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Abstract

Search techniques such as Genetic Algorithms, Simu-
lated Annealing, Tabu Search and Random Walk Algorithms
have been used extensively for global optimization. This pa-
per presents an experimental analysis of the performance
of these algorithms for the problem of designing the fixed
portion of a cellular network. We first investigate the effect
of various algorithm specific parameters on their perfor-
mance. The algorithms are then compared to each other
using criteria that ensure fairness. Under the given prob-
lem formulation and assumptions regarding the location of
nodes in the network, we find that Tabu Search and Genetic
Algorithms provide good, robust solutions.

1. Introduction

In cellular networks, the mobile units are connected to
the public communication networks via a series of inter-
connections determined by the system architecture. Fig-
ure 1 shows the architecture for the European GSM stan-
dard. The mobile stations (MS) in each cell communicate
over the radio interface with the Base Transceiver Stations
(BTS). Some low-level functions such as mobile handoffs
are made by the Base Station Controllers (BSC), each of
which may control several hundred BTS. The BSC in turn
are connected to and controlled by the Mobile Switching
Centers (MSC). Thus there is a large part of the communi-
cation hierarchy in a mobile cellular system which takes the
form of a fixed wired network. The cost of the topology of
this fixed network depends upon several factors such as the
cost of the nodes and links, and the maximum number of
links allowed per node. It is desirable to design the network
topology in such a way as to minimize this cost.

This problem is closely related to the NP-hard facility
location problem in Operations Research where the goal is
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Figure 1. GSM Network Architecture

to place facilities on a 2-D plane in such a way as to mini-
mize the average distance between them and existing client
locations [1]. Local Search Algorithms such as Genetic Al-
gorithms, Simulated Annealing, Tabu Search and Random
Walk have been applied extensively for such difficult opti-
mization problems [2], [3], [6]. In fact, both Genetic Al-
gorithms and Simulated Annealing have been utilized pre-
viously to find low-cost topologies [4], [5] for GSM and
DCS1800 systems. However, an experimental comparison
of these algorithms and the other search techniques has not
yet been performed for this problem.

2. Problem Description and Parameters

The network to be minimized consists of Ngrg base
transmitting stations which are connected to Npsc base
station controllers in such a way that no BTS is connected
to more than one BSC, and no more than M AX _BTS of
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them may be connected to each BSC. It is further assumed
that all BSC are connected to exactly 1 MSC. The locations
of all BTS and the MSC is pre-specified. The object of
the optimization process is to find the best location for each
BSC and determine which BTS should be connected to it. It
is assumed that c, the ratio of the cost per unit length of the
higher bandwidth links between each BSC and MSC to the
cost per unit length of the links between the BSC and BTS
is some constant > 1.

The cost function to be minimized is:

Nprs Nesc
f=3 lprssescw+a Y, lesciomsc (1)
i=1 Jj=1

where lpTs, s Bsc(i) is the length of the direct link between
the i** BTS and the BSC it is assigned to, and I BSC;~»MSC
is the length of the direct link between the j* BSC and
the MSC. For the purpose of investigating the performance
of the various search algorithms on this optimization prob-
lem, we choose an instance with Ngsc = 3,Nprs =
50, MAX _BTS = 20, o = 5. All nodes are assumed to be
located in an area that is of size 10x10 square units. The lo-
cations of the BTS are generated randomly using a uniform
distribution over the service area. A typical starting point
for the search algorithms is shown in figure 2. The rectan-
gle represents the MSC, the BSCs are represented by filled
circles, and the BTS are represented by the small squares.

Figure 2. A Typical Initial Point

Figure 3 shows the histogram of costs obtained by taking
108 samples from a search space with Ngs¢ = 3, Nprs =
50, MAX _BTS = 20, and o = 5. It is interesting to note
that for this problem the distribution of costs is quite smooth
and appears bell-shaped. The probability of locating low
cost solutions falls off quite sharply.
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Figure 3. Histogram of Costs

3. Neighborhood Definition

Each point in the search space consists of i) a particu-
lar set of locations for each BSC, and ii) a particular as-
signment of BTSs to each BSC satisfying the M AX _BTS
constraint. To generate a new neighbor from this point two
neighborhood generating operators are required - one that
moves the locations of the BSCs and another that changes
the BTS assignments for each BSC.

