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Abstract— We examine the problem of maximizing data
collection from an energy-limited store-and-extract wire-
less sensor network, which is analogous to the maximum
lifetime problem of interest in continuous data-gathering
sensor networks. One significant difference is that this
problem requires attention to “data-awareness” in addition
to “energy-awareness.” We formulate the maximum data
extraction problem as a linear program and present a�����

iterative approximation algorithm for it. As a
practical distributed implementation we develop a faster
greedy heuristic for this problem that uses an exponential
metric based on the approximation algorithm. We then
show through simulation results that the greedy heuris-
tic incorporating this exponential metric performs near-
optimally (within 1 to 20% of optimal, with low overhead)
and significantly better than other shortest-path routing
approaches, particularly when nodes are heterogeneous in
their energy and data availability.

Keywords: Sensor Networks, Mathematical Program-
ming/Optimization, Network Flows.

I. INTRODUCTION

In many sensor network applications involving envi-
ronmental monitoring in remote locations, planetary ex-
ploration and military surveillance, it is neither necessary
nor even possible for a user to obtain data from the
network continuously, in real time. In such applications,
the information from the entire network can be extracted
en masse after a prolonged period of sensing and local
storage. However, since communication is often the
most expensive operation for a sensor node, the limited
batteries may make it impossible to collect all the data
stored in the network. We examine the problem of max-
imizing the data extracted from such an energy-limited
sensor network consisting of heterogeneous nodes. The
maximum data extraction problem is an analog of the
maximum lifetime problem of interest in continuous
data-gathering sensor networks [3], [5], [14] that has
been studied previously. However, this problem intro-
duces an additional element of “data-awareness” that
must be considered in addition to “energy-awareness.”

We first show how the maximum data extraction
problem can be formulated as a Linear Program. We then
adapt and extend techniques for multi-commodity flow
problems first developed by Garg and Konemann [1] to
develop an iterative algorithm for our problem with a
provable ( �	��
 ) approximation. This algorithm suggests
a new link metric (involving the remaining energies of
both sender and receiver nodes, the distance between
them, and the data level at the sender) that we then used
to develop a fast, practically implementable, distributed
heuristic that we refer to E-MAX. The heuristic employs
a selfish strategy in that each sensor gives priority to
transmitting its data before relaying that of other nodes.
Our simulations show that this sophisticated heuristic of-
fers near-optimal performance under all conditions, and
significantly better compared to other naive greedy so-
lutions such as shortest-hop-count and shortest-distance
routing, particularly when nodes are heterogeneous in
their energy and data availability.

The rest of the paper is organized as follows. In section
II, we discuss related work to place our contributions
in context. We define the problem and present the LP
formulation and its dual in section III. An interpretation
of the LP dual suggests the ���
 iterative approximation
algorithm that we present and analyze in section IV. We
discuss the implementation of this algorithm in section
V. We present fast implementable heuristics in section
VI. Simulation results comparing these implementations
are presented in section VII. Concluding comments are
provided in section VIII.

II. RELATED WORK

Our work is inspired by a vast body of literature
related to optimizing the performance of ad hoc and
sensor networks. We outline a few of these studies that
are very close in spirit to our work.

A. Energy Aware Routing

Most of the literature in this area has focused on
routing techniques that extend the life time of a sensor
or ad hoc network by taking into account remaining
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battery energy. In [8], Toh has proposed the Conditional
Max-Min Battery Capacity Routing (CMMBCR) which
selects the shortest path for routing data from one node
to the other in an ad hoc network such that all nodes on
the path have remaining battery power above a certain
threshold. Singh et al. [7] present an elaborate study of�

different metrics which are all a function of the node
battery power and conclude that these metrics can give
significant energy savings over naive hop-count-based
metrics. In [11], Kar et al. propose an online algorithm
for routing messages in an ad hoc network , also based
on the remaining battery energy of a node.

Energy efficient routing techniques have also been
proposed in several studies on sensor networks. Heinzel-
man et al. propose a family of adaptive protocols called
SPIN for energy efficient dissemination of information
throughout the sensor network [6]. In [12], Heinzelman
et al. propose LEACH, a scalable adaptive clustering
protocol in which nodes are organized into clusters and
system lifetime is extended by randomly choosing the
cluster-heads. Lindsey, et al. propose an alternative data
gathering scheme called PEGASIS in [13], in which
nodes organize themselves in chains, also with rotating
elections, for communicating data. Lindsey, et al [4]
study data gathering schemes that explore the trade-off
between energy consumed and delay incurred.

The problem of maximizing data collection can also be
formulated as a multi-commodity flow problem. There is
a vast literature on algorithms for multi-commodity flow
problems and their application to networking. Hence we
next discuss studies in this area which are relevant to
our work.

B. Multi-commodity Flow Algorithms

The multi-commodity flow problem is of great prac-
tical importance and theoretical interest. The problem
deals with finding a routing scheme to maximize the total
quantity of several different commodities (each possibly
having different sources and sinks) sent over a network
with restricted capacity.

Maximizing the lifetime of a sensor network can
be formulated as a multi-commodity flow problem. In
[9] Chang et al. also use the multi-commodity flow
formulation for maximizing the lifetime of an ad hoc
network. They propose a class of flow augmentation
and flow redirection algorithms that balance the energy
consumption rates across nodes based on the remaining
battery power of these nodes. This approach seems to
considerably increase the network lifetime. Bhardwaj
and Chandrakasan [14] examine feasible role assign-
ments (FRA) of nodes as a means of maximizing the
lifetime of aggregating as well as non-aggregating sensor

networks, and also make use of linear programs based
on network flows. Kalpakis et al. examine the MLDA
(Maximum Lifetime Data Aggregation) problem and
the MLDR (Maximum Lifetime Data Routing) problem
in [5], again formulating it as an LP using multi-
commodity network flows. They observe that as the
network size increases, solving the LP takes considerable
time and propose some clustering heuristics to achieve
near-optimal performance.

