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Abstract—In this paper, we study the impact of heterogeneous
receivers on the throughput of multicast flow control and propose a
new multicast flow control algorithm to optimally partition group
members into multiple subgroups. Our main contributions are as
follows. First, we cast the multicast flow control problem in the
Internet as the list partition problem and then prove that the list
partition problem is equivalent to the optimal paging problem in
cellular networks. The result is not only interesting in itself but
also essential to derive the first known analytical bounds for the
throughput of multicast flow control. Furthermore, we propose
an algorithm to solve not only the list partition problem but also
the optimal paging problem and the problem of bulk data transfer
using multiple multicast groups. The complexity of our algorithm
is one order less than the best known algorithm designed only for
the problem of bulk data transfer using multiple multicast groups
in the literature. While earlier work uses simulations to justify
the usage of multiple subgroups to deliver information to a large
amount of receivers in heterogeneous networks, we provide the
first analytical support.

Index Terms—Multicast, flow control, partition, optimization.

I. INTRODUCTION

I N THE PAST few years, numerous research projects have
been carried out to explore how to support multicast in var-

ious networking environments. Especially, these include sys-
tems that use multicast to deliver data and multimedia traffic
[1]–[3]. Other systems support reliable and unreliable multicast
over LAN’s [4]–[6], Internet [7]–[15], ATM [16], [17], and net-
works including mobile hosts [18]–[22].

Multicast flow control is essential for high-performance mul-
ticast applications. Mishra and Wu [23] studied several tech-
niques of flow control for atomic multicast protocols by sim-
ulations. Wang and Schwartz [24] proposed a multicast flow
control framework for combined wired/wireless networks. They
focused on the fundamental theory for controlling source rate,
when source sends packets at a single rate.

McCanne, Jacobson, and Vetterli [25] proposed layered mul-
ticast to divide receivers into multiple subgroups. In layered
multicast, several layers of information are provided and each
receiver subscribes to one specific layer. Li, Paul and Ammar
[26] proposed the use of retransmissions in a layered environ-
ment and the use of hierarchical control to manage the addition
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and removal of video layers by receivers. Vicisano, Crowcroft,
and Rizzo [27] proposed a TCP-like congestion control algo-
rithm for layered multicast data transfer. Ammar and Wu [28]
proposed to improve throughput of point-to-multipoint ARQ
protocols through destination set splitting. Shacham [29] pro-
posed to use hierarchically encoded data to maximize utility.
The study was mainly algorithmic in nature. Bhattacharyya,
Kurose, Towsley, and Nagarajan [30] considered the problem of
finding the optimal rate at each layer to minimize the completion
time of a fixed-size file. They proposed a cubic-time algorithm
to obtain the optimal rates. However, their work does not pro-
vide analytical solution to the tradeoff between the throughput
and the total number of subgroups or the impact of the distribu-
tion of receiver capacities on the throughput.

In this paper, we study the impact of the distribution of the
receiver capacities on the throughput of multicast flow control.
As in layered multicast [25], we assume that the sender can de-
liver data to heterogeneous receivers at up todistinct rates.
In order to maximize the throughput, we propose an efficient al-
gorithm to optimally choose the distinct rates and to partition
the receivers into subgroups. More importantly, we derive
analytical results of the impact of the distribution of receiver
capacities on the throughput. Unlike earlier work that used sim-
ulations to justify the usage of delivering information to hetero-
geneous receivers at distinct rates, our work provides the first
analytical support. To adapt to the time-varying capacities of
the receivers, we propose to periodically update the information
about the capacities of the receivers and periodically perform
the optimal partition of the receivers. We emphasize that our
proposal aims to reconfigure the optimal partition in the order
of every few minutes. Unlike congestion control schemes that
provide packet-level adjustment, our flow control scheme only
supports session-level adaptation.

The problem of reliable distribution of bulk data to many
receivers was studied extensively. Proposed solutions included
those that use techniques such as local repair, polling or hier-
archy [14], [10], [25], [13], [11]. Additionally, the data carousel
approach [51] was proposed to eliminate retransmission and
to ensure full reliability at the expense of high overhead. Fur-
thermore, forward error correction based on erasure codes was
proposed to achieve reliable multicast [44], [45], [13], [46],
[47], [49], [50], [27]. Recently, Nonnenmacher, Biersack and
Towsley [48] proposed a parity-based scheme for loss recovery
to achieve reliable multicast. A novel digital fountain approach
[43] was proposed to allow heterogeneous receivers to reliably
and efficiently obtain bulk data. The topic is beyond the scope
of this paper.
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Many multicast routing algorithms (e.g., [33]–[41]) have
been proposed in the past few years. We feel that integrating
multicast flow control and multicast routing is an interesting
research field. In this paper, however, we consider these two
problems as orthogonal and assume that a reasonable and
well-behaved multicast routing algorithm is implemented at
the network layer.

The rest of the paper is organized as follows: Section II in-
troduces our assumptions. Section III presents the formulation
of the problem of maximizing throughput by optimal partition
of receivers. Some general results of the problem are also de-
scribed. In Section IV, we present the impact of distribution
of receiver capacities on the throughput and show that a small
number of subgroups are sufficient to significantly improve the
throughput. Section V presents the efficient algorithms for the
list partition problem. Section VI shows the simulation results of
the satisfaction of receivers’ requirement. Section VII describes
some design issues and Section VIII presents concluding com-
ments. The proofs of the various results referenced to in the
paper can be found in the Appendix.

