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Abstract

In a high-capacity cellular network with limited spectral resources, it is desirable to minimize the radio

bandwidth costs associated with paging when locating mobile users. Sequential paging, in which cells in the

coverage area are partitioned into groups and paged in a non-increasing order of user location probabilities,

permits a reduction in the average radio costs of paging at the expense of greater delay in locating the users.

We present a polynomial time algorithm for minimizing paging cost under the average delay constraint, a

problem that has previously been considered intractable. We show the conditions under which cluster paging,

a simple heuristic technique proposed for use with dynamic location update schemes, is optimal. We also

present analytical results on the average delay and paging cost obtained with sequential paging, including

tight bounds.

1 Introduction

When a call arrives for a mobile user in a cellular network, it is necessary to determine the location of this

user in order to route the call appropriately. In the earliest cellular systems, this was accomplished by paging

all the cells in the network [1]. Such an approach incurs a significant cost in radio bandwidth utilization and

is cost-effective only in small networks. The second generation networks introduced the notion of location

updates, whereby the system is divided into a number of location areas (LA’s), and the mobile unit notifies

the network when it moves from one location area to another [2]. Upon arrival of a call, all the cells within

the user’s current location area are paged.

A number of location updating schemes that have been proposed are based on improved LA partitioning

techniques [4][5][6][7]. Schemes based on the selection of designated reporting cells can be found in [8][9][10].

∗The authors’ work was supported in part by the NSF grant number ANI-9704404 and the ONR MURI contract number
N00014-00-1-0564.
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The use of implicit location registration information obtained during transactions between the network and

the mobile unit is discussed in [11]. Research has also been directed to dynamic location update schemes

such as distance-based [12][14][15][16][17], movement-based [12][18], velocity-based [19][20], and time-based

[12][21] strategies. A predictive distance-based mobile tracking scheme is presented in [22], and a novel

information theoretic approach to user location, based on the Lempel-Ziv family of source compression

algorithms, is proposed in [3].

There is a tradeoff between the frequency of location updates and paging costs: if location updates are

frequent, there is less uncertainty about the user’s position and fewer cells need to be paged; on the other

hand, if the location updates are infrequent, the cost of paging increases. Still, since paging is necessary

if the update scheme leaves any uncertainty at all in the mobile’s exact location, it is possible to view

paging as a fundamental operation. As pointed out in [3], however, “the majority of the research on location

management has actually focused on update schemes, assuming some obvious version of paging algorithm.”

A simple two-stage strategy for improving paging costs in the LA-based approaches is described in [25].

Paging is initially performed in cells where information about recent interactions with the mobile indicate

that the user is most likely to be present. If the user is not found in these cells, then the remaining cells in

the location area are paged. Selective or cluster paging strategies, such as those used in [13][14][16][18][23],

assume that the mobile’s last known position and its surroundings constitute the most probable current

location. The direction of the mobile’s motion is taken into account in [20] and [24], with the cells in the

direction of the mobile’s motion yielding a higher probability of user location. The use of user profiles,

through probabilistic information gathered either from the user or the billing database, is considered in

[26] as a means for reducing paging costs. A similar use of collected user mobility statistics in the form of

multi-dimensional histograms is described in [27].

The notion that the policy of “paging more probable cells first” reduces the cost of paging is made rigorous

in [28]. It is proved that sequential paging schemes, in which groups of cells are paged in non-increasing

order of user location probabilities, are optimal in that they minimize the average number of cells paged per

call arrival. There is an implicit tradeoff in these schemes, however, between the delay in finding a mobile

user and the corresponding paging cost. At one extreme, when a call arrives for the user, all base stations

in that LA send out paging messages and the mobile will respond in one round no matter where it is. If the

LA is large and a great number of cells are paged, the radio costs are high. At the other extreme, only one

base station sends a paging message in each round. Although this minimizes the paging cost, in the worst

case this would require as many rounds as the number of cells in the LA - a potentially unacceptable delay.
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It is shown in [28] that if the user location probabilities are known, dynamic programming may be used

to solve a) the problem of minimizing the average cost of paging under maximum delay constraint, and

b) the problem of minimizing the weighted mean of paging cost and of average delay. We extend those

results by specifying algorithms for these problems and analyzing their worst case running time and space

requirements. Also discussed in [28] is the problem of minimizing the paging cost subject to a constraint on

the average delay. The authors state that this problem is not amenable to solution via dynamic programming,

since the total cost is not additive. They then proceed to provide an approximate solution via Lagrange

multipliers using a continuous formulation. This problem of minimizing the average paging cost subject to

the average delay constraint is also discussed in [29], where again the authors suggest that the problem may

be intractable. We present an algorithm which solves this problem exactly in polynomial time with respect

to the total number of cells.

We also present results on the performance of sequential paging schemes under two sets of assumptions: a)

uniform user location probabilities, and b) cluster paging with geometric zone location probabilities. The

first case, when the user is equally likely to be in any cell in the location area, is useful because it provides

tight bounds on the performance of sequential paging with an arbitrary location distribution. Cluster paging

is a special form of sequential paging that arises in the context of dynamic location updating schemes. In

this case, we show necessary conditions for the optimality of cluster paging, and provide expressions for

the average paging cost and paging delay when the probability of user location decreases geometrically

with distance from the center cell, such as the case when a mobile user provides location updates relatively

frequently.