As the size of the LP increases, it becomes desirable
to solve this problem approximately but quickly. Garg,
et al. present an excellent discussion of the current
fast approximation techniques for solving the multi-
commodity flow problem [1]. They propose a simple
polynomial time iterative algorithm that gives a ���������
approximation to the multi-commodity flow problem and
some other fractional packing problems. The algorithm
associates a length with each edge. In each iteration,
the algorithm routes flow over the shortest path. After
routing the flow, the algorithm increases the length of all
the edges along the shortest path. This is done so that
subsequent flow may be routed over an under-utilized
path. This process continues till the shortest path (using
the length metric) exceeds 1. However, at this point, it
is possible that some links might be over-utilized, i.e. in
excess of their capacity. The algorithm then scales down
all the flows by a factor of the maximum over-utilization.
This is a beautiful algorithm that explains the nature of
the routing scheme needed to maximize the flow in a
multi-commodity flow problem. The algorithm as stated
needs some modifications for it to be applied to an ad
hoc network context. While Chang et al. in [3] have also
previously applied the Garg-Konemann algorithm to ad-
hoc network lifetime maximization, there are significant
difference between [3] and our work that we describe
below.

In this paper, we modify and extend the application
of the Garg-Konemann algorithm to the problem of
maximizing data collection in store-and-extract sensor
networks. Receptions are assumed to consume battery
power, unlike [3]. Also, the above studies in the multi-
commodity flow problem do not restrict the amount
of flow of each commodity [1] [3] [9] [5]. With
unrestricted flows, the solution for the maximum data
extraction problem would be trivial in that nodes near the
sink would monopolize the entire flow. We are interested
in the case where sensors generate a finite amount of
data i.e. the flow of each commodity is finite. Thus the
maximum data-extraction problem introduces the data
availability at each node as an important routing con-
cern, in addition to the “energy-awareness” previously
discussed in the literature.
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Besides developing an LP formulation for the maxi-
mum data-extraction problem and extending the applica-
tion and analysis of the Garg-Konemann approximation
algorithm for it, we also present a practical distributed
heuristic based on this algorithm that is shown to outper-
form other shortest-path routing approaches, particularly
in heterogeneous conditions where nodes have varying
data and energy availability.

III. PROBLEM DEFINITION

Consider a scenario where several sensors that are
deployed in a remote region have completed their sensing
task and have some locally stored data. We are interested
in collecting the maximum amount of data possible from
all these sensors at a sink node T, given some remaining
energy constraints in each of these sensors.

Figure 1 shows a sample scenario. Each node � is
labelled with its (x,y) coordinates, its available data and
remaining energy. The goal is to extract all this data
to the sink node. The arrows and the indicated flows
on each indicate the optimal solution for this particular
example obtained by using the LP we describe in the
next section.

We now present the formal model for the problem.

A. Model

Let � be the total number of sensors. Let � be the
target (sink) to which the data is to be sent. Let ������ � be
the amount of data (bytes) collected by sensor ! , where� � ���"�$#&% . ' � ��� � is the residual energy of sensor ! .
These sensors are arbitrarily deployed in a region. (*) �
is the Euclidean distance between sensors � and ! . A
sensor � can communicate with any sensor ! which is
within the communication range + from it. Thus, this
communicating range overlays a connectivity graph ,.-�0/21"34� , where 56/�57-�� . An edge �8�"19!:�<;=3 iff (:) �?> + .

The energy consumed in transmitting a unit byte from
one sensor to the other depends on the distance between
them.Tx ) � is the energy consumed in transmitting a
single byte from sensor � to ! . Tx ) � is assumed to be
proportional to the (�@) � i.e. Tx ) � -BADC9(:@) � , where AEC #F% .+G) � is the energy consumed at sensor ! for receiving a
single byte of data from sensor � . +?) � is assumed to be
independent of the distance ( ) � . Let + ) � -HADI , whereA I #�% .

For the ease of modelling, we add a fictitious source
S, such that there exists an edge from S to every other
node in V, except T. Also, add an edge from T to S.
Let this new graph be ,KJ . Thus, ,?JL-M�0/KJ81"3NJO� , where/?JL-P/.QSR and 3NJT-U3BQWV:�0RL1X�Y� Z[Q\V:�]�^1�R_� Z , where�G;`/ , �4a-b� . As will be shown later in section III-B,
the location of the fictitious source S can be arbitrary.

Fig. 1. Illustration of a sample scenario with optimal solution
to the maximum data extraction problem. Solution assumes ced^fgihkj l�m*npo qsrutwv o�xuy?z

and c7{|f li}�}�~�npo qsrutwv
The problem of collecting the maximum possible

data from these energy constrained sensor nodes can
be formulated as a multi-commodity flow problem. As
shown later in sections III-B and III-C, the addition of
S and its associated links simplifies the LP formulation
for the multi-commodity flow problem and our analysis.

B. Linear Program (LP) Formulation

In this section, we formulate the maximum data col-
lection problem as an LP. The constraints of the LP are

1) Flow Conservation: The amount of data transmit-
ted by a node is equal to sum of the amount of
data received by the node and the amount of data
generated by the node itself.

2) Energy Constraint: The amount of data received
and transmitted by a node is limited by the en-
ergy of the node. However, there are no energy
constraints for the fictitious source S and the sink
T.

Let � )8� � be the amount of data transmitted from node� to node ! . The LP can now be formulated as follows:

Maximize ��� � � such that������� � � � )	� ������� ��)]� � - %��a-.RL1����eA �� )8� ���w�p� ��)8� � ( @)8� � � �� � � ) ����� � � � ) > ' )�Ga-.RL1��B��� �e� ) > � )��� ��8�"19!���;=3 J ����)]� � � %
(1)
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where A - ADCA I (2)�Ga-.RL1��B��' ) - ' )���"�A I (3)

Note that we have normalized the energy in terms of
receptions i.e. each reception costs a unit of energy, while
each transmission from �8�"19!:� costs A|(�@) � units, where A �� .

