorov-Smirnov test is performed online at
http://www.physics.csbsju.edu/stats/KS-test.html

We compare the Markov-optimal policy derived from the
transition probabilities shown in figure 6 and the uniform
policy by applying them to the collected user data, and the
expected user state estimation error is measured as the per-
centage of incorrect state estimations as compared against
the ground truth. The result can be found in figure 8, which
shows the expected user state estimation error for both poli-
cies given different energy budgets, through both theoretical
analysis and the results based on real traces.

It can be seen that by applying the Markov-optimal pol-
icy as compared with periodic sampling, the average gain
in terms of expected state estimation error while satisfy-
ing the same energy budget is 18.00% and 27.86% for the
two given user traces, whereas the numeric analysis sug-
gests an improvement of 19.75% and 29.55%, respectively.
This indicates that even though the real user state transi-
tion is not strictly Markovian, the Markov-optimal sensor
sampling policy is still able to provide significant improve-
ment over periodic sampling mechanism. The reason is that
the Markov-optimal policy is able to reduce the expected
estimation error by imposing more frequent samples when-
ever state transition is more uncertain (e.g., higher state
entropy in Markov case), and on the other hand, increasing
the length of the idle interval when state transition is more
predictable.

6. CONCLUSIONS

We study the problem of energy efficiently sampling of a
discrete, Markovian user state process. While in our prior
work the best stationary deterministic policy is found by
exhaustively searching through all sensing intervals, in this
paper, by formulating the constrained optimization problem
as an infinite-horizon Constrained Markov Decision Process
with expected average cost, the optimal sensor sampling pol-
icy for Markovian user state transitions can be obtained in
a computationally efficient manner. The resulting Markov-
optimal policy achieves the lowest expected user state es-
timation error, while maintaining the energy consumption
below a given budget. The Markov-optimal policy is com-
pared against uniform periodic sampling numerically and we
find that the performance gain depends upon the user state
transition probabilities. We also apply the Markov-optimal
policy to real traces and it is shown to be capable of pro-
viding approximately 20% gain over periodic sampling, even
the real user state transitions are not strictly Markovian.

7. FUTURE WORK DIRECTIONS

In real scenarios, data distributions tend to show more
sophisticated behaviors (arbitrary, non-stationary, or even
unknown) as compared to simple Markov model. We plan
to investigate models such as time-variant Markov chains
(i.e., transition probabilities vary by time) and semi-Markov
models that can be utilized to characterize user state transi-
tions in a more realistic manner. Significantly more amount
of data will be collected and studied and the performance of
different models will compared.

In addition, since user state transition probabilities are
not always known a priori, we plan to apply learning tech-
niques (such as reinforcement learning) in order to obtain
the optimal sensing policy without assuming prior knowl-
edge of user state transition dynamics.
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Stable Moving Not In contact In contact
Real Data | Geometric | Real Data | Geometric | Real Data | Geometric | Real Data | Geometric
Mean 29.05 29.30 6.806 6.832 265.8 255.7 3.342 3.200
STDV 85.00 31.30 10.80 6.96 536.0 267.0 6.210 2.630
Median 4.000 18.00 2.000 5.000 26.50 175.0 1.00 2.00
Highest 548.0 192.0 53.00 63.00 2624 1705 2.00 17.0
Lowest 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
D 0.4852 0.3194 0.4474 0.3421
P 0% 0% 0% 0.1%

Table 1: K-S test results comparing the state duration distribution for “Stable”, “Moving”, “Not in contact”,
and “In contact”, with their corresponding geometric distributed data. D: The maximum vertical deviation

between two curves. P: Probability that two data sets have the same distribution.
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