II. A SSUMPTIONS

We assume that a basic multicast group is composed of one
sender and many receivers. A multicast group, which includes
many senders can be seen as a superposition of many basic
multicast groups. Therefore, we only consider a basic multicast
group in this paper.

We now elaborate on the concept of the capacity of a path.
We assume that during each short period of time, the maximum
achievable data rate of the path from the sender to each group
member can be measured. If the path is a dedicated circuit or
a virtual circuit, the data rate is constant. However, in a gen-
eral packet network, the data rate changes with time. For ex-
ample, a computer with a 10 Mbps Ethernet connection will
most often get a small fraction of the 10 Mbps capacity. The al-
located bandwidth depends on the average load of the Ethernet,
which changes with time. A computer with 56 kbps modem
cannot always send data at 56 kbps; it depends on the quality of
the channel, for example, the signal to noise ratio of the twisted
pair. Moreover, the queueing delay at each intermediate router
also changes with time. Thus, even though, in principle, there
are only a limited number of nominal data rates, the actual data
rates in a practical network can vary in time over wide ranges
around these nominal values.

III. L IST PARTITION PROBLEM

In this section, we define the list partition problem and the
multicast flow control problem. We first define several terms.

total number of receivers in a multicast group;
total number of subgroups;
instant capacity of the path to theth receiver;

is the list of path capacities of
the receivers;
list of path capacities of the receivers in theth
subgroup;
cardinality of ;
value of the minimum element in ;

value of the maximum element in ;
sum of all elements in .

In this paper, we denote a list by , where
are elements belong to the list. Although the

concept of a list is very similar to the concept of a set, we use
the terminology list instead of set to emphasize that there can be
repeated elements in a list and the elements in a list are ordered
so that , where , is the th element in the above list

. Furthermore, in this paper, the list is always composed of
nonnegative real numbers.

The definition of a partition of a list is similar to the definition
of a partition of a set. Now, we define theth-order list partition
problem as follows.

Given a list and a natural number , find the partition
to maximize .

We can also use notations similar to the linear programming
problem to formulate the above list partition problem as follows:

maximize

subject to

is a given list of finite cardinality

is a given natural number

is a partition of the list

For example, assume that and .
is a partition of . The associated value of

the object function is equal to . Similarly,
is also a partition of . The associated

value of the object function is equal to .
For any and , a partition is said to be

an optimal th-order partition of if it maximizes the value
of the object function . For example, when

and is the
optimal second order partition of.

To solve the th-order list partition problem, we have to find
the maximum value of the object function and the associated
optimal th-order partition. For any and , we denote the
maximum value of the object function by . For example,

.
We now introduce the multicast flow control problem. Sup-

pose there are receivers in a multicast group. Let be the
capacity of the path from the sender to theth receiver. Let

. As in layered multicast [25], we assume
that the sender can support sending data with up todistinct
transmission rates, . The sender delivers data to
a receiver at a single rate, which is equal to one of the above

rates. Receivers that obtain data at the same rate form a sub-
group. Therefore, all receivers are partitioned intosubgroups
as shown in Fig. 1. Our goal is to maximize the weighted sum
of rates at which the sender delivers data to receivers. We define
the aggregate throughput as the weighted sum of rates at which
the sender delivers data to receivers. Assume that the sender de-
livers data to receivers at rate , where and

. Then, the aggregate throughput is .
In general, to maximize the aggregate throughput, each of the
rates must be equal to one element in. On the other hand,
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Fig. 1. The multicast flow control problem.

to avoid overflow at each receiver, the sender can not deliver
data to the receivers in theth subgroup at a rate greater than

. Therefore, , where , is a
necessary condition to achieve maximum aggregate throughput.
It can be shown that the above multicast flow control problem
is equivalent to the list partition problem.

For example, assume again that and
. Suppose that the sender delivers data to the first receiver at

a rate equal to 1, while the sender delivers data to the other
three receivers at a rate equal to 2. The associated aggregate
throughput is equal to . We can increase the
aggregate throughput by delivering data to the first two receivers
at a rate equal to 1 and delivering data to the last two receivers
at a rate equal to 3. The throughput will be then equal to

.
In this paper, we consider the list partition problem only in

the nontrivial case in which , where
is the total number of distinct elements in the list. Further-
more, without loss of generality, we assume that the list

has been sorted, so that
.

We define ordered optimal partition as follows.
Definition: For any list and any natural number, a par-

tition of the list is said to be anordered
partition , if , for every , where
and .

For example, is an ordered parti-
tion of . On the other hand, is not
an ordered partition of .

Definition: A partition is anordered optimal partition , if it
is both optimal and ordered.

In the above example, is an or-
dered optimal partition of . On the other hand,

is an ordered partition but not an
optimal partition.

We now present two theorems that create the theoretical basis
for our fast algorithm. In the first theorem, we prove that there

exists an ordered optimal partition for anyth-order list par-
tition problem. In the second theorem, we show the optimal
sub-structure of an optimal solution of the list partition problem.

Theorem 3.1:There is at least one ordered optimal partition
for the th-order list partition problem.

Proof: See Appendix.
Although it can be proved that an optimal partition must be an

ordered partition, the proof is lengthy. Therefore, we only use
the above theorem that is sufficient for designing the algorithms
in the paper.

Theorem 3.2 (Optimal Substructure):Let
be an ordered optimal partition for. , let

and .
Furthermore, let , where , and ,
where . Then, is an ordered op-
timal partition of and is an ordered optimal
partition of .

Proof: See Appendix.