The rest of the paper is organized as follows: section 2 introduces some of the notation and preliminary

definitions. Section 3 presents two important problem formulations, discusses their structure, and presents

algorithms to solve them. The time and space requirements for these algorithms are also provided. The

performance of sequential paging schemes under specific user location probability distributions is discussed

in section 4. Section 5 presents concluding comments. All proofs have been deferred to the Appendix.

2 Definitions and Notation

The location area is the set of n cells C = {1, 2, ..., n} such that the mobile user is guaranteed to be in

one of these cells at the time of a call arrival1. We assume that for each user, the probability of the user
1This is a somewhat general definition of location area. It is applicable even for dynamic location updating schemes, since

we can always provide an upper bound on how far the user could have traveled since the last location update.
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being present in a cell can be estimated for each of these n cells at the time of a call arrival. Let πi be the

probability that the user is located in the ith cell. We assume, without loss of generality, that the cells are

numbered in non-increasing order of user location probabilities, i.e. i < j ⇒ πi ≥ πj .

A sequential paging scheme is one where the cells in a location area are partitioned into indexed groups

referred to as paging zones on the basis of the cell-wise user location probabilities. Let Z1, Z2, . . . Zw be the

w-partition of the set C (i.e. a partition of C into w groups), where each Zi is non-empty and corresponds to

a distinct paging zone. When a call arrives for a user, the cells in paging zone Z1 are paged simultaneously

in the first round, then if the user is not found in Z1, all the cells in paging zone Z2 are paged, and so on.

Let the number of cells in the ith paging zone be denoted by ni = |Zi|, and let pi be the corresponding zone

location probability of the user:

pi =
∑
j∈Zi

πj (1)

We say that Z1, Z2, . . . Zw is a non-increasingly ordered partition of C if for all i ∈ Zk and j ∈ Zl such

that k ≤ l, it is true that πi ≥ πj . Note that if we have a non-increasingly ordered partition, then each

paging zone will consist of contiguously numbered cells. Thus, Z1 = {1, 2, . . . n1}, Z2 = {n1 + 1, . . . n1 + n2},

and so on.

We now have the following observations:

• The total number of paging zones into which the location area is partitioned, w, represents the worst

case delay in locating the mobile user.

• The average paging delay (number of paging rounds) in locating a mobile, D, can be expressed as

follows:

D =
w∑

i=1

ipi (2)

• The average cost of paging (number of cells paged per call arrival), L, can be expressed as follows:

L =
w∑

i=1

(
i∑

j=1

nj)pi (3)
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An example illustrating the notation and definitions:

Figure 1: Example location area and paging zones

1 n = 5 cells in location area, C = {1, 2, 3, 4, 5}

2 cell-wise user location probabilities:
i 1 2 3 4 5
πi 0.3 0.3 0.25 0.1 0.05

3 Number of paging zones w = 2

4 Paging zones: Z1 = {1, 2}, Z2 = {3, 4, 5}

5 Number of cells in each paging zone: n1 = |Z1| = 2, n2 = |Z2| = 3

6 Zone location probabilities: p1 = 0.3 + 0.3 = 0.6, p2 = 0.25 + 0.1 + 0.05 = 0.4

7 Average paging delay: D = 1p1 + 2p2 = 1× 0.6 + 2× 0.4 = 1.4

8 Average paging cost: L = n1p1 + (n1 + n2)p1 = 2× 0.6 + 5× 0.4 = 3.2

These definitions and notation are reflected in Figure 1. Note that cells that belong to the same paging

zone need not be adjacent to one another geographically. As per our assumptions, the cells are numbered in

non-decreasing order of user location probabilities. The first paging zone consists of the two most probable

cells, and the second paging zone consists of the remaining three cells. When a call arrives, cells 1 and 2

are paged first, and if the user is not located in those two cells, then cells 3, 4, and 5 are paged. For this

partitioning of the location area, the worst case delay is 2 rounds, the average paging delay is 1.4 rounds,

and the average paging cost is 3.2 cells paged/call arrival.

3 Optimization of Sequential Paging Schemes

It is possible to formulate the problem of optimal sequential paging in many different ways. There are three

chief measures of performance that are of interest - average paging cost, average delay, and worst case delay.
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It has been shown in [28] that, to minimize D or L, the paging zones must be partitioned in such a way that

more probable cell locations must be paged at an earlier round than less probable ones. Theorem 1 presents

this formally.

Theorem 1: The partition Z1, Z2, . . . Zw of the set of all cells in the location area, C, that minimizes D or

L must be a non-increasingly ordered partition.

Proof: See Theorem 1 in [28].

In the following discussions, we will restrict ourselves to non-increasingly ordered partitions only.

As mentioned earlier, there is a tradeoff between the average paging cost and delay. We can reduce the

average paging cost if we are allowed to increase the worst case delay.

