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Abstract—in this paper, we study the impact of heterogeneous and removal of video layers by receivers. Vicisano, Crowcroft,
receivers on the throughput of multicast flow control and propose a  and Rizzo [27] proposed a TCP-like congestion control algo-
new multicast flow control algorithm to optimally partition group rithm for layered multicast data transfer. Ammar and Wu [28]

members into multiple subgroups. Our main contributions are as . . .
follows. First, we cast the multicast flow control problem in the proposed to improve throughput of point-to-multipoint ARQ

Internet as the list partition problem and then prove that the list Protocols through destination set splitting. Shacham [29] pro-
partition problem is equivalent to the optimal paging problem in  posed to use hierarchically encoded data to maximize utility.

cellular networks. The result is not only interesting in itself but The study was mainly algorithmic in nature. Bhattacharyya,
also essential to derive the first known analytical bounds for the Kurose, Towsley, and Nagarajan [30] considered the problem of

throughput of multicast flow control. Furthermore, we propose findina th timal rate at hi to minimize th leti
an algorithm to solve not only the list partition problem but also  'NdiNG the optmalrate at each layer to minimize the completion

the optimal paging problem and the problem of bulk data transfer time of a fixed-size file. They proposed a cubic-time algorithm
using multiple multicast groups. The complexity of our algorithm  to obtain the optimal rates. However, their work does not pro-

is one order less than the best known algorithm designed only for vide analytical solution to the tradeoff between the throughput

the problem of bulk data transfer using muiltiple multicast groups 54 the total number of subgroups or the impact of the distribu-
in the literature. While earlier work uses simulations to justify i f . it the th hout
the usage of multiple subgroups to deliver information to a large 'ON OT TECEIVET Capacities on the throughput.

amount of receivers in heterogeneous networks, we provide the  In this paper, we study the impact of the distribution of the
first analytical support. receiver capacities on the throughput of multicast flow control.

As in layered multicast [25], we assume that the sender can de-
liver data ton heterogeneous receivers at up:talistinct rates.

In order to maximize the throughput, we propose an efficient al-
. INTRODUCTION gorithm to optimally choose the distinct rates and to partition

N THE PAST few years, numerous research projects hathe » receivers intaw subgroups. More importantly, we derive

I been carried out to explore how to support multicast in vahalytical results of the impact of the distribution of receiver
ious networking environments. Especially, these include Syg,.:apacities on the throughput. Unlike earlier work that used sim-
tems that use multicast to deliver data and multimedia traffifations to justify the usage of delivering information to hetero-
[1]-[3]. Other systems support reliable and unreliable multica8€neous receivers at distinct rates, our work provides the first
over LAN’s [4]-[6], Internet [7]-[15], ATM [16], [17], and net- analytical support. To adapt to the time-varying capacities of
works including mobile hosts [18]-[22]. the receivers, we propose to periodically update the information

Multicast flow control is essential for high-performance mul@bout the capacities of the receivers and periodically perform
ticast applications. Mishra and Wu [23] studied several techi® optimal partition of the receivers. We emphasize that our
niques of flow control for atomic multicast protocols by simProposal aims to reconfigure the optimal partition in the order
ulations. Wang and Schwartz [24] proposed a multicast flof every few minutes. Unlike congestion control schemes that
control framework for combined wired/wireless networks. Thejrovide packet-level adjustment, our flow control scheme only
focused on the fundamental theory for controlling source rafJPPOrts session-level adaptation.
when source sends packets at a single rate. The problem of reliable distribution of bulk data to many

McCanne, Jacobson, and Vetterli [25] proposed layered mifceivers was studied extensively. Proposed solutions included
ticast to divide receivers into multiple subgroups. In layerdfose that use techniques such as local repair, polling or hier-
multicast, several layers of information are provided and eagfchy [14], [10], [25], [13], [11]. Additionally, the data carousel
receiver subscribes to one specific layer. Li, Paul and Amm@pProach [51] was proposed to eliminate retransmission and
[26] proposed the use of retransmissions in a layered envirdf-ensure full reliability at the expense of high overhead. Fur-

ment and the use of hierarchical control to manage the additibigrmore, forward error correction based on erasure codes was
proposed to achieve reliable multicast [44], [45], [13], [46],

. . _ 47], [49], [50], [27]. Recently, Nonnenmacher, Biersack and
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Many multicast routing algorithms (e.g., [33]-[41]) have max(Q);) value of the maximum element {;;
been proposed in the past few years. We feel that integratingum(¢);) sum of all elements ig);.
multicast flow control and multicast routing is an interesting In this paper, we denote a li€ by {¢1, 42, ..., 4.}, where
research field. In this paper, however, we consider these tyQ g2, ..., q, are elements belong to the lié. Although the
problems as orthogonal and assume that a reasonable emcept of a list is very similar to the concept of a set, we use
well-behaved multicast routing algorithm is implemented ahe terminology list instead of set to emphasize that there can be
the network layer. repeated elements in a list and the elements in a list are ordered
The rest of the paper is organized as follows: Section Il irgo thatg;, wherel < ¢ < n, is theith element in the above list
troduces our assumptions. Section Il presents the formulati@n Furthermore, in this paper, the li§tis always composed of
of the problem of maximizing throughput by optimal partitiomonnegative real numbers.
of receivers. Some general results of the problem are also deThe definition of a partition of a list is similar to the definition
scribed. In Section IV, we present the impact of distributioaf a partition of a set. Now, we define theh-order list partition
of receiver capacities on the throughput and show that a snyaibblem as follows.
number of subgroups are sufficient to significantly improve the Given a list@ and a natural numbetww, find the partition
throughput. Section V presents the efficient algorithms for th@:, Q-, . .., Q,, to maximized_;” ; min(Q;) - |Q;|.
list partition problem. Section VI shows the simulation results of We can also use notations similar to the linear programming
the satisfaction of receivers’ requirement. Section VII describpsoblem to formulate the above list partition problem as follows:
some design issues and Section VIII presents concluding com-

ments. The proofs of the various results referenced to in the maximizez in(Q:) - Q4]
paper can be found in the Appendix. —~ T *
i
subject to
II. ASSUMPTIONS

Q is a given list of finite cardinality
w is a given natural number
Q1,Q2,...,Q, is a partition of the lis).

We assume that a basic multicast group is composed of one
sender and many receivers. A multicast group, which includes
many senders can be seen as a superposition of many basic
multicast groups. Therefore, we only consider a basic multic

ast
group in this paper Fsor example, assume th@t = {1,2,3,4} andw = 2. Q1 =

We now elaborate on the concept of the capacity of a path.’ 2}’_Q2 - {3’_4} 'S a partition of¢). The assgu_ated value of
object function is equal tb- 2 + 3 -2 = &. Similarly, @, =

We assume that during each short period of time, the maxim 3 _ o4V is al it Th ated
achievable data rate of the path from the sender to each gr 8{ h @2 = {2,4} is also a partition ofy. The associate

member can be measured. If the path is a dedicated circuit’8{4€ of the object funct|on_|s equalio 2 +2- 2 - 6'.
or anyw and @, a partitionQ1,Q», ..., Q,, is said to be

a virtual circuit, the data rate is constant. However, in a gen- . o e o
optimalwth-order partition ofQ if it maximizes the value

eral packet network, the data rate changes with time. For €x- ; . w .
ample, a computer with a 10 Mbps Ethernet connection wé%?the{(iblzegt T}ngtr:?j@ﬁlzmclgn(@){i'in}| -gor eX?:;nﬂe{SVmgn
= 14,494 W= 4,1 = 1,45, K2 = 19,43

most often get a small fraction of the 10 Mbps capacity. The aF 7
located bandwidth depends on the average load of the EtherR&) imal second order pa_rtmon Q )
which changes with time. A computer with 56 kbps modem osolye thewth-order list paf““"” pro_blem, we have to fmd
cannot always send data at 56 kbps; it depends on the qualit)}rb‘?_ maximum value Of .the object function and the associated
the channel, for example, the signal to noise ratio of the twist Btlr_nal wth-order partmo_n. For an_@ andw, we denote the
pair. Moreover, the queueing delay at each intermediate roufeXimum value of the object function lf,(w). For example,

also changes with time. Thus, even though, in principle, thefe23.4}(2) = 8.

are only a limited number of nominal data rates, the actual dataWe now introduce the multicast flow control problem. Sup-

rates in a practical network can vary in time over wide rang@gse t.rt1eref ?;a rect(kell\;ers Irt]ha mult:jcas: g:;;p. LQ% be T et
around these nominal values. capacity of the path from the sender to receiver. Le

Q = {q1,9,-...,9.}. Asin layered multicast [25], we assume
that the sender can support sending data with up thstinct
transmission rates, s2,. .., s,. The sender delivers data to

In this section, we define the list partition problem and the receiver at a single rate, which is equal to one of the above
multicast flow control problem. We first define several terms. w rates. Receivers that obtain data at the same rate form a sub-

I1l. LIST PARTITION PROBLEM

n total number of receivers in a multicast group; group. Therefore, all receivers are partitioned imteubgroups

w total number of subgroups; as shown in Fig. 1. Our goal is to maximize the weighted sum

@ instant capacity of the path to thith receiver;  of rates at which the sender delivers data to receivers. We define

Q = {q1, ¢, .-, ¢, } is the list of path capacities of the aggregate throughput as the weighted sum of rates at which
the receivers; the sender delivers data to receivers. Assume that the sender de-

Q: list of path capacities of the receivers in thik livers data ton, receivers at rate;, wherel < ¢ < w and
subgroup; n =Y .., n;. Then, the aggregate throughpudis” ; n; - s;.

|Q;] cardinality of@Q;; In general, to maximize the aggregate throughput, each of the

min(@};) value of the minimum element i@;; w rates must be equal to one elemen&nOn the other hand,
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exists an ordered optimal partition for anyth-order list par-
tition problem. In the second theorem, we show the optimal
sub-structure of an optimal solution of the list partition problem.