To move the BSCs, two independent Gaussian random
variables, N; and NNy, are generated with zero mean and
standard deviation o. At each step, one BSC is randomly
picked and if it is located at the co-ordinates (X;,Y;), in
the generated neighbor this BSC is displaced by (N, Ny)
and has co-ordinates

(X5, Y)) = (X; + N, Y + Ny) @
To ensure that the generated BSC location is within the
boundaries of the service area, the following hold:

Xij+N;>10= X; =10
X;+N <0=X;=0
Y; + Ny >10=Y/ =10

Y;+N,<0=Y/=0

To modify the assignments of the various BTS to each
BSC, three kinds of moves are possible:

e BTS move A: Do nothing. This “null” move is im-
portant to have because it allows the search to opti-
mize the location of the BSCs without changing BTS
assignments.

e BTS move B: Pick two BSCs, BSC, and BSC>, and
if the number of BTSs allocated to BSC5 is less than
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MAX_BTS, pick one BTS assigned to BSC) at ran-
dom and assign it to BSCj instead.

e BTS move C: Pick two BSCs, exchange one BTS as-
‘signed to each (picked randomly with uniform proba-
bility) with the other.

Weights may be assigned to each of these kinds of
moves. This is accomplished by using two probabilistic pa-
rameters wj , we Which are chosen such that

O0<wi+w <1 3)

At each step, move A is carried out with probability w;,
move B with probability we and move C with probability
1- (w1 + wz).

Thus the parameters that affect the definition of the
neighborhood for the various search algorithms are o - the
standard deviation of the BSC displacements, and w;, wa,
which control the changes in BTS assignments to each BSC.
For the experiments described in this paper, these parame-

ters have the following values: ¢ = 0.1, w; = ws = %

4. Effect of Algorithm Parameters on Perfor-
mance

As mentioned in the introduction, local search algo-
rithms have been used extensively for difficult optimization
problems such as this mixed continuous-discrete problem.
We investigate four local search algorithms in this paper:
Random Walk, Simulated Annealing, Tabu Search and Ge-
netic Algorithms. Random Walk (RW) is the simplest of
these: make local moves in the search space, such that up-
hill moves are accepted with a fixed probability p through-
out the search, while downhill moves are accepted uncondi-
tionally. Simulated Annealing (SA) is an extension of this
idea - a temperature T is decreased as the search proceeds,
in such a way as to decrease the probability of accepting up-
hill moves. In Tabu Search (TS), a number of neighboring
points in the search space are considered as possible moves.
There is also a list of tabu moves that is maintained dy-
namically; these moves may not be considered unless some
aspiration criterion is satisfied. In genetic algorithms (GA),
we consider a population of individuals at each generation,
each corresponding to a single point in the search space. A
fitness selection process determines a subset of these indi-
viduals, which then mutate give rise to the next generation.
‘The mutation simply consists of generating a neighboring
point. We do not utilize the crossover operator in this pa-
per. For a more detailed description of these algorithms and
their implementation, see [7].

Before the search algorithms can be compared to each
other, it is necessary to determine the best parameter val-
ues for each algorithm independently via initial experimen-
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tation. These experiments are described below. In all al-
gorithms, we use the neighborhood scheme described in
section 3 to generate local moves. This ensures fairness of
comparison.

4.1. Performance of Random Walk
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Figure 4. Performance of Random Walk

We first investigate the performance of the RW algo-
rithms for varying values of p, the probability of accept-
ing uphill moves. The RW algorithms thus range from be-
ing a purely greedy search (p = 0) to a purely random one
(p = 1). The algorithms are run 10 times for 100,000 func-
tion evaluations for each value of p ranging from O to 1
in increments of 0.05. The results are shown in figure 4.
It is observed that the variance of final solutions obtained
is greatest with greedy search; however, the average final
cost is worse than that observed with a low uphill move
acceptance probability of 0.05. A small non-zero value of
p dislodges the search from some local minima. As p is
increased further, the search performance deteriorates in a
monotonic fashion, with the worst performance observed
when p = 1 (purely random movement). This is fairly typi-
cal of search spaces with multiple local optima, since in the
absence of such local optima, a greedy search would pro-
vide the best performance.