Theorem 2: Let L1, L2 be the minimum average paging cost that can be achieved with w1, w2 paging zones

respectively. If w1 < w2 then L2 ≤ L1.

Proof: See Appendix.

Theorems 1 and 2 imply that if one wishes to minimize the average paging cost without any constraints on

delay, the optimal sequential scheme is to page each cell one by one in non-increasing order of user location

probabilities. In other words, the region is partitioned into n paging zones, each consisting of exactly one

cell.

3.1 Minimizing average paging cost under worst case delay constraint

A. Minimizing average cost of paging under worst case delay constraint
min L, subject to: w is a fixed natural number

We first note that theorem 1 holds irrespective of whether the delay w is constrained. An immediate conse-

quence of this for the problem of minimizing L under the worst case delay constraint is that the total number

of non-increasingly ordered partitions is equal to
(

n− 1
w − 1

)
= O(nw−1). We can, however, do better in

terms of running time. The following theorem establishes the optimal substructure inherent in the problem:

Theorem 3 (Optimal substructure for problem formulation A): If Z1, Z2, . . . Zw is the partition of

cells in the location area that minimizes average cost of paging under a worst case delay constraint of w,

then Z1, Z2, . . . Zk is a partition of ∪k
i=1Zi (the set of all the cells in the first k paging zones, 1 ≤ k ≤ w)
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that minimizes the average cost of paging under a worst case delay constraint of k.

Proof: See Appendix.

Definition: h[k, e] is the minimum average paging cost that can be achieved in paging the first e cells using
k ≥ 2 paging zones. We seek h[w, n].

It can be seen that

h[2, n] = minn
n1=1(n1p1 + np2). (4)

Thus, when only two paging zones are used, to calculate h[2,n] we need only vary the number of cells that

should be paged in the first round (n1). In this case, the average paging cost can therefore be minimized in

linear time w.r.t to the number of cells in the location area, i.e. in O(n).

A quadratic-time algorithm

Now let us consider the general case, for arbitrary w and n. The following recursive relation holds ∀ k ≥ 2:

h[k + 1, e] = mine
j=1(h[k, j] + epk+1), (5)

where pk+1 =
e∑

i=j+1

πi.

We have the following initial conditions for h[·, ·]:

h[1, j] = j

j∑
i=1

πi (6)

We can think of h[·, ·] as a two-dimensional table of size w× n, and using the recursive equation (5) and the

initial conditions in (6), build its entry from the bottom up or top-down using memoization [30]. It takes

O(n) time to find the minimum of h[k, j],∀j and hence to calculate each entry of the two-dimensional table.

Thus the solution to this optimization problem, h[w, n] can be solved in O(wn2) time. As in simple dynamic

programming, the partition of cells into w paging zones that corresponds to this minimum value of average

paging cost can be found by tracing back through the table or by keeping track of decisions at each step as

the algorithm proceeds. The memory requirement is constrained by the size of the table and is hence O(wn).

3.2 Minimizing average paging cost under constraint on average delay

B. Minimizing the average cost of paging under average delay constraint
min L, subject to: D ≤ D∗, given a positive real number D∗.
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We note that while formulation B is the one discussed in [29], an equivalent equality constraint is used in

[28]. The inequality constraint is more meaningful, since we would generally be interested in keeping the

average paging delay below some threshold, rather than at some exact value.

In [28], the authors claim that this problem is not amenable to solution via dynamic programming, because

the constraint renders the cost function non-additive. They provide an approximate solution using a contin-

uous formulation and Lagrange multipliers to perform the optimization. The authors in [28] then show that

these approximate solutions are very close to optimal. We note that this in itself suggests that the discrete

problem is not computationally hard, and that it probably has an exact solution that can be determined in

polynomial time. In [29], however, there is a proof that the problem is NP-complete. Unless P = NP, this

would seem to indicate that the problem does not have a polynomial time solution. Indeed, the authors in

[29] indicate the only way to solve it exactly would take O(2n) time. What is the right answer? It turns

out that the proof in [29] showing the similarity of this problem to the Knapsack problem does not take into

account bounds on the average paging delay constraint. It is well known that while the general Knapsack

problem is NP complete, there exists a polynomial solution that uses dynamic programming for the special

case of the problem when the constraint is a polynomially bounded function of the instance size [31]. For

our problem, since the average paging delay can never exceed the number of paging zones, we need only

concern ourselves with values of D∗ that are less than or equal to n. This considerably simplifies the problem

and makes it tractable. We present below a dynamic programming approach that solves this minimization

problem in polynomial time.

The first assumption we have to make regarding the problem is that D∗ is a positive number that can be

represented discretely as one of A discrete values. This is an entirely reasonable assumption for our purposes,

since any practical system cannot estimate, calculate or store probabilities or delays with infinite precision.

Also, as we mentioned above, it is assumed without loss of generality that D∗ ≤ n.

Definition: h†[k, e, α] is the minimum average paging cost that can be achieved when paging the first e
cells using k ≥ 2 paging zones, with a maximum average paging delay of α ≤ n. We seek h†[w, n, D∗].