By adding the fictitious source S and its associated
links, we have made the following transformations to
the multi-commodity flow problem:

1) The amount of data transmitted by S to any node� is equal to the amount of data � )��� � generated
at node � . The reception of this data from S does
not incur any energy consumption. Hence, as we
mentioned in section III-A, the placement of S
does not affect the solution.

2) Note that since the flow conservation is satisfied
by both the fictitious source S and the target T, all
the data received by the target will be transmitted
to the source S, which in turn will be equal to the
amount of data transmitted by the source S.

3) The problem now becomes one of maximizing the
circulation of the commodities from S to T and
back. The advantage of this will become apparent
in section III-C.

The above LP can be solved to compute the maximum
amount of data that can be collected from the � sensors.
It would also give the amount of data (flow) that should
be sent from sensor � to sensor ! .

However, in this study we are interested in proposing a
constructive algorithm that maximizes the amount of data
collected. For this purpose, we attempt to understand the
structure of the primal LP solution by examining the dual
LP in section III-C

C. Dual LP Formulation

The dual of the LP is as follows:

Minimize
�)0�� �e� � � ) ' ) ��� ) � )���"��^a-BRL1��^1��8�"19!��<;=3���� � ��� ) ��A � ) ( @) � � � � � %� � �W� � � ��^a-��B��� ) ��� � � � ) � %�^a-.RL1���� � ) � %��a-.RL1��b�e� ) � %

(4)

Let a, b and c be vectors such that their i’th element
is denoted by � ) , � ) and � ) respectively. Let¡ � � 1"�u�¢- �)9�� �e� � � ) ' ) ��� ) � )��� � (5)

i.e.
¡ � � 1"�u� is the objective function of the dual LP. The

above dual has the following interesting interpretation:
Let £X� � 1"�k� be a length metric and let £])8� � � � 1"�u� be the
length of edge �8� 19!:� in this metric. Then, if£O)8� � � � 1"�k�F- ¤ A � ) (:@) � � � � if �^a-.R� ) if �2-.RL19!=a-�� (6)

The dual LP can be re-written as follows:

Minimize
¡ � � 1"�u� such that��a-��^1�R �e£¥)8� � � � 1"�u� � � ) ��� �� � ��� � � �£ �e� ) � � 1"�u� � � � ��� )

(7)

Consider an arbitrary S-T path ¦ . Let ¦ beRL1X� � 1X� @ 1k§¨§¨§6�9©�1�� . Now, the length of path ¦ can be
written as follows:£��w¦ª�&- £]�e� )¨«"� � 1"�k����£¥)¥¬�� � � � 1"�u�� ©¯® ��° ��� £O)¨±�� )¥±0²p³�� � 1"�k�� �w�*�4���:) ³ ����w�:) ¬ �W� � �´����) ³ ����) ¬� �*�4��� �� � (8)

Thus, the length of any arbitrary S-T path in the £X� � 1"�u�
metric is greater than or equal to 1, which implies that
the length of the shortest path in the £X� � 1"�u� metric should
also be greater than equal to 1. Thus, by transforming
the primal LP in section III-B into a circulation problem,
we get a very simple value i.e. � for the length of the
shortest path in the £X� � 1"�u� metric.

Let ¦�� � 1"�u� be the shortest path in the metric £X� � 1"�u�
and µ�� � 1"�u� be the length of this shortest path. Thus, the
objective of the dual LP is to minimize

¡ � � 1"�u� such thatµ�� � 1"�u� � � . This is equivalent to minimizing ¶ �¸· � ¹ �º �¸· � ¹ � .
Let » - Min V ¡ � � 1"�u�µ�� � 1"�u� Z (9)

The above interpretation of the dual LP leads to a
simple algorithm which approximates the optimal value
of the primal. We specify the algorithm and analyze it
in section IV.
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IV. APPROXIMATION ALGORITHM

We propose an iterative algorithm which is a modifi-
cation of the Garg-Konemann algorithm [1].

Before proposing the algorithm, we introduce a few
notations. Let¼ � )� be the value of

� ) in the j’th iteration.Initially,��½ -¾� ½ -À¿ i.e. Á	���|�ª;�/KJ<� � )½ -¾� )½ -Â¿ . The
choice of ¿ is discussed in section IV-B.¼ � � be the total T-S (or S-T) flow till the j’th iteration.
Initially, this flow is zero i.e. � ½ - % .¼ ¡ �¨!��¢- ¡ � � � 1"� � � be the value of the dual objective
function after iteration ! .¼ ¦ � -�RL1X� � 1X� @ 1k§¨§¨§6�9©�1�� be the shortest S-T path in the£X� � � 1"� � � metric (at iteration ! )1. On ¦ � , let � ½ -$R
and �s©kÃ � -�� .¼ µ��¨!��[-Äµ�� � � 1"� � � be the length of the shortest S-T
path after iteration ! .

Moreover, Á	�_;Å/ J , node � has a capacity associated with
it. The capacity of a node depends on where it appears
in an S-T path. Hence, we define the capacity of a node
with respect to some path ¦b-.RL1X� � 1X� @ 1k§¨§¨§6�9©�1�� in which
it appears. The capacity Æ��8�Y� of each node in this path
is modelled as follows:Æ|�0R¢�Ç- � )O³���"�Æ|�8� � �&- ' )O³��� �A|( @)O³�� )¨ÈÆ|�8� ° �&- V ' )¥±���"�����A|( @) ± � ) ±0²p³ Z for �[É�Ê >�Ë

(10)

The algorithm is as follows:

1) j = 0
2) while( µ��¨!:��ÉB� ) do

a) Select the shortest S-T path ¦ � .
b) Route � units of data along this path, where� is given as follows:�Ì- Min

½�Í ° Í ©eV¯Æ|�8� ° � Z
i.e. “saturate” the shortest path.