Theorem 3.1:There is at least one ordered optimal partition
for the wth-order list partition problem.

Proof: See Appendix. O

Although it can be proved that an optimal partition must be an
ordered patrtition, the proof is lengthy. Therefore, we only use
the above theorem that is sufficient for designing the algorithms
in the paper.

Theorem 3.2 (Optimal Substructurelet @1,Qo,...,Qy
be an ordered optimal partition f@p. V2 < ¢ < w — 1, let
L=01UQ@QU---UQ@;andR = Q;11 UQiy2U---UQy.
Furthermore, lel.; = @;, wherel < j < ¢, andRy; = Qi+x,

@ sender receiver in subgroup 1  wherel < k < w — 4. Then,L, Lo, ..., L; is an ordered op-
timal partition of L andR;, R, . . ., R,,—; is an ordered optimal
\ N - partition of &.
receiver in subgroup 2 receiver in subgroup 3 .
§ group @ group Proof: See Appendix. O

Fig. 1. The multicast flow control problem.

IV. ANALYTICAL RESULTS
to avoid overflow at each receiver, the sender can not deliver
data to the receivers in theh subgroup at a rate greater thart‘hroughput to study the impact of the distribution of receiver

in(Q; ;= min(Q; <j<aw,i - .
min(Q;). Therefqre,sj mm(QJ)’ yvherel =Jjswlsa catoacmes on the throughput of multicast flow control and
necessary condition to achieve maximum aggregate throughpu

It can be shown that the above multicast flow control probleﬁ{owde analytical results. FOT any lig} of car_d inality» and
. . . ” any natural numbety, we define the normalized throughput
is equivalent to the list partition problem.

. Fo(w) to be To(w)/To(n), whereTg(w) is the maximum
For example, assume again .ﬂ@t: {1,2,3,4} (_':mdw — value of the object function of thevth-order list partition
2. Suppose that the sender delivers data to the first recelvelb%

¢ l'to 1. while th der dell data to the of blem for the list). We show that when a single subgroup

a rate equal o -, while the sender gelivers data fo the o |§rused, the normalized throughput tends to zero as the total
three receivers at a rate equal to 2. The assoqated 299e93i8her of receivers increases. On the other hand, when two
throughput is equal t6 + 2 +.2 + 2=17We can increase the or more subgroups are used, the normalized throughput is
aggregate throughput by delivering data to the first two rece'_veéﬁvays positive, regardless of the total number of receivers and
¢ i lto 3. The th hout will be th altal ®2 distribution of receiver capacities. In addition, we provide
g agaia una 0 5. The throughputwilbe then equ T the first known lower bounds to the normalized throughput.

* R ) ) . _Furthermore, we prove that the list partition problem and the

In this paper, we consider the list partition problem only ignima) paging problem are equivalent. The result is not only

the nontrivial case in whichy < rank(Q), whererank(Q) jnteresting but also important to derive the above lower bounds
is the total number of distinct elements in the ligt Further- of the normalized throughput.

more, without loss of generality, we assume that the(ist
{1, ¢, ...,q,} has been sorted, so thgt< ¢;11,V1 < i <
n — 1.
We define ordered optimal partition as follows.
Definition: For any listQ and any natural numbes, a par- We first consider a list/,, = {1,2,...,n}, which corre-

In this section, we use the notion of the normalized

A. The Uniform Distribution: Why Two Is Much
Better Than One

tition (1, Q2,...,Q, of the list() is said to be arordered sponds to a group of receivers with uniformly distributed capac-
partition , if o < 3, for everya, 3,4, j, wherea € Q;, 8 € Q;  ities. We can derivé&y, (w) as follows. Forw = 1 andw = n,
andi < j. itis easy to see thdy, (1) =n andy, (n) = ((n(n+1))/2),

For examplef), = {1,2}, Q> = {3,4} is an ordered parti- respectively. Thereford,;; (1) = (2/(n + 1)).
tion of @. On the other handy; = {1,3},@> = {2,4} is not More importantly, as: goes to infinity,I'y; (1) goes to zero.

an ordered partition of). This means that the slowest receiver in a group dominates the
Definition: A partition is anordered optimal partition , ifit  overall performance and the relative performance becomes
is both optimal and ordered. worse when the diversity of receivers, which is defined as the

In the above example); = {1,2},Q2 = {3,4} is an or- capacity of the fastest receiver divided by the capacity of the
dered optimal partition of} = {1,2, 3,4}. On the other hand, slowest receiver, increases.
Q1 = {1}, Q2 = {2,3,4} is an ordered partition but notan For w = 2, we obtain thel'y, (2) as follows. For
optimal partition. simplicity, we assume thath is an even number; the
We now present two theorems that create the theoretical basmislysis can be easily extended to the general case.
for our fast algorithm. In the first theorem, we prove that therigirst, by simple calculations, it is easy to derive that
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the optimal partition should be{l,2,...,(n/2)} and
{(n/2) +1,(n/2)+2,...,n}, while the optimal object func-
tionisTy, (2) = (1)-(n/2)+((n/2)+1)-(n/2) = (n?/4)+n.
Thereforel'y, (2) = ((n?/4 +n)/(n?/2 + n/2)). Moreover,
asn goes to infinity,I'y, (2) = (1/2). We can extend the above
result to the cases when > 3, as in the following theorem.
Lemma 4.1:If n is a multiple ofw, then{1,2,...,(n/w)},
{(n/w)+1,(n/w)+2.....2nfw)},... . {((n(w—1))/w)+
1, ((n(w — 1))/w) + 2,...,n} is an optimal solution of the
wth-order list partition problem fot/,,.

) NQ”V

cell belongs to subgroup 1

Proof: See Appendix. O
Theorem 4.1:When » is a multiple of w,lim,, ... 'y,
(w) =1-(1/w).
Proof: cell belongs to subgroup 2

1) By the above lemma

w—1 .
Ty, (w) = Y <E + 1) (—)
i—o \W ) N cell belongs to subgroup 3
712 w—1 S ;]
= — i+ n
w2 ;
n2 1 Fig. 2. Optimal paging problem.
=(—=]-(1==)4n
(3)-(-3)
2) essential task of the cellular network is to find the cell in which
1 n’ n the cellular phone currently resides. The task is performed by
lim 'y, (w) = <1 — —) lim 2 _ 4 lim 55— sequential paging.
el wy nmee 5 Tt For simplicity, we assume that the cellular phone is always
—1_ 1 inside the service region and turned on. First, each base station
w in one subgroup of cells broadcasts a paging message. If the
[0 cellular phone is in a cell that belongs to the subgroup, the cel-
Theorem 4.2:lim,, oo Ty, (w) =1 — 1/w lular phone responds. Therefore, we know the cell in which the
Proof: See Appendix. O cellular phone resides. If the cellular phone is not in any cell

We now explain the importance of the above theorem. Thieat belongs to the subgroup, there will be no response before
theorem tells us how good the performance of a system usiigeout. Then, the base stations in another subgroup of cells
w subgroups is, compared to the performance of a system usprgadcast the paging message. The procedure is repeated until
n subgroups. Since the limit df;;, (1) is zero, we know that the cellular phone responds and is, thus, located.

a single subgroup scheme is not appropriate in the limit for re-Rose and Yates [31] studied the problem of optimal paging,
ceivers with diverse capacities. On the other hand, the limit ahen the probability that the cellular phone appears in each cell
'y, (2) is 0.5. This means that we can always use two subgroupgjiven. Suppose there atecells inside the service region. Let
to achieve 50% of the throughput of the limiting casexafub- d; be the probability that the cellular phone appears inithe
groups, even when the receivers have diverse capacities. We alsbinside the service region and = {d;,ds,...,d,}. We
observe thal'y, (w) is close to 1.0 even for smad. For ex- illustrate the optimal paging problem in Fig. 2. Assume that the
ample, sincd’y, (5) = 0.8, only five subgroups will achieve cells are partitioned inta subgroups, so that the cells in ik
already 80% of the throughput of thesubgroups case. Simi- subgroup will be paged in thi¢h round if necessary. Lep; be
larly, we can use 8 subgroups to achieve 87.5% of the throughgh# list of associated probabilities of cells in thk subgroup.

of usingn subgroups. Then, we can calculate the average number of paging messages
required to find the cellular phone as follows.