The result from Theorem 1 still holds here, so that we only concern ourselves with non-increasingly ordered

partitions of the set Q.

Theorem 4 (Optimal substructure for problem formulation B): For the problem of minimizing the

average cost of paging under average delay constraint, the following recursive relation holds:
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h†[k + 1, e, α] = min
(e)
j=1h

†[k, j, α− (k + 1)
e∑

i=j+1

πi] + e
e∑

i=j+1

πi (7)

Proof: See Appendix.

The corresponding initial condition here is that

if

j∑
i=1

πi ≤ α then h†[1, j, α] = j

j∑
i=1

πi, else ∞. (8)

Equation (7) tells us that the optimal solution for the problem that involves (k + 1) paging zones and an

average delay of α can be written as the sum of the optimal solution for k paging zones with a smaller delay

and the average paging cost due to the (k + 1)th zone. Specifically the delay for the optimal sub-problem is

reduced by an amount that depends upon the “excess” probabilities due to the cells in the (k + 1)th paging

zone.

This recursive relation results in a dynamic programming solution. We can think of h†[·, ·, ·] as a 3 dimensional

table of size (w×n×A), where A is the number of discrete levels used to represent α. The recursive relation

(7), together with the initial conditions (8) suffice to fill in all the elements of this table. The element

corresponding to h[w, n, D∗] gives us the optimal solution. To determine which cells are placed in which

paging zone, one can trace back through the table, keeping track of the decisions made at each step. A

value of ∞ (which can be replaced by some arbitrarily large number (any number greater than n will suffice)

indicates that there is no solution that satisfies the given average delay constraint. The space-complexity

of this Dynamic Programming algorithm is the size of the table O(wnA). It takes O(n) time to fill each

element of the table, giving the algorithm a time-complexity of O(wn2A). Thus we have a polynomial time

algorithm for this problem formulation.

4 Performance of Sequential Paging

This section presents results on the performance of sequential paging under assumptions regarding the

user location probabilities. The first case we consider is the uniform distribution, where the cell location

probabilities are πj = 1/n for all n cells. In the second case we consider, the zone location probabilities are

distributed geometrically, i.e. pi = ri/(
w∑

i=1

ri).
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4.1 Uniformly distributed user location probabilities

It is shown in [28] that sequential paging schemes have the worst case average paging cost and paging delay

when the mobile users are equally likely to be in any cell

Let Πn be any arbitrary distribution of the cell-wise user location probabilities, for which the minimum

possible average paging cost is L
Πn

w and the minimum possible average delay is D
Πn

w when w paging zones

are used. Let Un be the uniform distribution of probabilities = { 1
n , 1

n , 1
n , . . .}, for which the the minimum

average paging cost is L
Un

w and the minimum average delay is D
Un

w when w paging zones are used. Then, we

have the following:

Theorem 5: The uniform distribution case corresponds to the upper bounds on the minimum average paging

cost and minimum average paging delay when n cells are partitioned into w paging zones: L
Πn

w ≤ L
Un

w and

D
Πn

w ≤ D
Un

w .

Proof: See Corollary 2 of Theorem 2 in [28].

The first result we have for the uniformly distributed location probabilities is that if we wish to minimize

the average cost of paging, we do not need to run the dynamic programming algorithm described in section

3.3. This is because the optimal solution has a specific structure, described in the following theorem.

Theorem 6: If each cell has equal probability of user location then the w-partition of C which minimizes

the average cost of paging is balanced such that the difference in the number of cells between any two paging

zones is no more than one.

Proof: See Appendix.

Corollary 6.1: For the balanced partition in Theorem 7 that minimizes the average cost of paging,

∀i ∈ {1, 2, . . . w}, b n
w c ≤ ni ≤ d n

w e.

We can normalize the average paging cost with respect to the average paging cost when using only one

partition. Let the normalized reduction in average paging cost be defined as follows:

ΛΠn(w) =
L

Πn

1 − L
Πn

w

L
Πn

1

(9)
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We would like ΛΠn(w), which represents the reduction in paging cost that is gained by using multiple paging

zones, to be as close to 1 as possible. If ΛΠn
(w) is 0.5 for example, then we can get a reduction of 50% in

the paging cost by using w paging zones instead of 1.

Because of the known structure of the paging zone partitions under the uniform distribution, analytical

expressions can be derived for the performance of paging under a worst case delay constraint.

Theorem 7: The following are true:

• limn→∞D
Un

w = w+1
2

• limn→∞ ΛUn(w) = 1
2 (1− 1

w )

Proof: See Appendix.

Theorem 7 and 9 together imply that for any arbitrary distribution of user locations Πn:

lim
n→∞

D
Πn

w ≤ w + 1
2

(10)

lim
n→∞

ΛΠn(w) ≥ 1
2
(1− 1

w
) (11)

Equation (11) is a particularly appealing result. It tells us, for example, that when there are a large number

of cells in the region, we can obtain asymptotically at least a 25% reduction in paging costs by using 2 paging

zones, and at least a 40% reduction in paging costs by using up to 5 paging zones. At least for the uniformly

distributed user location distribution, there are diminishing returns after this point, with no more than a

further 10% gain possible if we increase the number of paging zones any further. Note that although we

have presented asymptotic results in theorem 7, we can actually calculate the exact results for the uniform

distribution easily as shown in the appendix.