1The number of nodes along the shortest S-T path changes from
iteration to iteration i.e. it should be

x Î
. However for notational

convenience, we drop the scubscript j.

c) Update the vectors b and c as follows:

For �?É�Ê >�Ë 1� )¥±� - � )¥±� ® � V���� �"��A|(:@)¥±�� )¨±9²�³' )¥±� �"�' ) ± Z
For Êª-Ï�p1� )O³� - � )O³� ® � V���� � �� )O³���"� Z� ) ³� - � ) ³� ® � V���� �"��A|( @)O³X� )¨È' ) ³ Z

d) � � -�� � ® � ���
e) !4- !Ð���

On termination, � � gives the value of the total data
collected. While choosing the shortest S-T path, the
algorithm accounts for the battery utilization (fraction of
the battery power utilized) as well as the data utilization
(fraction of the data sent) at each sensor. Thus, the
algorithm, as mentioned earlier in section II is both
“energy-aware” and “data-aware”.

We analyze the approximation ratio of the algorithm
in section IV-A.

A. Analysis

The objective function of the dual LP at the beginning
of iteration ! is given as follows:¡ �¨!:�Ñ- �)9�� �e� � � )� ' ) ��� )� � )���"�- �)9�� �e� � � )� ® � ' ) ��� )� ® � � )���"� �� ��V�� )O³� ® � � � )O³� ® � A|( @) ³ � ) È �© ������ )¨¬i� )¨¬s²�³ �w�pÒpÓ�Ô ³ � )� ® � �����ÕA|( @)¥¬�� )¥¬9²p³ � Z¡ �¨!:�Ñ- ¡ �¨!K������ ����� � ��� � ® � �Yµ��¨!��`��� (11)

Solving the above recurrence, we get¡ �¨!��Ñ- ¡ � % �|�`� �� Ö ��� ��� Ö ��� Ö ® � �Yµ��w£×����� (12)

If each element of
� � and � � is decreased by��½ -B� ½ -.¿ , then the objective function of the dual LP

is given as follows:

Let ØÙ- ¡ � � � � ��½ 1"� � ��� ½ �- �)9�� �e� � � � )� � � ) ½ ��' ) ���w� )� ��� )½ �Y� )���"�- �)9�� �e� � � )� ' ) ��� )� � )���"�?� �)9�� �e� � � ) ½ ' ) ��� )½ � )���"�- ¡ �¨!:�2� ¡ � % �
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i.e.
¡ � � � � ��½ 1"� � ��� ½ �Ç- ¡ �¨!��L� ¡ � % � (13)

Similarly, if each element of
� � and � � is decreased

by
��½ -F� ½ -�¿ , then the length of the shortest path can

be computed as follows:

The shortest path ¦ � of length µ � is RT1X� � 1X� @ 1k§¨§¨§6�9©�1�� .
Now, let Ú-F£ ÒpÓ � � � � ��½ 1"� � �Å� ½ � be the length of ¦ � in
the metric £�� � � � � ½ 1"� � ��� ½ � ,where

� ½ -F� ½ -�¿ . ThenÚ - £ �e� )¥³ � � � � � ½ 1"� � �W� ½ ���£ )¥³�� )¨È � � � � � ½ 1"� � ��� ½ ��© ������ )¥¬�� )¥¬9²p³ ����ÒpÓ £ )¥¬�� )¥¬9²p³ � � � � � ½ 1"� � ��� ½ �- �w� )O³� ��� )¥³½ �´��� � )O³� � � )O³½ �sA|( @) ³ � ) È �© ������ )¥¬�� )¥¬9²p³ ����ÒpÓ � � )¥¬� � � )¥¬½ �i�8A|( @)¨¬k� )¥¬9²p³ �F���- �w� ) ³� ��¿��|��� � ) ³� ��¿p�sA|( @)O³"� )¨È �© ������ )¥¬�� )¥¬9²p³ ����ÒpÓ � � )¥¬� ��¿p�i�8A|( @) ¬ � ) ¬9²p³ �F���- � ) ³� �ÕA � ) ³� ( @)O³X� )ÛÈ �© ������ ) ¬ � ) ¬9²p³ ����Ò Ó � )¥¬� �8A|( @) ¬ � ) ¬9²p³ �F���L�¿7V�����A|( @) ³ � ) È �© ������ )¥¬�� )¥¬9²p³ ����ÒpÓ �8A|( @) ¬ � ) ¬9²p³ �F��� Z- µ��¨!��T��¿eV����ÕA|( @) ³ � ) È �© ������ )¥¬�� )¥¬9²p³ ����ÒpÓ �8A|( @)¥¬k� )¥¬9²p³ �F��� Z
Thus, µ�� � � � ��½ 1"� � ��� ½ � � µ��¨!��T��¿¯Ü (14)

where L is the largest value of�¢�ÕA|( @) ³ � ) È � © ������ ) ¬ � ) ¬s²�³ �w�pÒ Ó �8A|( @) ¬ � ) ¬9²p³ �F���
Now, from Eqn. 9 in section III-C» > ¡ � � � � ��½ 1"� � ��� ½ �µ�� � � � ��½ 1"� � ��� ½ �> ¡ �¨!:�2� ¡ � % �µ��¨!:�2��¿�Üµ��¨!�� > ¿¯Ü\� �» �� ) ��� ����)×����) ® � �Yµ��8�L����� (15)

Now, in order to get an upper bound on µ��¨!�� , we let
all the µ��8�Y� ’s, where � > � > !��B� to be as large as
possible i.e. Á	�_�D� > � > !N��� ,µ��8���Ñ- ¿¯ÜS� �» )� Ö ��� ���

Ö ��� Ö ® � �Yµ��w£´����� (16)

Thus,µ��¨!:� > µ��¨!������� �» ��� � ��� � ® � �Yµ��¨!������> µ��¨!������i����� �» ��� � ��� � ® � �X�> µ��¨!�������'×ÝÞ �¨ß Ó ® ß Ó�Ô ³ �µ��¨!:� > µ�� % ��' ÝÞ ß Óµ��¨!:� > ¿¯Ü�' ÝÞ ß Ó (17)

Thus, at iteration à , when the shortest S-T path has
length greater than or equal to 1, the following inequality
holds � > µ��8à"� > ¿¯Ü�' ÝÞ ßYá»

��C > �£8â¢� �ãYä � (18)

Thus, despite the modifications to the Garg-Konemann
algorithm to adapt it to our problem, we see that the
bound obtained in the above inequality is exactly the
same as that obtained in [1].