IV. A NALYTICAL RESULTS

In this section, we use the notion of the normalized
throughput to study the impact of the distribution of receiver
capacities on the throughput of multicast flow control and
provide analytical results. For any list of cardinality and
any natural number , we define the normalized throughput

to be , where is the maximum
value of the object function of the th-order list partition
problem for the list . We show that when a single subgroup
is used, the normalized throughput tends to zero as the total
number of receivers increases. On the other hand, when two
or more subgroups are used, the normalized throughput is
always positive, regardless of the total number of receivers and
the distribution of receiver capacities. In addition, we provide
the first known lower bounds to the normalized throughput.
Furthermore, we prove that the list partition problem and the
optimal paging problem are equivalent. The result is not only
interesting but also important to derive the above lower bounds
of the normalized throughput.

A. The Uniform Distribution: Why Two Is Much
Better Than One

We first consider a list , which corre-
sponds to a group of receivers with uniformly distributed capac-
ities. We can derive as follows. For and ,
it is easy to see that and ,
respectively. Therefore, .

More importantly, as goes to infinity, goes to zero.
This means that the slowest receiver in a group dominates the
overall performance and the relative performance becomes
worse when the diversity of receivers, which is defined as the
capacity of the fastest receiver divided by the capacity of the
slowest receiver, increases.

For , we obtain the as follows. For
simplicity, we assume that is an even number; the
analysis can be easily extended to the general case.
First, by simple calculations, it is easy to derive that
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the optimal partition should be and
, while the optimal object func-

tion is .
Therefore, . Moreover,
as goes to infinity, . We can extend the above
result to the cases when , as in the following theorem.

Lemma 4.1: If is a multiple of , then

is an optimal solution of the
th-order list partition problem for .

Proof: See Appendix.
Theorem 4.1:When is a multiple of

.
Proof:

1) By the above lemma

2)

Theorem 4.2:
Proof: See Appendix.

We now explain the importance of the above theorem. The
theorem tells us how good the performance of a system using

subgroups is, compared to the performance of a system using
subgroups. Since the limit of is zero, we know that

a single subgroup scheme is not appropriate in the limit for re-
ceivers with diverse capacities. On the other hand, the limit of

is 0.5. This means that we can always use two subgroups
to achieve 50% of the throughput of the limiting case ofsub-
groups, even when the receivers have diverse capacities. We also
observe that is close to 1.0 even for small. For ex-
ample, since , only five subgroups will achieve
already 80% of the throughput of thesubgroups case. Simi-
larly, we can use 8 subgroups to achieve 87.5% of the throughput
of using subgroups.

B. The Optimal Paging Problem and the List Partition
Problem Are Equivalent

In this section, we prove that the optimal paging problem is
a special case of the list partition problem and we will use the
result to derive a lower bound of the normalized throughput.

We now briefly explain the optimal paging problem. In a cel-
lular network, a service region is divided into smaller areas.
Each area is called a cell. In the center of a cell, there is a base
station with an antenna that provides a wireless link to cellular
phones in the cell. Since a person who carries a cellular phone
moves and can be in any place in the service region, one of the

Fig. 2. Optimal paging problem.

essential task of the cellular network is to find the cell in which
the cellular phone currently resides. The task is performed by
sequential paging.

For simplicity, we assume that the cellular phone is always
inside the service region and turned on. First, each base station
in one subgroup of cells broadcasts a paging message. If the
cellular phone is in a cell that belongs to the subgroup, the cel-
lular phone responds. Therefore, we know the cell in which the
cellular phone resides. If the cellular phone is not in any cell
that belongs to the subgroup, there will be no response before
timeout. Then, the base stations in another subgroup of cells
broadcast the paging message. The procedure is repeated until
the cellular phone responds and is, thus, located.

Rose and Yates [31] studied the problem of optimal paging,
when the probability that the cellular phone appears in each cell
is given. Suppose there arecells inside the service region. Let

be the probability that the cellular phone appears in theth
cell inside the service region and . We
illustrate the optimal paging problem in Fig. 2. Assume that the
cells are partitioned into subgroups, so that the cells in theth
subgroup will be paged in theth round if necessary. Let be
the list of associated probabilities of cells in theth subgroup.
Then, we can calculate the average number of paging messages
required to find the cellular phone as follows.

With probability equal to , the cellular phone is in a
cell that belongs to the first subgroup and the required number
of paging messages is . With probability equal to ,
the cellular phone is in a cell that belongs to the second subgroup
and the required number of paging messages is .
In general, the average number of required paging messages can
be calculated as . Rose and Yates
[31] assumed that the average paging cost is equal to the average
number of required paging messages to find the location of the
cellular phone. The optimal paging problem is to find the op-
timal partition of cells to groups to minimize the average paging
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cost. We formulate the th-order optimal paging problem as
follows.

Given a list , where , and a natural
number , find the partition to minimize

.

For any list and natural number, we denote the minimum
value of the object function in the th-order optimal paging
problem by .

Rose and Yates [31] proved that in order to minimize the av-
erage paging cost, cells with higher probabilities must be paged
before cells with lower probabilities are paged. Akyildiz [32]
showed that in the optimal paging problem,may be driven
by delay constraints. We focus on the impact of the probability
distribution function, , on the average paging cost.

Lemma 4.2:Let , where
. For any natural number and any list , where

and .
Proof: See Rose and Yates [31].

For example, when .
Let . According to the above lemma,

. In fact, ,
while .

The above result matches our intuition. In the optimal paging
problem, each element in the list represents the probability that
a cellular phone appears in the corresponding cell. The case in
which the cellular phone appears equal-likely in each cell is the
worst case, since the entropy is maximum.