4.2 Cluster paging with geometric distribution

A cluster paging scheme was introduced in [13]. In this special case of sequential paging, successively

concentric rings are paged from the last known location outwards. An example with a maximum of 3 rounds

of paging can be seen in figure 2. Paging zone 1 consists of the center cell, paging zone 2 consists of the 6

cells in the ring surrounding it, and paging zone 3 is the ring of 12 cells on the outside. Cluster paging finds
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Figure 2: An example of cluster paging for hexagonal cells, w = 3 paging zones

applications particularly in the context of dynamic location update schemes such as distance, movement and

timer-based techniques.

Under what conditions is cluster paging optimal? The following theorem suggests the answer:

Theorem 8: Assume we have a location area consisting of w groups of cells, such that in the ith group,

each cell has equal user location probability λi. Let ki the number of cells in the ith group, and pi = ki · λi

be the probability of user location in the whole group. Further, let the following conditions hold: If i < j,

then ki < kj and pi > pj . Under these conditions, the w-partition of the n =
w∑

i=1

ki cells in this location

area that minimizes the average paging cost is the w-partition in which the cells of the ith group form the

ith paging zone.

Proof: See Appendix.

The key assumption in this theorem, which makes it non-trivial, is the requirement that if i < j, then ki < kj

and pi > pj . This need not be true simply because the cells have monotonically decreasing user location

probabilities. As a counter-example, consider a scenario with four cells and two cell groups, with location

probabilities as follows: { 1
3 , 2

9 , 2
9 , 2

9}. In this case, p2 = 2
3 > p1 = 1

3 , and the partition which minimizes the

average paging cost consists of Z1 = {1, 2} and Z2 = {3, 4}. Note that in this optimal partition the cells of

the second group are not all paged at the second paging round.
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Therefore cluster paging is an optimal sequential paging scheme when the following conditions hold:

• There are w − 1 distinct rings outside the center cell in the location area, where w is the number of

paging rounds.

• Each cell in the ith ring has equal probability of user location, for i = 1, 2, . . . w − 1.

• As we move outwards from the center cell, each consecutive ring has a lower probability of user location.

• The number of cells in each successively outward ring is increasing.

It is argued in [13] based on empirical studies that the probability of user location decreases geometrically

with distance from the center cell in a location area. Thus for some 0 < r ≤ 1, we have for cluster paging

that

pi =
1+k2+...+ki∑

j=1+k2+...+ki−1

πj =
ri

w∑
i=1

ri

(12)

The number of cells in each ring/paging zone can be characterized as follows: say the the ith paging zone

consists of ki cells. We let k1 = 1 and ki = M · (i− 1) for i ≥ 2, where M is a positive integer constant that

depends on the cell shape (for example, M = 6 for hexagonal cells, and 8 for rectangular cells). Thus the

number of cells in each successive paging zone increases linearly.

Under these assumption on the geometric distribution of zone location probabilities and the cellular topology,

it is possible to evaluate the average delay and paging costs for the optimal sequential paging scheme:

Dw =

w∑
i=1

iri

w∑
i=1

ri

= (
1− r

r − rw+1
)

w∑
i=1

iri =
−wrw+2 + (2w + 1)rw+1 − (w + 1)rw + r + 1

1− r − rw−1 + rw
(13)

Lw =

w∑
i=1

(ri
i∑

j=1

kj)

w∑
i=1

ri

=
1− r

r − rw+1
·

w∑
i=1

(1 +
i−1∑
j=1

jM)ri (14)

Figure 3 and 4 plot the average delay Dw and the normalized reduction in average paging cost Λ
Πn

w with

respect to w for cluster paging when the zone location probabilities decrease geometrically, along with the

worst case bounds that arise when r = 1 (uniform distribution). Note that in these figures the total number
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Figure 3: The average paging delay for geometric distribution of zone location probabilities in cluster paging

Figure 4: The normalized reduction in average paging cost for geometric distribution of zone location prob-
abilities in cluster paging
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of cells n in the location area is also increasing with w, since n = 1 + 0.5Mw(w − 1). These results indicate

that the best performance, both in terms of low average paging delay as well as high normalized reduction in

average paging cost, is obtained when the parameter r of the geometric distribution is small. This corresponds

to a situation where the user location probabilities are “concentrated” in a relatively small number of cells.

The results are intuitive as we should expect to make significant savings on the average paging cost as well

as on paging delay when the user’s movements are restricted to a few cells in a large location area.

5 Conclusion

In high-capacity cellular networks with limited radio resources, it is desirable to minimize the radio costs

when locating mobile users during call arrival. Sequential paging schemes permit a reduction in paging costs

at the expense of potentially greater delay.

We presented a polynomial-time algorithm to solve the problem of minimizing the average paging cost under

the constraint on average delay. This problem had previously been considered computationally intractable.