With probability equal taum(D; ), the cellular phone isin a
cell that belongs to the first subgroup and the required number

In this section, we prove that the optimal paging problem & paging messages|i®; |. With probability equal teum(D-),

a special case of the list partition problem and we will use thke cellular phone is in a cell that belongs to the second subgroup
result to derive a lower bound of the normalized throughput. and the required number of paging messagéiis| + |Dz|).

We now briefly explain the optimal paging problem. In a celln general, the average number of required paging messages can
lular network, a service region is divided into smaller areabe calculated ay~;”, (3~ |D;|) -sum(D;). Rose and Yates
Each area is called a cell. In the center of a cell, there is a b§3&] assumed that the average paging cost is equal to the average
station with an antenna that provides a wireless link to cellulaumber of required paging messages to find the location of the
phones in the cell. Since a person who carries a cellular pharedlular phone. The optimal paging problem is to find the op-
moves and can be in any place in the service region, one of theal partition of cells to groups to minimize the average paging

B. The Optimal Paging Problem and the List Partition
Problem Are Equivalent
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cost. We formulate thesth-order optimal paging problem as andag41 = Zle d;, wherel < k <
follows. n — 1.

Given a list D, where sum(D) = 1, and a natural For example, {1,5,8,10} is a concave list, since
number w, find the partition Dy, Ds,...,D,, to minimize 5—1 > 8 —5 > 10 — 8. In addition, {0,0.4,0.7,0.9}
E?:I(E;:l |D;|) - sum(D;). is a basic concave list. We choose the word “basic” pri-

For any listD and natural numben, we denote the minimum marily to reflect that each element in a basic concave
value of the object function in theith-order optimal paging list is between 0 and 1. It is clear that a basic concave

problem byPp (w). list is also a quasi-basic list. Furthermore, wheh =
Rose and Yates [31] proved that in order to minimize the a4/ 1/7,2/n, ..., ((n — 1)/n)}, the associated difference
erage paging cost, cells with higher probabilities must be paglé?i is {(1/n) = (0/n), (2/n)—(1/n),...., 1= ((n—1)/n)} =
before cells with lower probabilities are paged. Akyildiz [32}/71/7:- -+, 1/n}. When D = {1/n,1/n,...,1/n}
showed that in the optimal paging problem may be driven @nd n = [D], the associated accumulation list is
by delay constraints. We focus on the impact of the probabilié?v n,(1/n)+(1/n),....(1/n) + (1 /n) +---+(1/n)} =
distribution function,D, on the average paging cost. 0/n,1/n,2/n,....((n = 1)/n)}. _
Lemma 4.2:Let Dyorr = {1/n,1/n,...,1/n}, where We now prove a theorem that reveals the relation between the
| Dyorst| = n. For any natural number and any listD, where list partition problem and the optimal paging problem.
|D| = n andsum(D) = 1, Pp___. (w) > Pp(w). Theorem 4.3
Proof: See Rose and Yates [31]. O a) LetD = {dy,ds,...,d,}, where}_" | d; = 1andv1l <
For example, whem, = 4, Dyorse = {1/4,1/4,1/4,1/4}. t<n—1,0<4d;y; <d;. LetA bethe accumulation list
Let D = {0.4,0.3,0.2,0.1}. According to the above lemma, of D. Then, T4 (w) = n — Pp(w). _
Pp.. . (2)> Pp(2).Infact,Pp,_ (2)=05-240.5-4=3, b) LetA = {a1, a2, ...,a,} be abasic concave list. L&
while Pp(2) = 0.7-2+0.3 -4 = 2.6. be the difference list oft. Then,Pp(w) = n — T4 (w).
The above result matches our intuition. In the optimal paging Proof: See Appendix. O

problem, each element in the list represents the probability thathe above theorem states that the list partition problem and
a cellular phone appears in the corresponding cell. The caséhfi optimal paging problem are equivalent under some condi-
which the cellular phone appears equal-likely in each cell is thens. Thisis a very interesting result, since the two problems are
worst case, since the entropy is maximum. from different fields: the list partition problem is from multicast
We now define some terms that will be used to prove tH®w control in the Internet, while the optimal paging problem

equivalence of the optimal paging problem and the list partitidf from wireless networks.
problem. To ensure a one-to-one correspondence between a non-

Definitions: decreasingly ordered partition in the list partition problem

and a nonincreasingly ordered partition in the optimal paging

) problem, that the listd is basic concave is necessary. The
a, }, define a sequenad. = ar+1 — first three conditions of a basic concave list ensure that every
ay, wherel <k <n—1.ThelistAiS  glament in the corresponding difference list is nonnegative,
Sa'?' to bgaconcgvehst ifthe sequencgije that the list A+ is concave guarantees that the ele-

. . dy IS honincreasing. ments in the corresponding difference list are nonincreasingly

2. Basic concave list) For any finite list = {a1, a9, ..., ordered. For example, assume that = {0,0.1,0.3,0.4},
ay}, define AT = {ai,as,....an, \hich is not basic concave. The partitign, 0.1}, {0.3, 0.4}
ani1}, Wherea, 1 = 1. The listA g 5 hondecreasingly ordered partition in the list partition
Is said to be a Pas'c concave list Ifproblem. However, the partitiof0.1, 0.2}, {0.1,0.6} is not a
a =0, ,VQ =i=mn0=<a = nonincreasingly ordered partition for the associated difference
1,vl<isn-1la 2 aand jgp — 101,02,0.1,0.6) in the optimal paging problem,
AT is a concave list. since0.2 < 0.6.

3. Quasi-basic list)  AlisH = {a1,a2,...,a,}iSsAIAI0  £4 any nonincreasingly ordered partition in the optimal
be a quasi-basic listif, = 0,Y2 < na4ing problem, we can derive an upper bound of the associ-
¢ =m0 < a <1andVl <4< aed value of the object function. Thus, we can derive a lower

, , n—Loig za. bound of T4 (w) based on the above theorem. However, for

4. Difference list)  For any quasi-basic list = {ai, 5 gisordered partition in the optimal paging problem, we do
ag, ..., an}, construct the associatednyt have a nontrivial upper bound of the associated value of
difference listD = {dy,dz, ..., dn} the object function. Therefore, we can not use Theorem 4.3 to

as follows:dy, = ajy1 — ar, Where  qarive a lower bound df’4(w). We will explore this case later
1§k§n—1anddn:1—an. in the paper.

5. Accumulation list) For any listD = {dy,ds,...,d,},
where}"" ; d; = 1 andvl < ¢ <
n—1,0 < d;41 < d;, construct
the associated accumulation lidt = In this section, we derive lower bounds for the normalized
{ai,as,...,a,} as follows:a; = 0 throughput, when the associated list is concave. We emphasize

1. Concave list) For any finite listh = {a1,a0,...,

C. Lower Bounds for Concave Lists
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that these are the first known analytical bounds for the normal-We first introduce a variant of the optimal paging problem,

ized throughput. which will be used to derive the lower bounds for the normalized
Theorem 4.7: throughput.
a) For any basic concave list = {a1,as,...,a,},  GivenalistD = {dy,dy,...,d,}, wheresum(D) = 1, and
L'4(2) > (1/3) — e(n), wherelim,, ., e(n) = 0. a natural numbew, find the partitionDy, D>, ..., D, where

b) For any nonnegative, nondecreasing, concave I, q,s,t, if p < ¢,d, € D, andd, € Dy, thens < ¢, to
Q={a, 0. ..} e2) > (1/3) — «(n), where minimize3;_ (37%_, |D;|) - sum(D;).

limy, —oc €(n) = 0. LetV Pp(w) be the minimum value of the above object func-
Proof: tion. Compared to the original optimal paging problem, there is
1) LetD = {dy,ds d,} be the associated difference®ne more constraintin the above problem. In the optimal paging

list of Aandp = (('Z':'n’ nk"dk)/ﬂ). We only consider the problem, an optimal partition must be a nonincreasingly ordered

case whep € [0 0.5]k:slince2" kdi < (n41)/2). partition. In the above problem, however, an optimal partition

Letz = 3" [2’ : d We C{};ﬁq thatz < 0.5 since does notneed to be a nonincreasingly ordered partition due to
3 »n = ]

otherwise the last constraint. In fact, there are cases in which any non-
n trivial feasible partition is not a nonincreasingly ordered par-
Zk cdy > x-[2-p-n]>05-(2-p-n)=p-n tition. For example, wheD = {0.3,0.1,0.2,0.4}, the parti-
k=1 tion {0.3},40.1,0.2,0.4} is not nonincreasingly ordered, since
which is contradictory tg = ((3";_; k- di)/n). 0.3 < 0.4. Similarly, the partition{0.3,0.1},{0.2,0.4} is not
2) Since nonincreasingly ordered, sinfel < 0.4.
{di,da, ... drapni—1} {dr2.pn]s dr2-pni+1s -+ 1A} Now, we derive a similar relation between the list partition
is a second order partition @, problem and the variant of the optimal paging problem as in the
Pr2)<(1—2)-([2p-n]—D+z-n following theorem. o
<(-2)-2-p-n)+z-n Theorem 4.8:For any quag-basm |I.STA = {a1, a2,
- ...,a,} and the associated difference I8t = {d;,d, ...,
3) dn }, (Ta(w))/(Ta(n))) = ((n = VPp(w))/(n — 3hoy F
n—Pp2)z(1—-z)n->0-z)-(2-p-n) di.)). o
=n-(1-2-p)-(1-x) Proof: Similar to the proof of Theorem 4.3 and the proof
n of Theorem 4.4 and will be omitted. O
=z (5 (1-2-p) Now, we derive the lower bound of the normalized
4) throughput, when two subgroups are used.
n— Pp(2) Theorem 4.10:For any nonnegative, nondecreasingdist
La(2) = m {q1,92,- -, qn}, if gn # @1, then
(2)-(1-2-p) a) There exists a quasi-basic list= {a,,as,...,a,} and
= W two real numbersy > 0 andf > 0, such that) =

= 2-2.p b) Let D = {di,ds,...,d,} be the associated differ-
ence list of A andp = (3 r_, k - di)/n). Then,
5) Based on the proof of Theorem 4.5, we have (To(2))/(To(n) = (1/2) - (—1+ (2/(1 +p))) > 0.