We now define some terms that will be used to prove the
equivalence of the optimal paging problem and the list partition
problem.

Definitions:

1. Concave list) For any finite list
, define a sequence

, where . The list is
said to be a concave list if the sequence

is nonincreasing.
2. Basic concave list) For any finite list

, define
, where . The list

is said to be a basic concave list if

and
is a concave list.

3. Quasi-basic list) A list is said to
be a quasi-basic list if

and
.

4. Difference list) For any quasi-basic list
, construct the associated

difference list
as follows: , where

and .
5. Accumulation list) For any list ,

where and
, construct

the associated accumulation list
as follows:

and , where
.

For example, is a concave list, since
. In addition,

is a basic concave list. We choose the word “basic” pri-
marily to reflect that each element in a basic concave
list is between 0 and 1. It is clear that a basic concave
list is also a quasi-basic list. Furthermore, when

, the associated difference
list is

. When
and , the associated accumulation list is

.
We now prove a theorem that reveals the relation between the

list partition problem and the optimal paging problem.
Theorem 4.3:

a) Let , where and
. Let be the accumulation list

of . Then, .
b) Let be a basic concave list. Let

be the difference list of . Then, .

Proof: See Appendix.
The above theorem states that the list partition problem and

the optimal paging problem are equivalent under some condi-
tions. This is a very interesting result, since the two problems are
from different fields: the list partition problem is from multicast
flow control in the Internet, while the optimal paging problem
is from wireless networks.

To ensure a one-to-one correspondence between a non-
decreasingly ordered partition in the list partition problem
and a nonincreasingly ordered partition in the optimal paging
problem, that the list is basic concave is necessary. The
first three conditions of a basic concave list ensure that every
element in the corresponding difference list is nonnegative,
while that the list is concave guarantees that the ele-
ments in the corresponding difference list are nonincreasingly
ordered. For example, assume that ,
which is not basic concave. The partition
is a nondecreasingly ordered partition in the list partition
problem. However, the partition is not a
nonincreasingly ordered partition for the associated difference
list in the optimal paging problem,
since .

For any nonincreasingly ordered partition in the optimal
paging problem, we can derive an upper bound of the associ-
ated value of the object function. Thus, we can derive a lower
bound of based on the above theorem. However, for
a disordered partition in the optimal paging problem, we do
not have a nontrivial upper bound of the associated value of
the object function. Therefore, we can not use Theorem 4.3 to
derive a lower bound of . We will explore this case later
in the paper.

C. Lower Bounds for Concave Lists

In this section, we derive lower bounds for the normalized
throughput, when the associated list is concave. We emphasize
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that these are the first known analytical bounds for the normal-
ized throughput.

Theorem 4.7:

a) For any basic concave list
, where .

b) For any nonnegative, nondecreasing, concave list
, where

.

Proof:

1) Let be the associated difference
list of and . We only consider the
case when , since .
Let . We claim that , since
otherwise

which is contradictory to .
2) Since

is a second order partition of ,

3)

4)

5) Based on the proof of Theorem 4.5, we have

where .
6) Then,

, where
. Therefore, ,

where . Thus, we have completed
the proof of property a. Following the proof of Theorem
4.6, it is easy to prove property b, which we will omit
here.

D. Lower Bounds for Arbitrary Lists

In this section, we derive lower bounds of the normalized
throughput for arbitrary lists. These bounds are the first known
bounds for the normalized throughput and are applicable for
arbitrary lists.

We first introduce a variant of the optimal paging problem,
which will be used to derive the lower bounds for the normalized
throughput.

Given a list , where , and
a natural number , find the partition , where

, if and , then , to
minimize .

Let be the minimum value of the above object func-
tion. Compared to the original optimal paging problem, there is
one more constraint in the above problem. In the optimal paging
problem, an optimal partition must be a nonincreasingly ordered
partition. In the above problem, however, an optimal partition
does not need to be a nonincreasingly ordered partition due to
the last constraint. In fact, there are cases in which any non-
trivial feasible partition is not a nonincreasingly ordered par-
tition. For example, when , the parti-
tion is not nonincreasingly ordered, since

. Similarly, the partition is not
nonincreasingly ordered, since .

Now, we derive a similar relation between the list partition
problem and the variant of the optimal paging problem as in the
following theorem.

Theorem 4.8:For any quasi-basic list
and the associated difference list

.
Proof: Similar to the proof of Theorem 4.3 and the proof

of Theorem 4.4 and will be omitted.
Now, we derive the lower bound of the normalized

throughput, when two subgroups are used.
Theorem 4.10:For any nonnegative, nondecreasing list

, if , then

a) There exists a quasi-basic list and
two real numbers and , such that

.
b) Let be the associated differ-

ence list of and . Then,
.

Proof:

1) We now prove property a. Choose
and . The rest of the proof is similar
to the proof of property a in Theorem 4.6 and will be
omitted.

2) We now prove the second property. It is clear that
.

(Theorem 4.8 and Theorem 4.9)

3)
. Since .

Therefore, and . There-
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fore, . Furthermore,
.

We can use the above theorem to estimate the
normalized throughput. For example, consider

. In this case, . Therefore,
. In fact,

. For any list with
, we can show that .

Based on a method similar to the method in the above the-
orem, we can derive a better lower bound of the normalized
throughput. We show the result in the following theorem.

Theorem 4.11:For any nonnegative, nondecreasing list
, if

, where is defined as in the above
theorem.

Proof: See Appendix.
Consider the same case in which .

Based on the above theorem, we can show that

. For any list with , we can show that
%. We also observe that we

can use Theorem 4.6 and Theorem 4.11 to derive Theorem 4.7.