Thus in conjunction with [28], our results show that the task of determining the optimal sequential paging

scheme is, in general, feasible.

We also presented some analytical results on the performance of sequential paging schemes under assumptions

on the distribution of user location probabilities. The first case we discussed is that of the uniform user

location probabilities which provides tight bonds on the performance of sequential paging for any arbitrary

distribution. We showed that the normalized reduction in average paging costs increases as 1
2 (1 − 1

w ) with

respect to w, the total number of paging zones. This implies, for example, that using as few as 2 paging

zones we are guaranteed to obtain at least a 25% reduction in paging costs on average compared to the

policy of paging all cells in the location area. Similarly, the average paging delay was shown to be upper

bounded by (w + 1)/2.

The second case we considered was that of cluster paging with geometric zone location probabilities. Cluster

paging is a special case of sequential paging that arises particularly in the context of dynamic location

updating schemes. We showed conditions under which cluster paging is an optimal sequential paging scheme.

Also, a common assumption in cluster paging schemes, justified by empirical observations in [13], is that

user location probabilities decrease geometrically with distance. Under this assumption, we derived results

for the performance of the optimal cluster paging scheme. These results confirm the intuition that the

more “concentrated” the user location probabilities are in a portion of the location area, the better the
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performance of sequential paging.

It must be noted that sequential paging schemes may be somewhat complicated to implement because they

are devised on a per-user basis and require the tracking of location statistics for each user. In any case, the

use of sequential paging schemes is predicated upon the ability to obtain good estimates of the cell-wise user

location probabilities, which require the use of an appropriate location tracking scheme. Another related

issue that arises is the question of the sensitivity of sequential paging to the estimates of user location

probabilities. We have addressed some of these issues in [32], but these questions are still topics for future

work.

6 Appendix: Proofs

Theorem 1: The partition Z1, Z2, . . . Zw of the set of all cells in the location area, C, that minimizes D or

L must be a non-increasingly ordered partition.

Proof: See Theorem 1 in [28].

Theorem 2: Let L1, L2 be the minimum average paging cost that can be achieved with w1, w2 paging zones

respectively. If w1 < w2 then L2 ≤ L1.

Proof: Let w′ = w1 + 1, and let Lw′ be the minimum average paging cost that can be achieved using w′

paging zones. It suffices to show that Lw′ ≤ L1, since this would imply that L2 ≤ . . . Lw′ ≤ L1. This can be

shown by constructing a w′-partition of C that has an average paging cost no greater than L1.

Let Z1, Z2 . . . Zw1 be the partition of C that yields the minimum average paging cost L1. If w + 1 ≤ n, we

can always choose a paging zone Zm such that it has more than one cell: nm > 1. Now partition this paging

zone in any manner into two non-empty paging zones Zm1 and Zm2 . Z1, Z2, . . . Zm1 , Zm2 . . . Zw1 is now a

w′-partition of C. Let L
∗

be the average paging cost for this partition. The following holds:

L1 − L
∗

=
w1∑
i=1

pi

i∑
j=1

nj −
w′∑
i=1

pi

i∑
j=1

nj = pm

m∑
j=1

nj − (pm1

m1∑
j=1

nj + pm2

m2∑
j=1

nj) (15)

= pm

m∑
j=1

nj − (pm1 + pm2)
m∑

j=1

nj + pm1nm2 = pm1nm2 ≥ 0 (16)

We now have that L
∗ ≤ L1. Since Lw′ is the optimal paging cost with w’ paging zones, Lw′ ≤ L

∗ ≤ L1.

Q.E.D.
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Theorem 3 (Optimal substructure for problem formulation A ): If Z1, Z2, . . . Zw is the partition of

cells in the location area that minimizes average cost of paging under a worst case delay constraint of w,

then Z1, Z2, . . . Zk is a partition of ∪k
i=1Zi (the set of all the cells in the first k paging zones, 1 ≤ k ≤ w)

that minimizes the average cost of paging under a worst case delay constraint of k.

Proof: For the optimal w-partition Z1, Z2, . . . Zw, the average paging cost Lw can be expressed as:

Lw =
w∑

i=1

pi

i∑
j=1

nj =
w−1∑
i=1

pi

i∑
j=1

nj + pwn (17)

From this it is obvious that Z1, Z2, . . . Zw−1 is the optimal partition of ∪w−1
i=1 Zi. For if not, then there exists

some other partition of ∪w−1
i=1 Zi with a lower average paging cost, and using this other partition along with

Zw as a w-partition of C would result in an overall average paging cost lower than Lw, which contradicts

our assumption that Z1, Z2, . . . Zw is the optimal w-partition.

Using the above argument inductively, it can be seen that ∀k ∈ {1, 2, . . . w}, Z1, Z2, . . . Zk is an optimal

partition of ∪k
i=1Zi.

Q.E.D.