Ta2) _ 5-(1—5)—<n)
I'a(2) = Tam 2 n-p) Proof:
S 1 B e(n) 1) We now prove property a. Choose= ¢, — ql,/i =
“4-(1-p) n-(1-p) andA = ((Q — B)/«a). The rest of the proof is similar
wherelim,,_,. ¢(n) = 0. to t_he proof of property a in Theorem 4.6 and will be
6) Then,vp € [0,0.5,[4(2) > max((1 — 2 - p)/(2 — omitted. _
), (1/(4- (1 = p)) — (e(n)/(n - (1 — p))), where 2) We now prove the second property. It is clear that
lim,, ..o €(n) = 0. Thereforel' 4(2) > (1/3) — ¢(n), [0, 1].
wherelim,, ... ¢'(n) = 0. Thus, we have completed To(2)  a-Ts(2)+p5-n
the pro_of of property a. Following the p_roof of Theorem To(n)  a -Ta(n)+p5-n
ﬁfr'e!t is easy to prove property b, which we wﬂlgmlt S Ta(2) <O‘ - La(w) <1,8-n> 0)
T Ta(n) \a-Ta(n) =7 -
1 2
D. Lower Bounds for Arbitrary Lists Z3" < 1+ m)

In this section, we derive lower bounds of the normalized (Theorem 4.8 and Theorem 4.9)
throughput for arbitrary lists. These bounds are the firstknown 3) D = {((¢2 — ¢1)/«),((¢3 — @)/a), ..., ((gn —
bounds for the normalized throughput and are applicable for  ¢,_1)/«),1 — ((¢. — ¢1)/«)}. Sincegq,, # q1,d,, # 1.
arbitrary lists. Therefore,> )k - d. # n andp # 1. There-
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fore, p € [0,1). Furthermore,((T(2))/(To(n))) > Definition: Alist B = {by,b2,...,b,} is said to be a quasi-

(1/2)- (=14 (2/(1 +p))) > 0. O basic convex list if:
We can use the above theorem to estimate thei) p, = 1;
normalized throughput. For example, consid€¢ = 2)V2<i<n0<b <1;
{1%,22,...,n%}. In this caselim,...p = 2/3. Therefore,  3) V1 <i<n—1 by <b;
lim,—oo((19(2))/(Ig(n))) > (1/10) = 0.1. In fact,  4) the sequencéy is nondecreasing, whevd < k < n —
lim,, oo ((T(2))/(To(n))) = 4/9 = 0.444. For any list with 1,dy = bpgr — Dr.
p = 1/4, we can show thaf(T5(2)) /(T(n))) = 0.3. In the above definition, the first three conditions are similar

Based on a method similar to the method in the above thg-the conditions in the definition of a quasi-basic list. The last
orem, we can derive a better lower bound of the normalizeg@ndition ensures that the list is convex.
throughput. We show the result in the following theorem. We now prove that under some conditions, the optimal paging
Theorem 4.11:For any nonnegative, nondecreasingd)st=  problem is equivalent to the problem of minimizing the comple-
{a, @, anh i # 0, (T(2)/(To(n) 2 (1—2- tion time.
VP +1)/(1—p)), wherep € (0,1) is defined as in the above  Theorem 4.12:

theorem. _ a) LetD = {di,ds,...,d,}, where3 " d; = 1 and
Proof: See Appendix. | V1 < i <n-1,0 < diyq < d;. ConstructB =

Consider the same case in which = {12,22,... n%}. (b1, ba .. by} suchthaby = 5", d;, wherel < k <
Based on the above theorem, we can show that  then CTp(w) = Pp(w). i= k=
lim, oo ((I(2))/(To(n))) 2 3-((5/3) =2-V(2/3)) ® by et B = {by,bs,...,b,} be a quasi-basic convex
0.10102. For any list withp = 1/4, we can show that list where 1 > b > bisi > 0. Construct

(Tg(2)/(To(n))) > (1/3) ~ 33%. We also observe that we D = {dy,ds,...,dy)} such thaty, = by, — bxs1, where
can use Theorem 4.6 and Theorem 4.11 to derive Theorem 4.7. | - 1." . 2ndb +1 = 0. Then,Pp(w) = CT(w).

Proof: Similar to the proof of Theorem 4.3 and will be
E. The Problem of Minimizing the Completion Time omitted here. .

In this section, we will derive an upper bound of the We now derive an upper bound for th<=T quasi—basic_convex
completion time for a very general class of lists. We fir#st and show that the upper bound is achieved by theHist
briefly introduce the problem of minimizing the completion n/n,((n—1)/n),...,2/n,1/n}, wheren = | B].
time. Suppose we want to transfer a file of fixed sizeo n Theorem 4.13:Let B = {n/n, (n—1)/n),...,2/n,1/n},
receivers. Furthermore, assume that we are allowed touuséNhere” = |B].
distinct transmitting rates. Lef; be the capacity of the path @) If n is a multiple ofw, ((CTs(w))/(CTs(1))) = 1/2-

from the sender to théh receiver and? = {q1,42,...,qn } (1+ (1/w))

As in the list partition problem, we can partition the list P) limn—co((CTp(w))/(CTp(1))) =1/2- (1 + (1/w))
@ into w sublists, Q1,Q3,...,Q,. Namely, we partition Proof:

n receivers intow subgroups. To avoid overflow and to 1) LetD = {1/n,1/n,...,1/n}. Then,

minimize the completion time, the sender must deliver
packets to thejth subgroup at rate equal tmin(Q);). The
completion time of each receiver in thgh subgroup is 1

defined as(L/(min(Q;))). Therefore, the average comple- =2. < + —) (n is a multiple ofw)

tion time is defined aszj’:l(L/(min(Qj))) - (1Q4l/n) = 2 w

Lfn - 3752, (1Q;1/(min(Q;))). The problem of minimizing _

the completion time is to find the optimal partiton 6f to ~ 2) SinceCTp(1) = n, we have((CTp(w))/(CTa(1))) =

CTp(w) = Pp(w) (Theorem 4.12)

minimize L/n - Y%, (|Q;1/(min(Q;))). (1/2)-A+QQfw)).
SinceL andn are constants, without loss of generality, we 3) The proof of property b is similar to that of Theorem 4.2
assume thal/n = 1. Furthermore, we defin® = @~ = and will be omitted here. -

{a7Y a5t ... ,q7t) and letBy, B, ..., B, be a partition of ~ Theorem 4.14:
B. Therefore, we obtain the following concise version of the a) For any quasi-basic convex listB, ((CTg(w))/

problem of minimizing the completion time. (CTp(1)) < (1/2) - (1 + (1/w)) + e(n), where
Given a list B and a natural numbew, find the partition lim,, o €(n) = 0.