E. The Problem of Minimizing the Completion Time

In this section, we will derive an upper bound of the
completion time for a very general class of lists. We first
briefly introduce the problem of minimizing the completion
time. Suppose we want to transfer a file of fixed sizeto
receivers. Furthermore, assume that we are allowed to use
distinct transmitting rates. Let be the capacity of the path
from the sender to theth receiver and .
As in the list partition problem, we can partition the list

into sublists, . Namely, we partition
receivers into subgroups. To avoid overflow and to

minimize the completion time, the sender must deliver
packets to the th subgroup at rate equal to . The
completion time of each receiver in theth subgroup is
defined as . Therefore, the average comple-
tion time is defined as

. The problem of minimizing
the completion time is to find the optimal partition of to
minimize .

Since and are constants, without loss of generality, we
assume that . Furthermore, we define

and let be a partition of
. Therefore, we obtain the following concise version of the

problem of minimizing the completion time.
Given a list and a natural number , find the partition

to minimize .
We denote the minimum value of the above object function

by .
Bhattacharyya, Kurose, Towsley and Nagarajan [30] first

studied the above problem. They proposed an time
algorithm to find the optimal rates to minimize the completion
time. We derive here an upper bound of the completion time.
We now define a quasi-basic convex list.

Definition: A list is said to be a quasi-
basic convex list if:

1) ;
2) ;
3) ;
4) the sequence is nondecreasing, where

.
In the above definition, the first three conditions are similar

to the conditions in the definition of a quasi-basic list. The last
condition ensures that the list is convex.

We now prove that under some conditions, the optimal paging
problem is equivalent to the problem of minimizing the comple-
tion time.

Theorem 4.12:

a) Let , where and
. Construct

such that , where
. Then, .

b) Let be a quasi-basic convex
list, where . Construct

such that , where
and . Then, .

Proof: Similar to the proof of Theorem 4.3 and will be
omitted here.

We now derive an upper bound for the quasi-basic convex
list and show that the upper bound is achieved by the list

, where .
Theorem 4.13:Let ,

where .

a) If is a multiple of

b)

Proof:

1) Let . Then,

(Theorem 4.12)

is a multiple of

2) Since , we have
.

3) The proof of property b is similar to that of Theorem 4.2
and will be omitted here.

Theorem 4.14:

a) For any quasi-basic convex list
, where

.
b) For any nonnegative, nonincreasing, convex list

,
where .

Proof:

1) For any quasi-basic convex list ,
construct , so that

, where . Let
.
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2)

(Theorem 4.12)

(Lemma 4.2)

(proof of Theorem 4.5)

3) Since , we have
, where

and .
4) We now prove property b. Let . It is

clear that is a quasi-basic convex list. Then,

(property a)

Based on the above theorem, we know that as long as
is nonnegative, nonincreasing, and convex, the completion
time when 5 subgroups are used is at most 60% of the com-
pletion time when 1 subgroup is used. To illustrate that this
condition is true for a wide range of lists, let’s consider the
following three lists. In the first case, .
In the second case, . In the third case,

. The list is linear in the first case,
convex in the second case, and concave in the third case.
However, the corresponding is always nonnegative,
nonincreasing and convex.

V. A FAST ALGORITHM

We propose here a fast algorithm to solve the list partition
problem. The algorithm requires in time and
in space and is the most efficient algorithm known up to date.
Furthermore, the fast algorithm can be used to solve not only
the list partition problem but also the optimal sequential paging
problem and the problem of minimizing the completion time.

We now present an auxiliary problem. Without loss of gen-
erality, we assume that has been sorted
such that , where .

Given two natural numbers and and a list
, find the partition

to maximize .
Let be the maximum value of the object function in

the above auxiliary problem. Then, we can derive the following
recursive relation:

Since , we can solve the list partition
problem by solving multiple instances of the auxiliary problem.

We now present the complete algorithm.
for to

end for
for to

for to

end for
end for

Since there are two nested loops and each statement takes
time, the time complexity of the algorithm is

and the space complexity is clearly .

VI. SIMULATION RESULTS

A. Normalized Throughput

In this section, we use simulations to study , where
is a list of size and can be seen as a list of clusters of ele-
ments. By adjusting the total number of clusters and the distri-
butions within the clusters, we can capture the essential nature
of capacities of various receivers. Receivers with the same type
of network connection devices usually can be seen as a cluster,
since their instant capacities vary around the nominal capacity.
Besides, same-type receivers in the same region usually can be
seen as a cluster, since all these receivers share large portions of
the same path to the sender.

In our simulations, to createclusters of receivers, we first
create cluster heads. Each cluster head is a receiver whose
capacity is the mean capacity of all receivers in a cluster. To
determine the capacity of cluster heads, we first generate
random variables that are uniformly distributed in [0,1] and
divide these random variables by the maximum one to obtain
normalized random variables. We observe that the largest nor-
malized random variable is 1. The normalized random variables
are the normalized speeds of cluster heads. For each cluster,
we generate receivers with normalized speeds according to a
Gaussian distribution with mean equals to the normalized speed
of the cluster head and variance equals to a chosen value. The
variance is small enough so that the overlapping probability of
two clusters is negligible.

In our simulations, , the size of , is equivalent to
200. The capacities of the receivers are clustered; namely,
receivers can be seen as clusters of receivers, where

. In each cluster, there are
receivers. For each fixed, we run the simulation 10 000 times
to get the probability density distribution of the normalized
throughput . Due to the limit of the space, we only show
some representative results in the paper.