Although the algorithm chooses the shortest path
based on data and energy utilization of nodes along the
path, neither the remaining energy nor the remaining data
at each sensor is actively monitored. Hence, it would be
interesting to see if the flow �7C is feasible. We analyze
the feasiblity of the flow in section IV-B.

B. Scaling

Whenever,
� ) of a node � has increased, the node has

been on a path whose length is strictly less than 1. If
this had not been the case, the shortest S-T path had
a length greater than 1 and the algorithm should have
terminated. Moreover, the

� ) is increased by a factor of
at most �����?��� . Thus

� )C ÉB�����?��� . Now, if
� ) is increased Ø

times during the execution of the algorithm, in the worst
case all these Ø increase operations completely utilize
the energy ' ) of node � . Thus, in the worst case,

� )C -¿������ ��� � É���� � , which implies that Ø=Éå£wæ�ç � Ã×è � � Ã×èã � .
The factor by which the node � is over-utilized is � is Ø .
Thus by scaling �pC down by a factor of £wæ�ç � Ã×è � � Ã×èã � , we
can ensure that the energy constraint is not violated.

If
� ) is increased Ø times, � ) is also increased at mostØ times. Thus, it can be seen that even the data constraint

is violated by at most a factor of £8æ¯ç � Ã×è � � Ã×èã � . Thus, a
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single scaling operation ensures that both the energy and
the data constraints are satisfied.

Thus, there exists a feasible flow of value
ßYáÖêésë ³]² Ý � ³O² Ýì � .

Similar to [1], the ratio of the values of the dual to
the primal solutions isí - »

��C £wæ�ç � Ã×è ��� �¿
As shown in [1], if¿K-$���������i�X����� ���YÜ�� ® ³Ý (19)í > ���<����� ® @ (20)

Thus to get within a factor of ���2�Å
�� of the optimal,� is given as follows:� >Bî �����
 (21)

Thus, the algorithm mentioned in section IV can solve
the multi-commodity flow problem and produce results
arbitrarily close to the optimum. In the next section,
we discuss a few issues which might be important for
the implementation of the approximation algorithm in a
sensor network.

V. IMPLEMENTATION OF APPROXIMATION

ALGORITHM

We now describe an iterative implementation of the
algorithm mentioned in section IV. We refer to this
implementation as A-MAX. In this implementation, the
edge length metric is the one used by the approximation
algorithm. The energy of each node � is initialized to ' ) ,
while the data of each node is initialized to � )���"� .

� ½)
and � ½) are initialized to ¿ .

In each iteration the sink chooses a node with the
shortest path to it as a candidate nodes. A sensor node
is called active if it has been chosen by the sink as a
candidate node at any iteration. Sensor nodes that are
1 hop away from the active nodes are called threshold
nodes. Initially only the sink is active, while all the nodes
within a distance + from the sink are threshold nodes.
Each iteration Ë consists of the following steps:

1) The sink sends a message containing the iteration
number Ë to its neighbors. It also advertises its
shortest path to the sink having length 0.

2) Each neighbor � initializes its shortest path to the
sink i.e. ï ) © to A � ) © ( @)8� ð9)¸ñ © .

3) The active and the threshold nodes execute a
distance vector algorithm using A � ) © (�@) � � � � © as the
length of edge �8�"19!:� . Updates from downstream
nodes are ignored to avoid loops. After the al-
gorithm terminates, each of these nodes has the

length of the shortest path and the next hop to the
sink.

4) Each node � that is either a active or a threshold
node sends a response towards the sink. This re-
sponse contains the value of ï ) © �ò� )© . The response
is also used to find the capacity of the path along
which it is forwarded. The capacity is found as per
Eqn. 10 in section IV. The forwarding process sets
up a reverse path state in all the nodes along the
path.

5) The sink selects the node Ê with the minimum ï ©)
as a candidate node. If ï ©° is greater than or equal
to 1, the sink sends a message to all active nodes
to scale down their flows by the scaling factor
mentioned in section IV-B and then send their
data towards the sink. In this case the algorithm
terminates.

6) If ï ©° is less than 1, the sink sends a message
addressed to the node Ê containing � i.e. the
minimum capacity along the path. The message is
forwarded based on the state created in an earlier
step. As the message is being forwarded back
along the reverse path, each node sets Ê to be
downstream of itself. This is used to avoid loops.
For each node � � along the path, the value of

� )O³©kÃ �
is updated using the value of

� )O³© according to the
algorithm.

7) The node Ê updates its routing table to augment the
flow to its current next hop to the sink by � . It also
updates � °©kÃ � using � °© according to the algorithm.

8) Go to step 1.

A. Parameter Settings and Implementation Concerns

In A-MAX, each node � initializes
� ) ½ -ó� )½ -ô¿ .

As shown in Eqn. 20 in section IV-B, ¿ is dependent
on � and Ü . � depends on the ���[��
�� approximation
needed as shown in Eqn. 21 in section IV-B. As shown
in section IV-A, Ü is the largest value of V��_��A|( @)O³�� )¨È �õ © ����� )¥¬i� )¥¬9²p³ ����ÒpÓ �8A|(:@)¨¬u� )¥¬9²p³ �Ä��� Z . Thus, Ü depends on the
topology of the network. However, it is possible to get
a loose bound on Ü given as follows:Ü > �w�Â����� VuA|+ @ �F��Z (22)

i.e. Ü is maximum when all the nodes are arranged in a
linear fashion and just within range of each other.

In simulating this implementation however, we find
that this loose bound on Ü results in extremely small
values of ¿ (in fact so close to 0 that it has to be manually
set to an arbitrary small positive value to make it work).
As a result, A-MAX takes a large number of iterations
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to converge for small values of 
 . Hence, as we shall
see in the simulations section VII, A-MAX may not be
suitable for practical implementations. This motivated us
to look for the fast, practical heuristics described in the
next section.