B1,B,, ..., B, tominimize}";" | |B;| - max(B;). b) For any nonnegative, nonincreasing, convex list
We denote the minimum value of the above object function B, ((CTs(w))/(CTr(1))) < (1/2)-(1+(1/w))+e(n),

by CT5(w). wherelim,,_, ¢(n) = 0.
Bhattacharyya, Kurose, Towsley and Nagarajan [30] first Proof:

studied the above problem. They proposedGmn?) time 1) For any quasi-basic convex li® = {b;,bo,...,b,},

algorithm to find the optimal rates to minimize the completion constructD = {d;,ds,...,d,}, so thatvl < k <
time. We derive here an upper bound of the completion time.  n,d;, = by — bpy1, Whereb,, 1 = 0. Let Dyorst =
We now define a quasi-basic convex list. {1/n,1/n,...,1/n}.
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2) We now present the complete algorithm.
fore=1ton
CTg(w) = Pp(w) (Theorem 4.12) h[2,¢] = Hlax;;i{‘]l i+ qiile— N}
< Pp,,...(w) (Lemma 4.2) end for
n 1 w fork =3tow
S§<1+E>+(w+1+g) fore:]_tOne_l ‘ ‘
(proof of Theorem 4.5) hlk,e] = max;_1{h[k — 1, 7] + gj31 - (e — j)}
end for
3) SinceCTp(1) = n, we have((CTp(w))/(CTp(1))) < €end for
(1/2) - (14 (1/w)) + e(n), wherec(n) = ((w+1)/n) +
(w/n?) andlim,, —.. €(n) = 0. Since there are two nested loops and each statement takes
4) We now prove property b. L& = (B/(max(B))). Itis O(n)time, the time complexity of the algorithmd¥(w-n-n) =
clear thatY” is a quasi-basic convex list. Then, O(wn?) and the space complexity is cleatlfw-n) = O(wn).
(CT p(w))[(CTp(1))) = 2XB) - CLy (w) VI. SIMULATION RESULTS
max(B) - CTy (1) .
A. Normalized Throughput
CTY (w)
= Ty (@) _ In t_his segtion, we use simulations to st_ddy(w), whereq)
1 1 is a list of sizen and can be seen as a list of clusters of ele-
< . <1 + —) + ¢(n) (property a) ments. By adjusting the total number of clusters and the distri-
w

butions within the clusters, we can capture the essential nature
0 of capacities of various receivers. Receivers with the same type
Based on the above theorem, we know that as Iong}asc’f network connection devices usually can be seen as a cluster,

is nonnegative, nonincreasing, and convex, the completiawce their instant capaci'Fies vary around the r_10mina| capacity.
time when 5 subgroups are used is at most 60% of the Coﬁfgades, same-type receivers in the same region usually can be

pletion time when 1 subgroup is used. To illustrate that th en as a cluster, since all these receivers share large portions of

condition is true for a wide range of lists, let's consider th e same.path tf) the sender. ) i
following three lists. In the first case) = {1,2 n} In our simulations, to createclusters oft receivers, we first
. = ,2,...,nk

In the second cas€) = {127227 - .7712}' In the third case, createc cluster heads. Each cluster head is a receiver whose

0 = (V12 J/a}. The list( is linear in the first case capacity is the mean capacity of all receivers in a cluster. To

convex in the second case, and concave in the third Caggtermine the capacity of cluster heads, we first generate
However, the corresponding = Q! is always nonnegative random variables that are uniformly distributed in [0,1] and
nonincre’asing and convex " divide these random variables by the maximum one to olatain

normalized random variables. We observe that the largest nor-
malized random variable is 1. The normalized random variables
are the normalized speeds of cluster heads. For each cluster,
We propose here a fast algorithm to solve the list partitiage generaté: receivers with normalized speeds according to a
problem. The algorithm require8(wn?) in time andO(wn)  Gaussian distribution with mean equals to the normalized speed
in space and is the most efficient algorithm known up to datgf the cluster head and variance equals to a chosen value. The
Furthermore, the fast algorithm can be used to solve not oRlriance is small enough so that the overlapping probability of
the list partition problem but also the optimal sequential pagingo clusters is negligible.
problem and the problem of minimizing the completion time. |n our simulations,», the size of ), is equivalent to
We now present an auxiliary problem. Without loss of gerpo0. The capacities of the receivers are clustered; namely,
erality, we assume th@ = {q1, ¢, ..., ¢} has been sorted receivers can be seen as clusters of receivers, where
such thaty; < ¢; 41, wherel < i <n — 1. ¢ € {200,20,10,5,4,2}. In each cluster, there aje = n/c
Given two natural numbersw and ¢ and a list receivers. For each fixeg we run the simulation 10000 times
R = {q,q,--.,¢}, find the partition Ry, R»,..., Ry to get the probability density distribution of the normalized
to maximize}_;_; min(R;) - |R;|. throughputl', (w). Due to the limit of the space, we only show
Let h[w, ¢] be the maximum value of the object function insome representative results in the paper.
the above auxiliary problem. Then, we can derive the following we first compare the performance of using 2 subgroups/win-

V. A FAST ALGORITHM

recursive relation: dows and the performance of using 1 subgroup/window, which
o1 corresponds to “listen to the slowest”. We show the simulation
h[2,e] = I?:EL{({QI J+ Gy -(e—7)} results in Fig. 3. The normalized throughput is equivalent to
o . . I'g(w). We first note that in all cases the performance of using
hlw, e] = max{hfw — 1L,j] + gj41 - (e —5)}, w23 two subgroups/windows is much better than using only one sub-
group/window. Second, as in Fig. 3, we note that in the worse
SinceTp(w) = hlw,n], we can solve the list partition case, when the capacities of receivers are uniformly distributed,

problem by solving multiple instances of the auxiliary problenthe normalized throughput of using two subgroups/windows is
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Fig. 3. Normalized throughput of using one subgroup/window or twéig. 4. Receiver satisfaction, uniformly distributed.
subgroups/windows.
of packets from the sender to group members. As in the sliding
about 0.5, while the normalized throughput of using one sutvindow scheme, the capacity of each group member is approx-
group/window is less than 0.1. When there are 800 receiveirsately inversely proportional to the associated round trip time.
the normalized throughput of using one subgroup/window dé/e assume that the path used to deliver data packets from the
creases to 0.01. On the other hand, the normalized throughgemder to a receiver is identical to the path used for measuring
of using two subgroups/windows continues to be about 0.5. the round trip times from the sender to the receiver. This as-
sumption holds in most of the proposed routing algorithms in
B. Will the Receivers’ Requirements be Satisfied? which routes do not change very fast. The main disadvantage of

In this section, we show the level of satisfactions of receiver§liS approach is that the sender becomes the bottleneck.
requirements, when they are partitioned into subgroups. For’aul [10] and Holbrook [15] have used hierarchy to improve
each list of receivers, we perform the optimal partition ani@e scalability of their rehaple multicast protocols. However,
measure the percentage of receivers that is assigned a FagY focus on error control instead of flow control. To improve
higher than a specific fraction of its capacity. For each type 8falability, we propose a receiver-driven scheme to divide the
receiver group, we run the simulation 10 000 times and obtd#§tWork into a hierarchy of zones and select a group manager
a probability distribution function by averaging the simulatioff? €ach zone. We also assume that all group managers are
results. In Fig. 4, the-axis represents the ratio of the assignegPnnected and form a hierarchical virtual backbone. Each
rate of a receiver to the capacity of the receiver. Jhaxis 9roup member decides when to report to the group manager.
shows the probability that a receiver is assigned a rate with ABroup member reports to its group manager by providing its
associated ratio higher than the corresponding valueafis. Current capacity of the link in the path to the sender to the group
For example, a pointz,y) = (0.4,0.6) in the figure means Manager. Each group manager opt|m_ally_part|t|0_ns the reported
that 60% of the receivers are assigned rates higher than 488UP members intd subgroups, which is configurable. Let
of their capacities. r1,72,...,7 be the optimal rates in the subgroups.. Then,

We first show the results when the capacities of the receivd§$ 9roup manager reports to its group manager in the next
are uniformly distributed. From Fig. 4, we know that when onl{£Ve! as if there aré: group members with capacities equal
one subgroup is used, about 3% of the receivers are assigh®ét>”2; - -7 Therefore, we can dramatically reduce the
a rate higher than 20% of the corresponding capacities. On {F%fﬂc_to the sender. Furthermore, there is no unique bottleneck
other hand, we know that when 2 subgroups are used, more tRH€ in the scheme.

50% of the receivers are assigned a rate higher than 20% of the
corresponding capacities. Fu%thermore, Wr?en 5 subgroups g‘reShOUId a Group Member Report?
used about 80% of the receivers are assigned a rate higher thafe now consider the question of when it is beneficial for

50% of the corresponding capacities. a group member to report to its group manager. Suppose the
group manager providédayers of service based on the optimal
VII. DESIGN CONSIDERATIONS partition of receivers in its zone. Let, 7., .., r; be the data
. rates at these layers. Without loss of generality, we assume that
A. How to Measure the Capacities of the Paths? ri < ry < --- < 1. Let the current capacity of a specific

We discuss two approaches for measuring the capacitiesgobup member in the zone be equalitoWe assume that the
the paths from the sender to group members. In the first agroup member decide not to report to the group manager and
proach, the sender periodically measures the round trip tirmmsider three cases based on the value of
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If x < 71, the group member will experience constant buffeninimizing the completion time is similar to the list partition
overflow. For the benefit of the group member, it should rgroblem. Therefore, with a minor modification, our algorithm
port to the group manager, so that the group manager can taka be used to solve the former problem as well. For the
care of the slow group member.df > 7, the group member problem of minimizing the completion time, our algorithm
will never get the most desired quality of service. Similarly, thprovides the exact solution with one-order lower complexity
group member should report to the group manager so that twenpared to the best-known algorithm in the literature [30].
group manager can optimally repartition the group members toln another paper [42], we had proved that a small number of
increase the aggregate throughput and in return the fast gr@aging zones is sufficient to obtain the majority of paging cost
member has an opportunity to get a better quality of serviaeduction. Similarly, in this paper, we have shown that for a wide
Third, if 1y < 2 < 7}, it may be acceptable for a group memberange of receiver capacities, a small number of subgroups are
not to report to the group manager to reduce the amount of caficient to achieve a significant reduction of completion time.
trol messages. However, this is a sub-optimal solution in terid¢hile earlier work relies on simulations to justify the the usage
of the aggregate throughput. How to find the optimal moment$ multiple subgroups to deliver information to a large amount
for each receiver to report to the group manager remains an opéneceivers in heterogeneous networks, our results provide an-
problem for future consideration. alytical support.