We first compare the performance of using 2 subgroups/win-
dows and the performance of using 1 subgroup/window, which
corresponds to “listen to the slowest”. We show the simulation
results in Fig. 3. The normalized throughput is equivalent to

. We first note that in all cases the performance of using
two subgroups/windows is much better than using only one sub-
group/window. Second, as in Fig. 3, we note that in the worse
case, when the capacities of receivers are uniformly distributed,
the normalized throughput of using two subgroups/windows is
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Fig. 3. Normalized throughput of using one subgroup/window or two
subgroups/windows.

about 0.5, while the normalized throughput of using one sub-
group/window is less than 0.1. When there are 800 receivers,
the normalized throughput of using one subgroup/window de-
creases to 0.01. On the other hand, the normalized throughput
of using two subgroups/windows continues to be about 0.5.

B. Will the Receivers’ Requirements be Satisfied?

In this section, we show the level of satisfactions of receivers’
requirements, when they are partitioned into subgroups. For
each list of receivers, we perform the optimal partition and
measure the percentage of receivers that is assigned a rate
higher than a specific fraction of its capacity. For each type of
receiver group, we run the simulation 10 000 times and obtain
a probability distribution function by averaging the simulation
results. In Fig. 4, the -axis represents the ratio of the assigned
rate of a receiver to the capacity of the receiver. The-axis
shows the probability that a receiver is assigned a rate with an
associated ratio higher than the corresponding value of-axis.
For example, a point in the figure means
that 60% of the receivers are assigned rates higher than 40%
of their capacities.

We first show the results when the capacities of the receivers
are uniformly distributed. From Fig. 4, we know that when only
one subgroup is used, about 3% of the receivers are assigned
a rate higher than 20% of the corresponding capacities. On the
other hand, we know that when 2 subgroups are used, more than
50% of the receivers are assigned a rate higher than 20% of the
corresponding capacities. Furthermore, when 5 subgroups are
used about 80% of the receivers are assigned a rate higher than
50% of the corresponding capacities.

VII. D ESIGN CONSIDERATIONS

A. How to Measure the Capacities of the Paths?

We discuss two approaches for measuring the capacities of
the paths from the sender to group members. In the first ap-
proach, the sender periodically measures the round trip times

Fig. 4. Receiver satisfaction, uniformly distributed.

of packets from the sender to group members. As in the sliding
window scheme, the capacity of each group member is approx-
imately inversely proportional to the associated round trip time.
We assume that the path used to deliver data packets from the
sender to a receiver is identical to the path used for measuring
the round trip times from the sender to the receiver. This as-
sumption holds in most of the proposed routing algorithms in
which routes do not change very fast. The main disadvantage of
this approach is that the sender becomes the bottleneck.

Paul [10] and Holbrook [15] have used hierarchy to improve
the scalability of their reliable multicast protocols. However,
they focus on error control instead of flow control. To improve
scalability, we propose a receiver-driven scheme to divide the
network into a hierarchy of zones and select a group manager
in each zone. We also assume that all group managers are
connected and form a hierarchical virtual backbone. Each
group member decides when to report to the group manager.
A group member reports to its group manager by providing its
current capacity of the link in the path to the sender to the group
manager. Each group manager optimally partitions the reported
group members into subgroups, which is configurable. Let

be the optimal rates in the subgroups. Then,
the group manager reports to its group manager in the next
level as if there are group members with capacities equal
to . Therefore, we can dramatically reduce the
traffic to the sender. Furthermore, there is no unique bottleneck
node in the scheme.

B. Should a Group Member Report?

We now consider the question of when it is beneficial for
a group member to report to its group manager. Suppose the
group manager provideslayers of service based on the optimal
partition of receivers in its zone. Let be the data
rates at these layers. Without loss of generality, we assume that

. Let the current capacity of a specific
group member in the zone be equal to. We assume that the
group member decide not to report to the group manager and
consider three cases based on the value of.
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If , the group member will experience constant buffer
overflow. For the benefit of the group member, it should re-
port to the group manager, so that the group manager can take
care of the slow group member. If , the group member
will never get the most desired quality of service. Similarly, the
group member should report to the group manager so that the
group manager can optimally repartition the group members to
increase the aggregate throughput and in return the fast group
member has an opportunity to get a better quality of service.
Third, if , it may be acceptable for a group member
not to report to the group manager to reduce the amount of con-
trol messages. However, this is a sub-optimal solution in terms
of the aggregate throughput. How to find the optimal moments
for each receiver to report to the group manager remains an open
problem for future consideration.

VIII. C ONCLUSION

The problem of multicast flow control for heterogeneous re-
ceivers has been considered in this paper. In particular, we have
concentrated on maximizing aggregate throughput when infor-
mation about receiver capacity is used to optimally divide re-
ceivers into subgroups. We have focused on the impact of the
distribution of receiver capacities on the maximal throughput
and have obtained the first analytical results in the literature.

We have cast the multicast flow control problem as the list
partition problem and have solved the list partition problem
to determine the optimal rate at each layer to maximize the
throughput. Interestingly, we have proven that the list partition
problem from multicast flow control in the Internet is equivalent
to the optimal paging problem in wireless networks. The result
is essential to analyze the impact of distribution of receiver ca-
pacities on the throughput of multicast flow control. In addition,
we have used the notion of normalized throughput to study the
impact of receiver capacities on the throughput, when optimal
partition is used. We have defined this normalized throughput
as the ratio of the maximum value of throughput usingsub-
groups to the value of throughput when each receiver forms a
subgroup.