VI. FAST GREEDY HEURISTICS
A. Motivation

We can observe that the implementation of the approx-
imation algorithm A-MAX consists of 2 phases. First,
there is a negotiation phase, in which nodes do not ac-
tually transmit data but try to make decisions about how
much data to send and how much data they will relay for
other nodes. Since neither the remaining energy nor the
remaining data at a sensor is actively monitored at the
negotiations phase, some nodes may be over-committed
(i.e. may have negotiated to send or receive more data
than allowed by their energy and data constraints). In the
second, data transmission phase, each node scales down
the data that it has to send or receive from each of its
neighbors to accommodate the constraints and only then
starts the data transmission towards the sink (T). This
cumbersome two-phase process is one reason A-MAX
is inefficient in implementations.

Another observation that can be made about the max-
imum data extraction problem is that the reception costs
make it expensive for nodes to relay other nodes’ data.
As a result, one of the characteristics of the optimal
solution is that each node should only commit to relay
another nodes’ data if it has energy remaining after
transmitting all its own data - in other words, it behaves
selfishly.

Motivated by these observations, we seek to develop
efficient heuristics that avoid the 2-phase overshoot and
scale down iterations of A-MAX and incorporate selfish,
greedy behavior. It turns out that these heuristics are
much faster in implementation and with the right metric
can perform very well in practice.

B. Description of Heuristics

The key features of the heuristics we develop are:
1) Each sensor is greedy. i.e if a sensor has the

shortest path to the sink, it accords priority to
sending its data first. If after sending its data,
the sensor exhausts its battery, it disconnects itself
from the network.

2) There is no scaling operation.
3) Each sensor actively monitors its remaining battery

power and remaining data.
We explore three variants of the greedy strategy. Each

variant differs from the other in the link metric it chooses
for distance vector routing.

Exponential Metric: This metric is based on the algo-
rithm mentioned in section IV. At iteration Ë , if a sensor� receives or sends data, it updates its

� ) as follows:� ) © - � ) ©�® � V¯' è8ö « ³ Z (23)

where ÷ ) � is the current battery utilization of sensor � i.e.
the ratio of the battery power spent (till and including
iteration Ë ) to the total battery power. This update is
approximately the same as that mentioned in section IV,
when ��Éø� (as �Ð�åØ�ùÂ' � , for small Ø ). If the data
sent is its own data, the sensor � also updates its � ) in
the same manner: � ) © - � ) ©�® � V¯' èwö «È Z (24)

where ÷ ) @ is the current data utilization of sensor � i.e.
the ratio of quantity of its data sent (till and including
iteration Ë ) to its total data quantity.

However, the initial values of
� ) ’s and � ) ’s are still to

be chosen. Intuitively, if all sensors have the same value
for the ratio of ú «ûEü9ýþ « , all these sensors can be treated the
same. However, if a few sensors have a low value for
this ratio, which implies that they can carry data from
other sensors, it would be advantageous to choose these
sensors as the next hop towards the sink. Hence, we set
the initial values of

� ) ’s and � ) ’s are follows:� ) ½ - � )��� �' ) (25)� ) ½ - � )��� �' ) (26)

We will refer to the Exponential Metric based im-
plementation as E-MAX. For this implementation we
assume �<ÉB� .

To illustrate the importance of this metric, we choose
2 other variants of the distance vector implementation.
Both these variants do not use

� ) ’s and � ) ’s in the
implementation:

Distance Metric: The length of an edge �8� 19!:� is (�) � .
This metric is constant across iterations. We refer to this
variant of the implementation as DIST-MAX.

Hop Count Metric: The length of an edge �8� 19!:� is � iff(e) ��> + . This metric is also constant across iterations.
We refer to this variant of the implementation as H-
MAX.

C. Implementation of Heuristics

The implementation mentioned in section V can be
easily extended to incorporate the greedy heuristics with
the appropriate edge length metrics. However, there are
some differences:

1) In E-MAX, each node � initializes
� ) ½ and � ) ½

according to Eqn. 25 and Eqn. 26 respectively. At
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each iteration Ë , E-MAX updates the value of
� ) ©

and � ) © as per Eqn. 23 and Eqn. 24 respectively.
H-MAX and DIST-MAX do not need any specific
initializations for these values.

2) Each node � actively monitors its remaining battery
and remaining data levels. While calculating the
capacity of the path, the remaining battery power
and remaining data are used as opposed to ' ) and� )��� � used in A-MAX. If the battery level of a
sensor hits 0, it ceases to be a part of the network
and hence does not execute the distance vector
algorithm.

3) While sending a response to the sink, each active
and threshold node sends its remaining data in
addition to the length of its path to the sink. The
sink chooses a candidate from those nodes that
still have remaining data to send.

4) At each iteration, the candidate node immediately
sends data to the sink.

5) There is no scaling operation involved. The al-
gorithm terminates if the sink detects that all the
nodes2 in the network do not have data to send or
if the sink is disconnected from the network due
to its first hop neighbors dying out.

In section VII, we describe our simulation scenarios
used to compare the different approaches and the results.

VII. SIMULATIONS AND RESULTS

We simulated A-MAX, E-MAX, DIST-MAX and H-
MAX using a high level simulator. We ignore MAC
effects in this simulator.

The simulation set up consists of
� % nodes. Each node

has a radio range of 0.2 km. Most of our simulations are
done in 0.5 km x 0.5 km area. We use the first order
radio model used in [5]. In this model, a sensor con-
sumes � þ Ö þ ¹ - ÿ %7% â ��� � Ú�à�' for running the transmitter
or receiver circuitry and � � ��� -�� %7% ï ��� � Ú:àX' �
	 @ for
running the amplifier circuitry. Thus A I<-.� þ Ö þ ¹ . In order
to send a single byte, the sensor has to run its transmitter
and amplifier circuitry. Now, a sensor can receive data
only from sensors within its range i.e. within a distance
of R. Hence, AEC ù � þ Ö þ ¹ � � � ��� + @
Thus, using the definition of A from Eqn. 2 in section
III-B, A ù ��� � �"���� þ Ö þ ¹ + @

2This might need the sink to have an approximate estimate on the
number of nodes in the network.