VIIl. CONCLUSION APPENDIX

The problem of mult_icast fI(_)W c_ontrol for heter(_)geneous 'S The List Partition Problem
ceivers has been considered in this paper. In particular, we have
concentrated on maximizing aggregate throughput when infor-Before we prove Theorem 3.1, we introduce some notations.
mation about receiver capacity is used to optimally divide r&iven a list@ of cardinality » and a natural numben, we
ceivers into subgroups. We have focused on the impact of #note awth-order partition of@ by Q1,Qs,..., Q.. For
distribution of receiver capacities on the maximal throughptfte purpose of proof, we also represenwth-order partition
and have obtained the first analytical results in the literature.of the above list) by a sequence: (t), ax(%), . .., an(t) and
We have cast the multicast flow control problem as the li§#€ other sequencé,,b,,...,b,.. During the following
partition problem and have solved the list partition problefrocedure of proof, reordering sublist®;,Qs, ..., Quw
to determine the optimal rate at each layer to maximize tR@d/or swapping elements in sublisgs, Q2,. .., @, may
throughput. Interestingly, we have proven that the list partitidFcur in each round. Therefore, a discrete-time index
problem from multicast flow control in the Internet is equivalen/heret > 1, appears in the sequende;(t)}. For each
to the optimal paging problem in wireless networks. The resilt= 1. the sequencga;(t)} is constructed by concatenating
is essential to analyze the impact of distribution of receiver cglements in the sublist&);, Qs,..., Q.. Suppose at time
pacities on the throughput of multicast flow control. In additiorf; @i = {i,1,%,2;- -+, i) }» Wherel < i < w and each
we have used the notion of normalized throughput to study thg) iS the total number of elements ;. Then,a,(f) =
impact of receiver capacities on the throughput, when optinfél1; az(t) = qr2:- 5 ae)(t) = Qe) Ge+1(t) = @21,
partition is used. We have defined this normalized throughpgic. In additionyl < i <w —1,b; = >~ _; e(k).
as the ratio of the maximum value of throughput usingub- ~ The proof is based on a sorting algorithm that putsithe
groups to the value of throughput when each receiver forms@allest element in the lisp in the right position in theth
subgroup. round and either increases or remains the value of the object
We have provided ana|ytica| results for two Wpes of list o‘]unction ineachround. The algorithm is very similar to the well-
receiver capacities: concave and not concave. When one g¢iown bubble sort algorithm. When the algorithm updates the
group is used, we have shown that the normalized throughpuskPlistsQ)1, Q. . . ., Q.,, it also updates the sequendes(t) }
the limit tends to zero. When receivers are optimally partitione&nd{%; }, and vice versa.
into w > 2 subgroups, we have proven that when the list of the Theorem 3.1:There is at least one ordered optimal partition
capacities of the receivers is concave, the normalized throughffiitthe wth-order list partition problem.
in the limit is always greater than or equalty'2)- (1 —(1/w)). Proof:
We have also proven that when the list is concave and two sub-1) We prove the theorem by showing that for every dis-
groups are used, the normalized throughput in the limitis atleast ordered partition, there exists an ordered partition
33%. When the list is not concave, we have proven that when  with higher or equivalent value of the object function.
two subgroups are used, the normalized throughput in the limit ~ Without loss of essential generality, we assume that
is always positive. Furthermore, we have derived lower bounds  a;(1) = min;<;<, a;(1). (We can always reorder the
to estimate the normalized throughput. sublists or reorder the elements in a sublist without
We have proposed a quadratic-time algorithm to performthe  changing the value of the object function.) ltet 2.
optimal partition, showing that the throughput improvement 2) If ¢ = n, stop. Otherwise, let:(t) = min; >, a;(t — 1).
can be achieved in practical system design. Since the optimal3) If a.(¢t — 1) = m(?), seta;(¢t) = a;(¢t — 1), wherel <
paging problem in cellular networks is equivalent to the list 1 < n, increase the value @fby one and then go to step
partition problem, the quadratic-time algorithm can be applied 2. Otherwise, letr = t and/ = arg min; > a;(t — 1). (If
there as well. Moreover, we have observed that the problem of  there are several elements equivalenti#@), choose one
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TABLE |
AN EXAMPLE OF THE ALGORITHM IN THE PROOF OFTHEOREM 3.1

t | ay(t) | az(®) | as(t) | aa(t) | as(t) | as(?) | @1 | @2 | @3 | value of the object function
1 1 6 2 3 4 5 16123 |45 14
2 1 2 6 3 4 5 12163 |45 16
3 1 2 3 6 4 5 1213645 16
4 1 2 3 4 6 5 12134165 18
5 1 2 3 4 5 6 12|34 |56 18

arbitrarily.) Namely,ag(t — 1) = min;>. a;(t — 1). Let
f(c) be the index such that, (t — 1) € Q) and f(3)
be the index such thats(t — 1) € Q4.

4) If an(t — 1) = min(Qy,)), increase the value of
t by one, exchange the indexes @f;,) and Q(gs),
update Q17 Q27 (RS Qwv al(t)v a2(t)7 IRAE an(t) and
bi,bay . by

in the<th round and never moves it after that. Therefore,
for every disordered partition, there exists an ordered
partition with higher or equivalent value of the object
function. Since the total number of patrtitions is finite, we
have completed the proof. O

In Table I, we use an example to illustrate the algorithm in the

1 accordingly and then go to step 2. Itabove proof. Lety = {1, 2,3, 4,

5,6} andw = 3. Assume that

is clear that the value of the object function does neitt = 1,Q; = {1,6},Q> = {2,3} andQ; = {4,5}. Mean-
change after this step, since the algorithm only rearrangghile, a; (1) = 1,a2(1) = 6,a3(1) = 2,a4(1) = 3,a5(1) =

the order of sublists and does not add/remove elements;s(1)

into/from any sublists.
5) If aq(t—1) > min(Q s(a)), SWapa.(t—1) andas(t—1)
sothata,(t) = ag(t—1),a5(t) = ax(t—1) anda;(t) =

be the value of the object function after the swapping. Let a(3)

Q17Q27 -

/ /

now prove thatl” > T as follows. If f(«)
clear that?” =

f(B).

= f(B), itis

w w

T -T= Zmin(Q’i) - |Q4] — Zmin(Qi) Q4]

i=1

2.

i#f (@), £(8)
+ Inin(Q/f((y)) ) |Q/f((y)| - Inin(Qf(a)) ' |Qf(a)|

+ min(Q/f(,a)> Qe — min(Qrs) - 1Qr(s)
=0+0+ (lnin(Qlf(,@)) — min(Qy 9"))) @seo)]

>0

i=1

%) - 1Q%| — min(Q

min(Q

i) 1Qil

5. At ¢ = 2, since 2 is the second smallest el-

ement in the list}, the algorithm swaps 2 and 6 and, there-
fore, a1(2) = 1,@2(2) = 2,@3(2) = 6,@4(2) = 3,@5(2) =
4,a6(2) = 5. Meanwhile,@; = {1,2},Q» = {6,3} and
ai(t — 1), V1 < i < n,i # a,i # 3, increase the Q3 = {4,5}. At t = 3, since 3 is the third smallest ele-
value of¢ by one and then go to step 2. L€tbe the ment in the listQ, the algorithm swaps 3 and 6 and, there-
value of the object function before the swapping &fd fore, a;(3) = 1,a2(3) = 2,a3(3) = 3,a4(3) = 6,a5(3) =

Theorem 3.2 (Optimal Substructurelet @1, Q-, ...
T. We now prove the case th#f«) # be an ordered optimal partition f@p. v2 < ¢ < w — 1, let

L=QiUQU---

5. Similarly, a1(4) = 1,a2(4) = 2,a3(4) =

, Q, be the partition before the swapping and, a,(4) = 4,a5(4) = 6,a6(4) = 5 anda1(5) = 1,a2(5) =
5 ..., @, be the partition after the swapping. We2, a3(5) = 3,a4(5) = 4, a3(5) =

5,a6(5) = 6.
’Q'll)

UQ;andR = Qi1 U Q2 U---UQ,.

Furthermore, leL.; = @Q;, wherel < j < ¢, andRy = Qitx,

wherel < k < w — 4. Then,Ly, Lo, ...,
timal partition of . andR1, Rs, . . .,

L; is an ordered op-
R,,_,;isanordered optimal

partition of R.