4.2. Performance of Simulated Annealing

Some of the parameters to be determined for SA are the
initial temperature, the temperature cooling schedule used,
and the number of moves at each temperature. If I is total
number of iterations to run the algorithm and n the number
of discrete temperature levels in each run, the number of
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moves at each temperature level L is set as

L==
n

C))

The number of temperature values in the experiments is
chosen to be n = 20; hence if I = 100,000 then L =
5000). The initial temperature T, needs to be high enough.
It is determined by first obtaining L cost values via a purely
random search (equivalent to RW with p = 1) and finding
the standard deviation o, of costs at this temperature and
setting T, = 100. The geometric cooling schedule is em-
ployed:

Thew = acToa

®

where o is the cooling rate parameter.
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Figure 5. Performance of Simulated Anneal-
ing with Geometric Cooling Schedule

To the investigate the performance of the geometric cool-
ing schedule, SA with different values of a, (which must be
between 0 and 1) are each tested for 10 runs and 100,000 it-
erations. Figure 5 shows the final costs obtained for a. in
the range [0.980, 1.000]. It was observed that SA perfor-
mance i the same for all values of a, from O to about 0.996,
after which it is seen to deteriorate a little as it is increased
to 1.0, when the cooling is too slow. Further, a visual ex-
amination of the lowest cost solutions obtained by SA (not
shown here) indicated that they were far from optimal. This
behavior of SA suggests that the search space may be quite
rough and full of local minima. This means that during the
initial stages of the annealing process, when the tempera-
ture is high, the algorithm is unable to locate good regions
of the space to settle down to. If the cooling rate is fast
enough to allow the SA to settle down to a greedy search,
the net performance of the algorithms depends highly on the
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greedy portion of its search, which, because of the existence
of multiple local minima fails to find good solutions. Fur-
ther experiments using exponential and logarithmic sched-
ules confirmed that the performance of SA is not signifi-
cantly affected by the choice of cooling schedule [7].

4.3. Performance of Tabu Search

As there are essentially two kinds of moves that gener-
ate neighboring points (moving the locations of BSCs and
changing the BTSs allocated to BSCs), two different tabu
lists were implemented for the Tabu Search algorithm, both
with the same tabu tenure value K. These tabu lists are de-
fined as follows:

e BSC Location Tabu: When the jt* BSC is moved to a
location (X, Y;) in iteration n, movement of the j*
BSC to any point within a radius of 0.1¢ of (X}, ¥;)
before iteration (n + K) is tabu.

¢ BTS Allocation Tabu: When the i** BTS is taken from
the jt* BSC and allocated to some other BSC in iter-
ation n, the re-assignment of the 4t* BTS to the j*
BSC is tabu until iteration (n + K).

The simple aspiration criteria , whereby a tabu move is ac-
cepted if it leads to the lowest cost function evaluation to
date, is utilized in conjunction with these tabu definitions.
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Figure 6. Performance of Tabu Search

The effect of the value of the tabu tenure K and the size
of the candidate list v on the performance of Tabu Search
for this problem is investigated. The first experiment an-
alyzes the average final cost over 10 runs of 100,000 itera-
tions each obtained by running Tabu Search algorithms with
candidate list sizes v = [1, 5, 10, 20] for values of the tabu
tenure K =[1, 4, 9, 15]. The results are shown in figure 6
and are somewhat intriguing. First of all, it appears that the
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performance for the various values of K is nearly identical
suggesting that in this case the tenure value of 1 may be suf-
ficient to prevent cycling. Further, while the performance
for candidate list size v = 1 is fairly good, the performance
for v = 5 is worse, and the final costs obtained with v = 10
and v = 20 are nearly identical and better than that obtained
with v = 1, suggesting that a candidate list size of v = 10 is
good. Since the algorithm appears fairly independent of the
value of K, the variation of the final costs with v was fur-
ther explored by an experiment where K is fixed at a value
of 4. Figure 7 shows the average, minimum and maximum
cost values obtained over 10 runs of 100,000 iterations of
Tabu Search for v values from 1 to 10. The average results
obtained with the greedy search algorithm (RW with p = 0)
are also plotted for comparison.
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Figure 7. Performance of Tabu Search (2)

It appears from figure 7 that the performance of Tabu
Search is fairly good for candidate list sizes of 1 and 2.
Tabu Search performs quite poorly for v = 3 (even worse
than greedy search on average), and thereafter improves in
a monotonic fashion as v is increased to 10. It also appears
that the variance in the final solution obtained is very small
for v = 10. This is certainly odd behaviour. How can it be
explained? v is effectively the branching factor at each step,
indicating how the neighborhood of each point is sampled
before making a move. One possible explanation for the ob-
servation is that on average 1 in 3 neighbors of each point
in the space are misleading in that they that lead the search
into local minima. When only one point is sampled, the
search will accept that point unconditionally if it is not in
the tabu list. However, when at each step about 3 neighbors
are sampled, chances are that picking the lowest of those
points leads to a trap (local minimum). As the candidate list
size increases beyond 3, more of the neighborhood is be-
ing sampled and the better exploration of the neighborhood
allows the search to escape such traps by finding relatively
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Figure 8. Performance of Genetic Algorithms

rarer lowest points in the neighborhood (perhaps about 1 in
10) that do not lead to local minima.