Converting distances into km units, for +B- % §�� km, we
get A�-�*� . We use this value of A in our simulations.
We assume that the maximum energy is 1J as in [5].
As we mentioned earlier in section III-A, our model
assumes that a reception of a single unit(byte) consumes
one unit of energy, we normalize the maximum energy
in terms of bytes that can be received. From the value
of � þ Ö þ ¹ , it can be shown that 1J of energy allows ��� � %��
receptions. Thus, in our simulations we set the maximum
energy to ��� � %�� . The maximum data is set to � %7%7%��
bytes. We also count the number of transmissions and
receptions due to exchange of control messages in the
various implementations. This helps us to quantify the
overhead of A-MAX, E-MAX, DIST-MAX and H-MAX
in terms of the percentage of energy at each node.

As mentioned at the end of section II, the amount
of data collected in our problem scenario is mainly
dependent of the energy of the first hop sensors and the
amount of data they have. Thus, in our simulations we
define a few good nodes. A node � is a good node if it
has a very low value of ú «ûEüsýþ « . These good nodes do not
have any other special capabilities. For a good node � ,' ) -Ï��� � %7%7%7% (1J of energy) and � )���"��-Ï� % (bytes) of
For a node ! that is not good, ' ) -Ï��� � % (0.01J of energy)
and � )���"� -Ï� %7%7%�� -Ï��� (bytes). As we show in our
results, when all nodes have the similar values of energy
and data, the three heuristic implementations perform
very similar and give close to optimal performance.
Varying the energy of the good nodes, their number
and their placement helps us to outline scenarios where
E-MAX significantly outperforms DIST-MAX and H-
MAX.

A. Objectives

We were interested in studying the performance of A-
MAX, E-MAX, DIST-MAX and H-MAX in terms of
optimality of solution produced and the overhead. We
compared the solutions produced by these implemen-
tations with that produced by solving the LP specified
in section III-B using lp solve. The objectives of our
simulations were to study the following:

1) Effect of ¿ and 
 on the performance of A-MAX.
2) Effect of good nodes on the performance of E-

MAX, DIST-MAX and H-MAX.
3) Effect of density on the performance on E-MAX,

DIST-MAX and H-MAX.

1) Effect of ¿ and 
 on A-MAX: We discuss the
scenario when there are � % good nodes in the network
and ÿ of them are in range of the sink. However, the
conclusions are applicable to most of the scenarios we
examined.
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Fig. 2. Effect of number of iterations on the solution produced by
A-MAX due to varying � . Here � f }uj��

. The x-axis is plotted on a
log scale

For a given 
 , � can be easily determined using Eqn.
21 in section IV-B. We set � to the maximum value
permitted by Eqn. 21 for a given 
 . In our case, if �
is very small, due to a very loose bound on Ü , ¿ ù % .
Hence, for the implementation to work correctly, we set¿ to small non-zero values. As mentioned in section V-A,
the value of ¿ affects the number of iterations of A-MAX
and the optimality of the solution produced.

For the aforementioned scenario, we use the following
values of ¿ : % § %7%7%7%7%7% �p1 % § %7%7%7%e% �p1 % § %7%7% �p1 % § % � and % §¥� .
We set 
 - % §¥� . We count the number of iterations
taken by A-MAX across these values. We notice that
as ¿ decreases, the number of iterations increases.

Figure 2 shows the effect of the number of iterations
(by varying ¿ ) on A-MAX. As the number of iterations
increases ( ¿ decreases), A-MAX produces solutions that
are closer to the optimal.

We also varied 
 by fixing ¿U- % § %7%7%7%7%7% � . Fig-
ure 3 shows the effect of the number of iterations
(by varying 
 ) on the optimality of the solution pro-
duced by A-MAX. We used the following values of 
 :% § % �p1 % §¥�p1u�p1���1 � 1�� and � % . As 
 is increased, the number
of iterations decrease. We also observe that at 
F-P� % ,
the solution produced by A-MAX is around 65% of the
optimal, while at 
�-�� , the solution is around 80% of
the optimal.

Figures 2 and 3 demonstrate the trade-off between
the number of iterations and the quality of solution
obtained by A-MAX. In general, for solutions that are
arbitrarily close to the optimum, a greater number of
iterations are needed. This translates to a higher number
of control messages and hence a greater overhead. In all
these scenarios, the overhead of A-MAX measured from
simulations precludes its implementation in an energy
constrained sensor network.

These curves justify the need for fast heuristics that
we developed. We evaluate the performance of E-MAX,
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Fig. 3. Effect of number of iterations on the solution produced by
A-MAX due to varying � . Here �Kf }�j }�}�}�}�}�}��

. The x-axis is in
log-scale

DIST-MAX and H-MAX next.
2) Effect of good nodes on E-MAX, DIST-MAX and

H-MAX: Our initial aim was to understand the effect of� on E-MAX. In a sample scenario with � % good nodes
placed at random, we varied � from % §¥� to � in steps
of % §�� . Across all these scenarios, the solution produced
by E-MAX remains unchanged. So, in the rest of our
simulations with E-MAX, we arbitrarily set ��- % §¥� .

From our preliminary study, we observe that if all
the nodes in the network have similar amount of energy
and data, then all these greedy implementations perform
similarly. However, the importance of the exponential
metric becomes apparent as we vary the energy, the
number and the placement of good nodes in the network.