We have provided analytical results for two types of list of
receiver capacities: concave and not concave. When one sub-
group is used, we have shown that the normalized throughput in
the limit tends to zero. When receivers are optimally partitioned
into subgroups, we have proven that when the list of the
capacities of the receivers is concave, the normalized throughput
in the limit is always greater than or equal to .
We have also proven that when the list is concave and two sub-
groups are used, the normalized throughput in the limit is at least
33%. When the list is not concave, we have proven that when
two subgroups are used, the normalized throughput in the limit
is always positive. Furthermore, we have derived lower bounds
to estimate the normalized throughput.

We have proposed a quadratic-time algorithm to perform the
optimal partition, showing that the throughput improvement
can be achieved in practical system design. Since the optimal
paging problem in cellular networks is equivalent to the list
partition problem, the quadratic-time algorithm can be applied
there as well. Moreover, we have observed that the problem of

minimizing the completion time is similar to the list partition
problem. Therefore, with a minor modification, our algorithm
can be used to solve the former problem as well. For the
problem of minimizing the completion time, our algorithm
provides the exact solution with one-order lower complexity
compared to the best-known algorithm in the literature [30].

In another paper [42], we had proved that a small number of
paging zones is sufficient to obtain the majority of paging cost
reduction. Similarly, in this paper, we have shown that for a wide
range of receiver capacities, a small number of subgroups are
sufficient to achieve a significant reduction of completion time.
While earlier work relies on simulations to justify the the usage
of multiple subgroups to deliver information to a large amount
of receivers in heterogeneous networks, our results provide an-
alytical support.

APPENDIX

A. The List Partition Problem

Before we prove Theorem 3.1, we introduce some notations.
Given a list of cardinality and a natural number , we
denote a th-order partition of by . For
the purpose of proof, we also represent ath-order partition
of the above list by a sequence and
the other sequence . During the following
procedure of proof, reordering sublists
and/or swapping elements in sublists may
occur in each round. Therefore, a discrete-time index,
where , appears in the sequence . For each

, the sequence is constructed by concatenating
elements in the sublists . Suppose at time

, where and each
is the total number of elements in . Then,

,
etc. In addition, .

The proof is based on a sorting algorithm that puts theth
smallest element in the list in the right position in theth
round and either increases or remains the value of the object
function in each round. The algorithm is very similar to the well-
known bubble sort algorithm. When the algorithm updates the
sublists , it also updates the sequences
and , and vice versa.

Theorem 3.1:There is at least one ordered optimal partition
for the th-order list partition problem.

Proof:

1) We prove the theorem by showing that for every dis-
ordered partition, there exists an ordered partition
with higher or equivalent value of the object function.
Without loss of essential generality, we assume that

. (We can always reorder the
sublists or reorder the elements in a sublist without
changing the value of the object function.) Let .

2) If , stop. Otherwise, let .
3) If , set , where

, increase the value ofby one and then go to step
2. Otherwise, let and . (If
there are several elements equivalent to , choose one
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TABLE I
AN EXAMPLE OF THE ALGORITHM IN THE PROOF OFTHEOREM 3.1

arbitrarily.) Namely, . Let
be the index such that and

be the index such that .
4) If , increase the value of

by one, exchange the indexes of and ,
update and

accordingly and then go to step 2. It
is clear that the value of the object function does not
change after this step, since the algorithm only rearranges
the order of sublists and does not add/remove elements
into/from any sublists.

5) If , swap and
so that and

, increase the
value of by one and then go to step 2. Let be the
value of the object function before the swapping and
be the value of the object function after the swapping. Let

be the partition before the swapping and
be the partition after the swapping. We

now prove that as follows. If , it is
clear that . We now prove the case that

.

The second term is zero, since before the swapping,
and therefore

after the swapping, . The
third term is nonnegative, since
and therefore after the swapping,

.
6) Since the value of increases by one in each round and

is finite, the above algorithm terminates within finite
rounds. In addition, in each round of the algorithm,
the value of the object function never decreases. Fur-
thermore, when the algorithm terminates, the sequence

is sorted in nondecreasing order,
since the algorithm makes the th smallest element

in the th round and never moves it after that. Therefore,
for every disordered partition, there exists an ordered
partition with higher or equivalent value of the object
function. Since the total number of partitions is finite, we
have completed the proof.

In Table I, we use an example to illustrate the algorithm in the
above proof. Let and . Assume that
at and . Mean-
while,

. At , since 2 is the second smallest el-
ement in the list , the algorithm swaps 2 and 6 and, there-
fore,

. Meanwhile, and
. At , since 3 is the third smallest ele-

ment in the list , the algorithm swaps 3 and 6 and, there-
fore,

. Similarly,
and

.
Theorem 3.2 (Optimal Substructure):Let

be an ordered optimal partition for. , let
and .

Furthermore, let , where , and ,
where . Then, is an ordered op-
timal partition of and is an ordered optimal
partition of .

Proof:

1) Due to the construction of and , it is clear
that is an ordered partition of .

2) Suppose is not an optimal partition
of . Let be an ordered optimal
partition of . (The existence of such a partition
has been proved in Theorem 3.1.) It is clear that

is a partition of .
Similarly, is also a
partition of . Then,

The last inequality is due to that is not an
optimal partition of . However, the last inequality is con-
tradictory to that is an optimal partition
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of . Therefore, must be an optimal par-
tition of .

3) Similarly, it is easy to prove that is an
ordered optimal partition of .

B. Analytical Results

1) The Uniform Distribution: Why Two Is Much
Better Than One:

Lemma 4.1: If is a multiple of , then

is an optimal solution of the
th-order list partition problem for .