2) SupposeLq,Lo,...,

The second term is zero, since before the swapping,

min(Q(a)) < min{an(t — 1), ag(t — 1)} and therefore
after the swappingmin(Q’f(a)) = min(Qs). The
third term is nonnegative, sineg,(t — 1) > ag(t — 1)

and therefore after the swappingnin(Q’m)) >

min(Qys))-

6) Since the value of increases by one in each round and

n is finite, the above algorithm terminates within finite
rounds. In addition, in each round of the algorithm,
the value of the object function never decreases. Fur-

thermore, when the algorithm terminates, the sequence

ay(t),az(t),...,a,(t) is sorted in nondecreasing order,
since the algonthm makes (¢) theith smallest element

Proof:
1) Duetothe constructiondf;, Lo, . ..,

L;andL, itisclear

L; is an ordered patrtition of.

L; is not an optimal partition
of L. Let Ly, L3,...,Lf be an ordered optimal
partition of L. (The existence of such a partition
has been proved in Theorem 3.1.) It is clear that
Ly,La,...,L;, Ry, Ro,..., R_; iS a partition of Q.
Similarly, Lf,L%,..., LY, Ry, R,,...,R,_; is also a
partition of Q. Then,

> in

thatLl,LQ, .

min( Q|

w—1

s=1
)| Ls| + Zmln Ry) - | Ry
k=1

= E Inm
w—i

< Zmln L)LY+ Zmln Ry) - |Rxl-
s=1 k=1

The last inequality is due to that, Lo, .. ., L; is not an
optimal partition ofL. However, the last inequality is con-
tradictory to that){, o, . . ., Q,, is an optimal partition
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of Q. Therefore L1, Lo, ..., L; must be an optimal par-

tition of L.
3) Similarly, it is easy to prove thdt;, Ry, ..., R, _; is an
ordered optimal partition ofz. O

B. Analytical Results

1) The Uniform Distribution: Why Two Is Much
Better Than One:

Lemma 4.1:1f n is a multiple ofw, then{1,2,...,n/w},
{(n/w)+1,(n/w)+2,....2n/w},..., {((n(w—1))/w) +
1,((n(w — 1))/w) + 2,...,n} is an optimal solution of the
wth-order list partition problem fot/,,.

Proof:
1) Define a quadratic functiofi(zy, z2,. .., zw—1) as fol-
lows:
f@1, 22, 2wo1)

w—2
=z + Y (zi+1)- (g1 — )
=1
+ (x'zzz—l + 1) N (7'L - xw—l)

w—1 w—2
2
= E —x; + E T Tigp1 TN Ty—1 + N
=1 =1

Note that f(z1,x2,...,2,-1) IS the object func-
tion of the wth-order list partition problem for
U, = {1,2,....n}, when xi,z0,...,24_1 are
partition points. (i.e., the corresponding partition is
{1,2,...,.’1}'1},{.’1}'1 + 1,.’L’1 + 2,...,$2},...,{$w,1 +

1, &1+ 2,...,n}.

2) We use partial derivative to obtain its local optimal pointP

First, since(df/dz1) = 0,22 = 2x;. Second, since
(0f/0x;) =0,zj41—2x;+xj_1 =0,V2 < j Sw—2.
Third, (3f /8xy—1) = 0,224y—1 — Ty—2 = n.

3) From 2 and the fact that,,_; < n, we derive that:; =
(njfw), ¥1 < j < w—1.

4) To prove that the local optimal poinf = (nj/w), where
1 < j < w -1, is the global maximum point, we prove
that the functionf(x1,z2, ..., x,—1) IS concave as fol-
lows. First,Y % w; - w1 = (1/2) Y00 P a? + a2, —
(.’IZZ‘ — -Ti+1)2- Then

f(@1, @2, Tw1)
w—1 w—2
= Z —z7 + Z% CLig1 N Tyt TN
i=1 i=1
w—2
Lo 15, 13 2
= 5%~ 5%w17 5 (; — i)+ 10 Typ1 + 71

1

?

5) Since —(1/2)a?,—(1/2)a%_,, —(1/2) XL (x;
zi+1)? andn - z,_1 + n are all concave functions,
f(z1,29,...,2,-1) is also a concave function and
therefore the local optimal point is the global optimal
point.

Theorem 4.2:lim,,—.. Ty, (w) = 1 — (1/w).
Proof:

1) Let f(.’L') = f($17$27~~~7$w—1) :_

) _
Yo wimip1tnze—_1+nandz = (71

S et +
1 T2, 7$'w71)

b) LetA = {al,ag,..

97

be the real maximum of the function. Let =
(T1,72,...,45-1) be the integer maximum of the
function f. Let z* = (af,z%,...,2%_;) be any
rounding of Z to nearest integers. Then obviously,
fz*) < [(@) < f(@).

2) The evaluation of atz givesf(z) = n?/2(1—(1/w))+
n

3) S.incel <w<nandl < j<w—1,0< ((ny)/w) <
[((ng)/w)] < ((nj)/w)+1and0 < ((nj)/w) — 1 <
[((nj)/w)] < ((nj)/w). Therefore,

f(xtvxzv"'vxtu—l)

w—1 . 2 w—2 .
> (21 + 21
(i) 26
<n (i+1) _1> 4 .<n~(w—1) _1> .
—;—”2 ‘_ z‘2+”—2-iz-(z‘+1)
+ <1 - 1) n° +e1(n)

wheree; (n) is a polynomial ofr such that the degree of

the variablen is at most one is seen as a constant).
4) Thereforelim,, ... 'y, (w) = lim, .oo(f(2)/(n?/2 +

(n/2))) =1-(1/w) O

2) The Optimal Paging Problem and the List Partition
roblem Are Equivalent:
Theorem 4.3:

a) LetD = {di,ds,...,d,},where>_"  d; =1andvl <

1 <n—1,0<d;41 <d;. LetAbethe accumulation list

of D. Then,Pp(w) = n — Ta(w).

., a, t be a concave list, where >
aiy1 > a; > 0andl — a, < a, — a,—1. Letd be the
difference list ofA. Then,Pp(w) = n — T4(w).

Proof:

1) Let Dy, Do, ..., D, be an arbitrarywth-order partition
of D and Ay, A,, ..., A, be the associated partition of
A. Then

w

Z Z |D;| - sum(D;)

i=1 j=1

=>"> sum(D;) - |D;|

=1 i=j

=3 <1 - ZSUIH(DZ‘)> | Dy

i=1

w j—1

= Z D] - Z ZSUIH(Di) -|Dj
<Z sum(D;) = min(Aj)> .

ur

=n— Y min(4;) - |4,

j=1
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2) SinceD is nonnegativeA is nondecreasingly ordered.
Therefore

w @
Pp(w) = minimize Z Z |D,| - sum(D;)
i=1 j=1
w
= n — maximize Z min(A4;) - | 4|
i=1

=n— Ta(w).

3) We now prove property b. Itis clear that the resultin 1 still

holds. Sinced is concave, hondecreasingly ordered and

1-a, < a, —ay_1, the sequencd; is nonincreasing
and nonnegative. Therefore

Ts(w) = maximizez min(4;) - |A;]

i=1

w1
= n — minimize Z Z |D;| - sum(D;)

=1 j=1
=N — PD(U})

O
3) Lower Bounds for Concave ListdMe first define a linear
operation on a list and then prove that the optimality of a part

Definition: For any finite listQ = {¢1, 42, ..., ¢}, we de-
finea-Q+8={a- g +8,a-¢+8,...,a-q,+ 5}

For example, assume thé& = {0.1,0.2,0.3,0.4}, o = 4
andg = 0.01. Then,o- @+ 3 = {4-0.1 +0.01,4- 0.2 +
0.01,4-0.340.01,4-0.440.01} = {0.41,0.81,1.21,1.61}.

Lemma4.3:If Q7.Q3%, ..., Q7% is an optimal partition of the
wth-order list partition problem for the lig} of sizen, then:

a) foranya > 0,T,.g+s(w) = a - To(w) + B - n;

b) foranye > 0, - Q5+ 5, - Q5+, ..., - QF +Fisan

optimal partition of thewth-order list partition problem
for the lista - Q + 3.

Proof: The proof is straightforward and will be omitted
here. O

Lemma 4.4:For any listD = {d;,ds,...,d,}, wherevl <
7 < n—10< di+1 <d; < 1and2?=1 d; = 1,2?:1i-di <
((n+1)/2).

Proof: 1. According to Corollary 2 of Theorem 2 in [31],
>or ., i-d;is maximized whenl; = dy = --- = d,, = 1/n.
Therefore, for an arbitrary ligd, we havey ", i-d; < >0 i
(1/n) = ((n +1)/2).