Theorem 4 (Optimal substructure for problem formulation B ): For the problem of minimizing the

average cost of paging under average delay constraint, the following recursive relation holds:

h†[k + 1, e, α] = mine
j=1(h

†[k, j, α− (k + 1)
e∑

i=j+1

πi] + e
e∑

i=j+1

πi) (18)

Proof: We can justify equation (18) using the definition of h†[·, ·, ·] that we recall here:

Definition: h†[k, e, α] is the minimum average paging cost that can be achieved when paging the first e
cells using k ≥ 2 paging zones, with a maximum average paging delay of α ≤ n. We seek h[w, n, D∗].

Looking at the right hand side of equation (18), we see that we are separating the properties of the first

k partitions from those of the (k + 1)st partition. For a fixed value of j, the additive contribution of the

(k + 1)st partition to the average cost of paging is exactly the second term: e
e∑

i=j+1

πi = epk+1.

Now, if Z1, Z2, . . . Zk+1 is the (k + 1)-partition of the set ∪k+1
i=1 Zi that yields the minimum average cost of

paging, then the set ∪k
i=1Zi must be partitioned to yield the lowest possible cost of paging (for the same

reasons as in Theorem 3 for formulation A), subject to the constraint that the average delay due to the first
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k paging zones be no more than α− (k + 1)pk+1. Note that this average delay constraint must be satisfied

if the average delay for the (k + 1)-partition of ∪k+1
i=1 Zi is constrained to be less than α. The minimization

of the first term with respect to j, h†[k, j, α− (k + 1)
e∑

i=j+1

πi], represents this lowest possible cost of paging

under the average delay constraint of α− (k + 1)pk+1 for the first k paging zones. Adding these two terms

on the right hand side of equation(18) yields the minimum average paging cost for k + 1 paging zones under

the constraint that the average paging delay may not exceed α, which is the left hand side.
Q.E.D.

Theorem 5: The uniform distribution case corresponds to the upper bounds on the minimum average paging

cost and minimum average paging delay when n cells are partitioned into w paging zones: L
Πn

w ≤ L
Un

w and

D
Πn

w ≤ D
Un

w .

Proof: See Corollary 2 of Theorem 2 in [28].

Theorem 6: If each cell has equal probability of user location then the w-partition of C which minimizes

the average cost of paging is balanced such that the difference in the number of cells between any two paging

zones is no more than one.

Proof: This can be shown by the following argument. Consider two w-partitions of C: partition Z ′1, Z
′
2, . . . Z

′
w

with an average paging cost of L
′
, and partition Z ′′1 , Z ′′2 , . . . Z ′′w with an average paging cost of L

′′
. Let these

two partitions be identical in all but two paging zones l and m: Z ′l 6= Z ′′l and Z ′m 6= Z ′′m. For the first w-

partition, these two paging zones are unbalanced, i.e. n′l = n′m +k, where k ≥ 2. For the second w-partition,

they are balanced, i.e. nl” = nl − bk
2 c, nm” = nm + bk

2 c. Note that we can generate the fully balanced

partition mentioned in the theorem by repeatedly applying these balancing steps two paging zones at a time,

starting from any arbitrary w-partition of C. Hence, if we can show that L
′′

< L
′
, then it is true that the

average paging cost of the fully balanced partition is the minimum that can be achieved. Since the two

partitions only differ in paging zones l and m,

L
′ − L

′′
=

w∑
i=1

n′i
n

i∑
j=1

n′j −
w∑

i=1

n′′i
n

i∑
j=1

n′′j (19)

=
1
n

[(n′l
w∑

i=1

n′i + n′m

w∑
i=1

n′i − n′ln
′
m)− (n′′l

w∑
i=1

n′′i + n′′m

w∑
i=1

n′′i − n′′l n′′m)] (20)

=
1
n

[n′′l n′′m − n′ln
′
m] =

1
n

[(n′m + dk
2
e)(n′m + bk

2
c)− n′m(n′m + k)] (21)

=
1
n

(dk
2
ebk

2
c) > 0 (22)
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Q.E.D.

Corollary 6.1: For the balanced partition in Theorem 8 that minimizes the average cost of paging, ∀i ∈

{1, 2, . . . w}, b n
w c ≤ ni ≤ d n

w e.

Theorem 7: The following are true:

• limn→∞D
Un

w = w+1
2

• limn→∞ ΛUn
(w) = 1

2 (1− 1
w )

Proof: Let us do these one by one.

7.1 limn→∞D
Un

w = w+1
2

Proof of 7.1: From Corollary 8.1, it follows that ∀i ∈ {1, 2, . . . n},

1
n
b n

w
c ≤ pi ≤

1
n
d n

w
e (23)

Therefore, since D
Un

w =
w∑

i=1

ipi,

w∑
i=1

i
1
n
b n

w
c ≤ D

Un

w ≤
w∑

i=1

i
1
n
d n

w
e (24)

⇒ lim
n→∞

D
Un

w = lim
n→∞

1
n
· n

2
· w(w + 1)

2
=

w + 1
2

(25)

7.2 limn→∞ ΛUn
(w) = 1

2 (1− 1
w ).