4.4. Performance of Genetic Algorithms

The influence of population size and selection technique
on the performance of Genetic Algorithms is investigated
next. Three selection techniques - proportional selection,
tournament selection, and rank-based selection - are com-
pared for this problem with the same parameters. The three
sub-plots Figure 8 show the performance of each technique
for population sizes ranging from 10 to 100 in increments
of 5. For each selection technique and population size pa-
rameter value 10 independent runs consisting of 100,000
function evaluations were carried out. It is clear that the
performance of the Genetic Algorithms is quite robust and
independent of the size of the population for this problem.
The performance of the proportional and binary tournament
selection schemes is about the same with the latter perform-
ing a little better. The rank-based selection technique fares
rather poorly for this problem.

From an inspection of the final results produced by Ge-
netic Algorithms with tournament selection, it appears that
they are very likely the globally optimal solutions or very
close to it. One support for this speculation is the fact that
the minimum cost function solution returned by the GA
with tournament selection for each population value is ex-
actly the same.

5. Comparison of Algorithms

Once the best parameters for each algorithm have been
determined, we can compare them with each other. Greedy
Search (RW with p = 0), Random Walk (p = 0.05), Sim-
ulated Annealing (with geometric cooling schedule, a, =
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Figure 9. Comparison of Search Algorithms
(Ngsc = 3,Nars = 50, MAX_BTS = 20)

0.99), Tabu Search (with K = 4, v = 10), and Genetic
Algorithm (with a population size of 50, and elitist binary
Tournament Selection) are compared with each other for
their performance on the problem. We use the same num-
ber of cost function evaluations for each algorithm. Figure
9 shows the average, minimum and maximum final cost ob-
tained with these algorithms in 100 runs, each consisting of
100,000 cost function evaluations.

It is observed that Tabu Search and Genetic Algorithms
provide good final solutions for this problem. Random
Walk with a small probability of uphill moves performs
better than Greedy Search, while the performance of Sim-
ulated Annealing lies somewhere between the two. None
of these last three algorithms, however, appear to be able
to provide good quality solutions. This is probably due to
the search space being really rough and full of local minima.
Tabu Search with its aggressive, non-cycling, exploration of
the space and Genetic Algorithms with their inherent paral-
lelism both perform better for such a problem. Figure 10
shows the best cost seen to date versus number of cost func-
tion evaluations for a sample run of each algorithm for this
problem. The Genetic Algorithms start off with a low initial
cost because one of the 50 points chosen initially at random
happened to have a low cost.

Figure 11 shows a sample final solution obtained in one
of the runs by Genetic Algorithms after 100,000 cost func-
tion evaluations. It appears that GA has found a good, pos-
sibly near-optimal, solution which consists of BSCs that are
i) spaced apart from each other, and i1) in the midst of clus-
ters of base stations that are connected to them.
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6. Conclusions

We have presented an experimental comparison of var-
ious local search algorithms to the problem of minimizing
the cost of the fixed network in a cellular network. The re-
sults suggest that Genetic algorithms and Tabu Search are
both well-suited for this problem which appears to contain
multiple local minima. This may be attributed to the fact
that they both investigate multiple points in the search space
at each step. Other experiments conducted by us, that were
not presented in this paper, suggest that genetic algorithms
are particularly scalable to problems involving larger net-
works.

One observation we must make is that the problem for-
mulation is a little simplified here. We have assumed, for
example, that costs of the links are linear functions of their
lengths. In real situations, there may be a piecewise-linear
relationship between the cost of wiring and the length of the
links. Another assumption is that the links between point to
point are straight lines — this is rather unlikely in any realis-
tic setting since the geography of the service region, the lay-
out of the roads etc. plays an important role in determining
the exact wiring of the links. Despite these shortcomings,
we believe that the general results presented here regarding
the performance of the algorithms will hold under a more
realistic scenario as well. This is a topic for future research.
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