Initially, we choose these good nodes at random.
Figure 4 shows the effect of the energy of the good
nodes. In this scenario, we fix the number of good nodes
to be � % . We vary their energies from % §¥� J to � J (and
appropriate reception units) in steps of % §�� . We observe
that the energy of the good nodes has a significant impact
on the relative performance of E-MAX, DIST-MAX and
H-MAX. The performance gap between E-MAX and the
other heuristics increases as the energy of good nodes
increases, all other factors remaining the same. At lower
values (around 0.1 J) of energy for good nodes, all the
� heuristics perform similarly and close to optimal. But
we would like to see if the significant difference between
E-MAX and the other heuristics at high energy values
of the good nodes is independent of other factors like
fraction of good nodes and their placement. Hence in the
subsequent simulations, we set the energy of the good
nodes at � J.

Figure 5 shows the effect of increasing the ratio of
the good nodes in the network. In these scenarios, E-
MAX produces solutions that are within 1-20% of the
optimal. It also gives up to 240% improvement (more
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Fig. 4. Effect of the energy of good nodes on E-MAX, DIST-MAX
and H-MAX.
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Fig. 5. Effect of fraction of good nodes on E-MAX, DIST-MAX
and H-MAX. The area of deployment is 0.5 km x 0.5 km

data collected) over both DIST-MAX and H-MAX. This
happens when the fraction of good nodes is 0.6. At the
extremes of the x-axis, when almost all nodes are similar
in their energy and data levels, all the � implementations
perform equally good and give very close to optimal
solutions. From the topology, we were able to deduce
that the increase in the number of good nodes leads to
an increase in the number of good nodes close to the
sink. While E-MAX is able to take advantage of these
nodes, the other naive heuristics do not. As the fraction
of good nodes increases beyond 0.8, the amount of data
to be collected is far lower than the amount of energy
in the network. Hence all the schemes yield close to
optimal solutions.

These observations suggest that not only the fraction
but also the placement of these good nodes relative to
the sink affects the relative performance of the � greedy
implementations.

To understand the effect of the placement of the good
nodes relative to the sink, we fix the number of good
nodes to � � and increase the number of good nodes
within the range of the sink (in our scenario, the sink
had 13 neighbors). These good nodes are chosen at
random. Intuitively, as the number of good nodes within
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Fig. 6. Effect of placement of good nodes on E-MAX, DIST-MAX
and H-MAX.

the range of the sink increases, H-MAX and DIST-
MAX should perform as good as E-MAX. But figure
6 shows otherwise. This illustrates the importance of the
placement of the good nodes. If there is a connected
“back-bone” of good nodes i.e. a series of good nodes
in range of each other and in range of the sink, E-MAX is
able to take advantage of them as opposed to DIST-MAX
and H-MAX. This “back-bone” helps in gathering more
data. E-MAX is able together around 500% more data
than DIST-MAX (when the number of first hop good
nodes is 12). The metric used by E-MAX helps to route
the data along such “back-bones”. Even if there are only� ��� good nodes (out of ��� neighbors) at the first hop,
the high density of the scenario considered leads to the
existence of such “back-bones”. When the majority of
the nodes i.e. 13 (maximum possible in this case) of
the 15 are within range of the sink, DIST-MAX and
H-MAX start performing better. It would be interesting
to examine the existence of such “back-bones” in lower
density deployment. Hence, we next vary the size of the
deployment area and study the performance of E-MAX,
DIST-MAX and H-MAX

3) Effect of Density on E-MAX, DIST-MAX and H-
MAX: We deploy the same number of nodes, using the
same communication range in a bigger area of 1km x
1km.

The performance trends shown in Figure 7 are very
similar to those in Figure 5. Again E-MAX gives solu-
tions that are within 1 to 20% of the optimal solution. E-
MAX can also give more than 200% improvement over
H-MAX and DIST-MAX. This occurs when the fraction
of good nodes is 0.8, while in the higher density case,
this occurs at 0.6. This is because in a sparser network,
due to nodes being more spread out, a greater fraction of
good nodes is needed to create a set of well connected
good nodes or the “back-bone”.

Across all of the scenarios mentioned in sections VII-
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Fig. 7. Effect of fraction of good nodes on E-MAX, DIST-MAX
and H-MAX. The area of deployment is 1 km x 1 km.

A.2 and VII-A.3, E-MAX, H-MAX and DIST-MAX took
significantly lesser number of iterations as compared
to A-MAX. For example, in the scenario used for the
performance of A-MAX in section VII-A.1, E-MAX
took only ��� iterations and gives a solution that is ����§�� %
of the optimum. Such significant reduction in iterations
were observed across all scenarios used in our study.
This translated to an overhead in the range of 5-10%.
This overhead shows that these greedy heuristics are
suitable for implementation in an energy constrained
sensor network.

When all nodes have similar data and energy lev-
els, all these greedy implementations perform similarly.
However, if there are nodes in the network with very
high energy and low data, E-MAX (due to the metric
based on the Garg Konemann algorithm) significantly
outperforms the other approaches. In some scenarios it
results in collecting up to 500% more data than H-MAX
and DIST-MAX. In most of the scenarios we used, E-
MAX gives flows that are within 15% of the optimum.

VIII. CONCLUSIONS

In remote monitoring sensor network applications
where data does not need to be gathered continuously,
the key problem of interest is that of extracting the
maximum information from the local storage of network
nodes, post-sensing. We have formulated this problem as
a linear program in this paper, and presented and ana-
lyzed a �p�K
 iterative approximation algorithm for it. For
ease of distributed implementation, we then developed a
greedy heuristic that incorporates the link metric sug-
gested by the approximation algorithm. Our simulation
results enable us to conclude that this heuristic, the E-
MAX algorithm, performs near-optimally (within 1 to
15% in most scenarios) and significantly better than other
shortest-path routing approaches.

While the problem formulation we presented does not
explicitly incorporate fairness, it could be extended with

some modifications to incorporate different priorities or
even equal priorities on the data from sensor nodes
by varying the data constraints on individual nodes. A
thorough examination of fairness issues is one of our
areas for future work.

Other future work could involve the incorporation of
data aggregation. Existing results pertaining to maximum
lifetime problems with aggregation, such as [5] and [14],
suggest ways in which our work may be extended in this
direction.
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