Proof:

1) Define a quadratic function as fol-
lows:

Note that is the object func-
tion of the th-order list partition problem for

, when are
partition points. (i.e., the corresponding partition is

.
2) We use partial derivative to obtain its local optimal point.

First, since . Second, since
.

Third, .
3) From 2 and the fact that , we derive that

.
4) To prove that the local optimal point , where

, is the global maximum point, we prove
that the function is concave as fol-
lows. First,

. Then

5) Since
and are all concave functions,

is also a concave function and
therefore the local optimal point is the global optimal
point.

Theorem 4.2: .
Proof:

1) Let
and

be the real maximum of the function. Let
be the integer maximum of the

function . Let be any
rounding of to nearest integers. Then obviously,

.
2) The evaluation of at gives

.
3) Since and

and
. Therefore,

where is a polynomial of such that the degree of
the variable is at most one ( is seen as a constant).

4) Therefore,

2) The Optimal Paging Problem and the List Partition
Problem Are Equivalent:

Theorem 4.3:

a) Let , where and
. Let be the accumulation list

of . Then, .
b) Let be a concave list, where

and . Let be the
difference list of . Then, .

Proof:

1) Let be an arbitrary th-order partition
of and be the associated partition of

. Then
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2) Since is nonnegative, is nondecreasingly ordered.
Therefore

3) We now prove property b. It is clear that the result in 1 still
holds. Since is concave, nondecreasingly ordered and

, the sequence is nonincreasing
and nonnegative. Therefore

3) Lower Bounds for Concave Lists:We first define a linear
operation on a list and then prove that the optimality of a parti-
tion is preserved under a linear function in terms of throughput.

Definition: For any finite list , we de-
fine

For example, assume that
and . Then,

.
Lemma 4.3: If is an optimal partition of the
th-order list partition problem for the list of size , then:

a) for any ;
b) for any is an

optimal partition of the th-order list partition problem
for the list .

Proof: The proof is straightforward and will be omitted
here.

Lemma 4.4:For any list , where
and

.
Proof: 1. According to Corollary 2 of Theorem 2 in [31],

is maximized when .
Therefore, for an arbitrary list , we have

.
Theorem 4.4:For any basic concave list of cardinality

, Let be the associated difference list.
Then:

a) for any natural number
.

b) For any fixed natural number , define
.

Let
. Then,

exists.

Proof:

1) According to Theorem 4.3, . For
any basic concave list , let

be the associated difference list. First,
due to the construction of the difference list,
. Then

Then,
.

2) We now prove property b. It is easy to see that for any
is a continuous function, since both

and are continuous. Since,is closed and
bounded, is a compact set. Therefore, the image of
under is also a compact set, in which the minimum
element exists.

The first property of theorem 4.4 allows us to derive the nor-
malized throughput by solving the optimal paging problem. The
second property shows the existence of the minimum normal-
ized throughput among basic concave lists. Since the object
function is nonlinear and it includes a dis-
crete optimization problem, it is difficult to analytically derive
the minimum normalized throughput. Therefore, we derive the
following lower bound of the normalized throughput.

Theorem 4.5:For any basic concave list of cardinality
and any natural number:

a) if is a multiple of ;
b) , where

.

Proof:

1) Let , where .
When is a multiple of

.

(Theorem 4.3)

(Lemma 4.2)

2) For any basic concave list , let
be the associated difference list.

We know that (See proof in Theorem 4.4).
Then

(Proof in Theorem 4.4)
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3) Based on 1 and 2

4) We now prove property b. First

5) Then

6) Similar to the proof of property a, we have
,

where and clearly
.

We have derived a lower bound of the normalized throughput
for any basic concave list in Theorem 4.5. We now extend the
result. We first define a nonnegative list and a nondecreasing
list.

Definitions:

1) A list is said to be nonnegative if
each element is nonnegative, where .

2) A list is said to be nondecreasing if

We now present an extended version of Theorem 4.5.
Theorem 4.6:

a) For any nonnegative, nondecreasing, concave list
, if , there exists a basic concave

list , two real numbers and
, such that .

b) For any nonnegative, nondecreasing, concave list
, if

, where .

Proof:

1) Choose and . First,
since is nondecreasing and . Since is
nonnegative, .

2) .
3) We now prove that

is a basic con-
cave list. Since and is concave, is also con-
cave. Clearly, . Since and is nonde-

creasing, . Since and is
nondecreasing, is also nondecreasing. Moreover,

Thus, is a basic concave list.
4) We now prove the property b.

(Lemma 4.3)

(Theorem 4.5)

where .
4) Lower Bounds for Arbitrary Lists:
Theorem 4.9:Let , where

and . Then,
, where

.
Proof:

1) Let . Clearly, . Let
. We claim that ,

since otherwise

which is contradictory to .
2)

Then,
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3)

Theorem 4.11:For any nonnegative, nondecreasing list
, if

, where is defined as in the above
theorem.

Proof:

1) According to the previous theorem, There exists a quasi-
basic list and two real numbers

and , such that . Let
be the associated difference list of

and . Clearly, . (That
results in and violates the con-

dition that .) Let ,
where . We claim that ,
since otherwise

2)

3)
.

4) Let
. For each

, we find the optimal to maximize as
follows. First,

. Since is the
unique solution for in , it is therefore
the unique local optimal in .

5) We now prove that for each fixed , the function
is a concave function of. First,

. Since , it is
clear . Furthermore,

Then, for each fixed
and, therefore, is a concave function. Thus,

is the global maximum point.

6) Then
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