Theorem 4.4:For any basic concave list of cardinality
n, LetD = {d;,ds,...,d,} be the associated difference list.
Then:

a) for any natural numben, ((T4(w))/(LTa(n))) = ((n —

Pp(w))/(n = Xi_y & - di).
b) For any fixed natural numbeww, define L(d;,do,
d)) = ((n = Pp(w))/(n — Sh_k - dy)).
Let S {(di,do, ..., dy) = X0 d;
1,0 £ dp £ dp1 < < dp < 1} Then,
Inin(d17d27m7dn)es L(dl, dQ, ey dn) exists.
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Proof:

1) According to Theorem 4.3s(w) = n — Pp(w). For
any basic concave list = {a;,a2,...,a,}, let D =
{dy,d2,...,d,} be the associated difference list. First,
due to the construction of the difference Iist,._, d; =
1. Then

n—1 <

IZZCZJ ale,aH_l

=1 j=1

TA(TL) = Z a;
=1

n

= Zdﬂ'
j=1

=Y (n—j)-di=n=>j-di | > di=1
j=1 j=1

=1

Then, (T4 (w))/(Ta(n))) ((n — Pp(w))/(n —
> et ko i)

2) We now prove property b. It is easy to see that for any
w, L(-) is a continuous function, since both— Pp(w)
andn—>_;_, k-dj are continuous. Sincé,is closed and
bounded,S is a compact set. Therefore, the imageSof
underL( -) is also a compact set, in which the minimum
element exists. O

The first property of theorem 4.4 allows us to derive the nor-

malized throughput by solving the optimal paging problem. The
second property shows the existence of the minimum normal-

T : o Yed throughput among basic concave lists. Since the object
tion is preserved under a linear function in terms of throughpyf, - i L(dy, d

..,dy) is nonlinear and it includes a dis-

crete optimization problem, it is difficult to analytically derive
the minimum normalized throughput. Therefore, we derive the
following lower bound of the normalized throughput.

Theorem 4.5:For any basic concave list of cardinalityn

and any natural numbes:

a) if n is a multiple ofw,I" 4 (w) > (1/2) - (1 — (1/w));

b) 's(w) > (1/2) - (1 — (1/w)) — €(n), where
lim,, o e(n) = 0.
Proof:

1) LetDyorst = {1/n,1/n,...,1/n}, wheren = |Dyopstl-
Whenn is a multiple ofw, Pp___, (w) = >":";(1/w) -
((n-9)/w) = (n/2) - (1 + (1/w)).

Ta(w) =n — Pp(w) (Theorem 4.3)
>n—Pp, . (w)(Lemma4.2)

n 1
=n—(3)- <1+z)
n 1
(5)-(:-3)
2) For any basic concave list = {ai,as,...,a,}, let
D = {d;,d»,...,d,} be the associated difference list.

We know thaty ") | d; = 1 (See proof in Theorem 4.4).
Then

Ta(n)=n—Y_j-d; (Proofin Theorem 4.4)
j=1
<n-—-1
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3) Based on 1 and 2 creasingy¥l < i < n,0 < a; < 1. Sincea > 0 andQ is
nondecreasing4 is also nondecreasing. Moreover,
Ta(w) 3 1
> 1-= n —
Ts(n) " n-—1 w l—anzl—%
>1. 1_1 IQn_Qn—l
-2 w o
_ G — N Gn-1— A1
4) We now prove property b. First « o
= ap — An—1
Pp. . < zw: <% + 1) ' <E 4 1) Thus, A is a basic concave list.
P n 4) We now prove the property b.
- 1) <m )2 T T 5.
= hd —+1 Qw) _ e Talw)+f-n | omaas
; <n w Ton)  «a-Ta(n)+p3-n ( 3)
n 1 w a-Ta(w) (o Ta(w)
=— 14— 1+ —. > <1,8-n>0
2 < +w>+w+ +n ~ a-Ta(n) <a-TA(n)_ ez
_ Ta(w)
5) Then ~ Ta(n)
1 1
> 2. I
Ty(w) = n — Pp(w) 25 <1 w) e(n), (Theorem 4.5)
>n—P w
. DW“S{( ) w wherelim,, ., ¢(n) = 0. O
=5 <1 — E) — (w +1+ ;) . 4) Lower Bounds for Arbitrary Lists:

Theorem 4.9:Let D = {d;,ds,...,d,}, wherevl < ¢ <
- n,d; € [0,1] and}_"_, d; = 1. Then,((n — VPp(2))/(n —
6) Similar to the proof of property a, we havein k[- dk])) >Z(:17§) =1+ (2/((1(+ ), I\)N(hi)ré(p _

(@a(@)/Tam) = (12 - (1= Q) = ), &7 ) =
where e(n) = ((w + 1)/n) + (w/n?) and clearly kl5_ri)of' '
lim,, o €(n) = 0. "

We have derived a lower bound of the normalized throughput b gtp = (= 12 C\l/’\“/é/;;"ilgggi %(2[0 1)]/(|1e_;{_x))_
for any basic concave list in Theorem 4.5. We now extend the swicgé)ltﬁ]gr/\fv)lgé p P
result. We first define a nonnegative list and a nondecreasing

list. "

Definitions: Zk'dkz <[<1+p> w>x

1) Alist @ = {q1,42,.-.,¢.} IS said to be nonnegative if k=1
each elemeny; is nonnegative, where < < n. > < Tp ) < 2-p )

2) AlistQ ={q1,q2,...,q,}is said to be nondecreasing if _ 2 1+p
<@L, R

We now present an extended version of Theorem 4.5. which is contradictory tg = ((3"7_, k - di)/n).

Theorem 4.6: 2)

a) For any nonnegative, nondecreasing, concaveist
{01,992, .-, a0}, if ¢, # q1, there exists a basic concave VPp(2) < (1—x)- q(lﬂ) nw _ 1) txom

list A = {a1,a2,...,a,}, two real numbers: > 0 and 2
g >0,suchthat) = o - A+ 7. 14+9p
b) For any nonnegative, nondecreasing, concave(}ist <{d-z) <T> mtz-n.
lan a2 ant, it g # @ o(w) =2 (1/2) - (1 —
(1/w)) — e(n), wherelim,, ., e(n) = 0. Then,
Proof 1+p
1) Choosex = (gn — gn_1) + (gn — q1) andj = q,. First, n—VPp2)>n-(1-z)—n-(1-=): <T)
since( is nondecreasing ang, # g1, « > 0. SinceQ is 1—
nonnegative/s > 0. =n-(1-x) <—p>

2) Q=a-((Q-p)/a)+p.

3) We now prove thatt = ((Q — 3)/a) = {0,((¢2 — > <1 _2p ) ) <1;P)
a)/a), ((g3—aq)/e), ..., ((g.—q1)/«)} is abasic con-
cave list. Sincex > 0 and(@ is concaveA is also con- (1 —p)?
cave. Clearlyg; = 0. Sincex > ¢, — f andQ is nonde- v < )
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3) 6) Then
n—VPp(2) 1—p n— Pp(2)
o > ms :
Wik 252y T S A
1 2
2 1 + P 1— p P
1-2.
O VPEP
Theorem 4.11:For any nonnegative, nondecreasingdist 1=p
{a, 02, ant i gn # a1, (T0(2))/(To(n) 2 (1 -2
VP +p)/(1—p)), wherep € (0, 1) is defined as in the above
theorem.
Proof: ACKNOWLEDGMENT

1) According to the previous theorem, There exists a quasi-
basic listA = {a1,as,..
a > 0andps > 0, such that = - A + 3. Let
D ={d;,ds,...,d,} be the associated difference list o

The authors thank the editor and the reviewers for their help
- an} and two real nUmbers 4, i hrove our paper. The authors particularly thank one of the
anonymous reviewers for providing in-depth and valuable sug-
fgestions. The authors also thank M. R. Perlman for reading the

Aandp = ((LCy=y k- di)/n). Clearly,p € (0,1). (That et graft of the paper and providing suggestions.

p =1resultsing = g2 = --- = ¢, and violates the con-

dition thatql 75 qn.) Letz = E?: [(r)-(p-n)+(1—r)-(n)] d;,
wherer € [0,1]. We claim thate < 8p/(7’ p+(1-7))),
since otherwise

Skedezz [(r)-(p-n)+1A—7) ()]
k=1

p ) ) B
> ora Ty - n=pen

3) ((n—Pp(2)/(n—Sp_y k-di)) 2 (L—r) ptr—

M)/ - p)).

(L=r)-p+r—(p/(r-p+1-7)))/(1-

p)) = ((r(@ = r)(1 = p))/(1 — (1 — p))). For each
p € (0,1), we find the optimal to maximizef(r,p) as
follows. First,(0f/0r) = (1/(1—p))-(—p+1+((p-(p—
1)/((r-p+1-r)%))). Sincer = ((1-/p)/(1-p)) isthe
unique solution fofdf/dr) = 0in [0,1], it is therefore
the unique local optimal ifo, 1].

5) We now prove that for each fixede (0, 1), the function
f is a concave function of. First, ((9%f)/(97%)) = ((2-
p-(p—1)/((1—r-(1-p)*). Sincep € (0,1), itis
clear2-p- (p — 1) < 0. Furthermore,

1—7r-(1-p)>1-r(pe(0,1))
>0,(re[0,1]).

Then, for each fixedp € (0,1),((8%*f)/(672)) < 0
and, thereforef is a concave function. Thus,= ((1 —
vP)/(1 — p)) is the global maximum point.
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