Proof of 7.2: From Corollary 6.1, it follows that ∀i ∈ {1, 2, . . . n},

1
n
b n

w
c ≤ pi ≤

1
n
d n

w
e (26)

and

ib n

w
c ≤

i∑
j=1

nj ≤ id n

w
e (27)

Therefore,

1
n

w∑
i=1

b n

w
c(ib n

w
c) ≤ L

Un

w ≤ 1
n

w∑
i=1

d n

w
e(id n

w
e) (28)

⇒ 1
n

(b n

w
c)2 w(w + 1)

2
≤ L

Un

w ≤ 1
n

(d n

w
e)2 w(w + 1)

2
(29)

19



We also know that average cost of paging when only one paging zone is used is L
Un

1 = n. Therefore,

lim
n→∞

ΛUn
(w) = lim

n→∞

L
Un

1 − L
Un

w

L
Un

1

= lim
n→∞

n− L
Un

w

n
(30)

= 1− lim
n→∞

(
1
n
· 1
n
· n2

w2
· w(w + 1)

2
) =

1
2
(1− 1

w
) (31)

Q.E.D.

Theorem 8: Assume we have a location area consisting of w groups of cells, such that in the ith group,

each cell has equal user location probability λi. Let ki the number of cells in the ith group, and pi = ki · λi

be the probability of user location in the whole group. Further, let the following conditions hold: If i < j,

then ki < kj and pi > pj . Under these conditions, the w-partition of the n =
w∑

i=1

ki cells in this location area

that minimizes the average paging cost is the w-partition in which the cells of the ith form the ith paging

zone.

Proof: For the purpose of this proof, it will be helpful to think of the partition of cells into paging zones

as being equivalent to the non-increasingly ordered partitioning of the corresponding set of user location

probabilities. Look at the following examples with w = 3 and n = 6 for an illustration:

P1 = {λ1|λ2λ2|λ3λ3λ3},P2 = {λ1λ2|λ2λ3|λ3λ3}

Here the pipes indicate the partition boundaries. Thus P1 represents the partition we have claimed to be

optimal : elements of group i are placed in the ith bin. Let’s denote such w-partitions as P∗
w. In partition

P2, we have an element of group 2 in the 1st bin, and an element of group 3 in the 2nd bin.

Let Si =
i∑

j=1

kj be the cumulative sum of cells in the first i groups. The average paging cost associated with

the partition P∗
w is

LP∗
w

=
w∑

i=1

pi · Si =
w∑

i=1

ki · λi · Si (32)

Now consider each element e ∈ {1, 2, . . . n} of an arbitrary partition P; say the element e belongs to group

i, and is in bin j. We construct a credit/debit value for each such element as follows:

• If there are N elements in the same bin j belonging to “future” groups l, l > i, then element e has a

positive credit Ce = +(N · λi). Otherwise Ce = 0.
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• If there are M elements in “future” bins l, l > j, that are from the same group i, then the element e

has a negative debit De = −(M · λi). Otherwise De = 0.

The following facts can be derived easily from the definition of this accounting scheme: a) each element

either has a non-zero credit or a non-zero debit value, but not both; and b) the sum of all credits and debits

for all elements e of P is the “excess” average paging cost resulting from this partition. In other words:

LP − LP∗
w

=
n∑

e=1

(Ce + De) (33)

To prove that P∗
w minimizes the average paging cost, it therefore suffices to show that ∀P 6= P∗

w,
n∑

e=1
(Ce +

De) > 0. The partitions P∗
w and P differ from each other in that P has some bins which contain elements

belonging to higher group number than that bin, and bins which contain elements belonging to a lower group

number. One can imagine that this took place by a sequence of steps during which the boundaries of the

partitions were moved from their original position in P∗
w to either their right or left by an arbitrary number

of places.

In particular, we can think of getting from the partition P∗
w through a finite sequence of simple moves to P

as follows:

1. First move the boundary of the bins in P∗
w (if any) that need to be moved to the right by moving the

right boundary of the rightmost such bin first to its required position in P, then the boundary of next such

bin and so on.

2. Now move the boundary of the bins in P (if any) that need to be moved to the left, by moving the

boundary of the leftmost such bin first to its required position in P, then the boundary of the next such bin

and so on.

At each step of a move of type 1, the elements of bins on either side of boundary that is being moved to the

right looks as follows:

{. . . λi . . . λi . . . λj−1 . . . λj−1λj , . . . λj |λj, λj . . .} (34)

When the element with value λj is moved from the right bin to the left bin (correspondingly, when the

boundary is moved one place to the right), the total debits of all elements in the partition can increase by
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no more than −(λj · kj). This is because only the λj element being moved to the left will experience an

increased debit after the move. And the total credits increase by at least +(λj−1 · kj−1), since each element

of group (j − 1) will be present in the bin to the left and will gain a credit when the “future” element λj is

moved into the same bin. Since we know that λj · kj ¡ λj−1 · kj−1 from the hypothesis of the theorem, the

sum of credits and debits actually increases at each such step.

Similarly we can show that the sum of credits and debits also increases at each step of a move of type 2. Since

the sum of credits and debits is 0 for P∗
w, and keeps increasing at each step as we construct the partition

P 6= P∗
w, the sum of credits and debits is positive for P 6= P∗

w.
Q.E.D.
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