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Abstract— The data gathering problem in wireless sensor
networks for environmental monitoring, where the physical
phenomena can be modeled by partial differential equations
(PDE’s), is investigated. Under this context, it suffices for
the sensor network to update the base station with esti-
mates of model parameters rather than transmitting raw
sensor measurements. In-network processing techniques to
estimate the PDE coefficients are presented. A scheme that
provides a hybrid combination of decision and data fusion is
proposed to find a tradeoff between performance and energy
efficiency. The role that the assumptions of PDE models can
play in designing such methods is investigated.

I. Introduction

Wireless sensor networks are used for dense and au-
tonomous monitoring of environments, spanning from
ecosystems to industrial plants or vehicles. Data gather-
ing is a fundamental problem in such systems. Its goal is
to determine the optimal way (i.e. the least energy con-
suming way) to transfer node measurements to a remote
base station (BS). A typical assumption is that all nodes
sample the sensor field uniformly in time and generate a
packet for each round of measurements. All packets are
delivered to the BS through various aggregation strategies
[1].

The dense spatial-temporal signal sampling and trans-
mission is not energy efficient due to strong spatial and
temporal correlations of measured and transmitted data.
In many real world applications, such correlations can be
characterized by relatively simple physical models, e.g. a
set of partial differential equations (PDE’s). For instance,
PDE’s can be used to describe the diffusion of a gas in the
air or of a fluid in the water.

Generally speaking, physical models can often provide
fundamental insights into phenomena interesting to sensor
network applications [2,3]. In particular, if the goal is data
gathering, the PDE model can be used to offer a more com-
pact data representation of the phenomenon being observed
as compared with raw sensor measurements. When there
are no active sources in the environment, the coefficients of
the PDE, along with initial and boundary conditions, al-
low complete reconstruction of the time-varying scalar field
associated with the phenomenon.

In this work, we assume the existence of an underlying
PDE model for the physical phenomena being monitored

by sensor networks. Then, the base station would be able
to predict the evolution of a phenomenon using the model,
without the need of a stream of raw measurements from the
sensor field. Basically, it should only gather the initial and
boundary conditions as well as updated PDE parameters
so that the dense data field can be reconstructed from the
numerical solution of the PDE problem. It is apparent
that transmitting a few PDE coefficients costs much less
than sending the densely sampled data field, since these
coefficients have a much slower variation rate in the spatial
and temporal domains.

A relevant problem in the aforementioned framework is
the distributed identification of unknown PDE parameters
through measured data of sensor nodes. To the best of
our knowledge, the literature presents only centralized so-
lutions to this problem [4]. In a distributed context, it may
be worthwhile to have some of the nodes processing mea-
surements from the neighbors for robust estimation, which
is known as data fusion. On the other hand, the model
parameters may first be estimated from nodes using their
own measurements only, and then each node exchanges the
estimate with its neighbors for further refinement. This is
called decision fusion. Data fusion generally outperforms
decision fusion in accuracy at the price of a higher commu-
nication cost. The focus of this work is to provide some hy-
brid data and decision fusion techniques for the estimation
of parameters of PDE models in wireless sensor networks.

The rest of the paper is organized as follows. Section II
gives some background on the PDE model to be used in
this work. The problem formulation is presented in Sec-
tion III. The proposed distributed identification scheme
using hybrid data/decision fusion is presented in Section
IV. Simulation results are shown in Section V.

II. The Parabolic Equation

Consider a physical phenomenon represented by the
space and time varying scalar field x(ξ, t), where 0 < ξ < L
and t > 0, that satisfies the following relationship:

xt(ξ, t) = θ1xξξ(ξ, t) + θ2xξ(ξ, t) + θ3x(ξ, t) + u(ξ, t), (1)

where xt(.), xξξ(.) and xξ(.) denote the partial derivatives
of x(.) with respect to time, t, and space, ξ, and u(ξ, t) rep-
resents a source term. The PDE (1) is called the parabolic
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A particular case of (1) is the diffusion equation
xt(ξ, t) = Dxξξ(ξ, t). The scalar D is called diffusivity.
Typically, x(ξ, t) represents a concentration function. The
meaning of the diffusion equation is that there is net flow
of substance from the regions of higher concentration of the
substance to the ones of lower concentration [5]. An inter-
esting property of the diffusion equation is the smoothing
effect. Thanks to the proportionality between time deriva-
tive xt(ξ, t) and local curvature xξξ(ξ, t), the spatial profile
of x(ξ, t) is subject to a low pass filtering action over time.

The parabolic equation can be solved with the knowl-
edge of the initial condition (IC), x(0, ξ) = x0(ξ), and the
boundary conditions (BC’s). The parameters θ2 and θ3 are
sometime referred to as velocity, and dissipation (or disper-
sion), respectively. For some particular initial/boundary
conditions and parameters, the diffusion equation can be
solved analytically. Otherwise, numerical methods are re-
quired.

To solve the diffusion equation by means of numerical
methods, the derivatives must be approximated by finite
difference as

xξ(ξ, t)
∣∣
ξ=ih

≈ xi+1(t) − xi(t)
h

, (2)

xξξ(ξ, t)
∣∣
ξ=ih

≈ xi+1(t) + xi−1(t) − 2xi(t)
h2

, (3)

where h is the spatial sampling period. It can be shown
that the sampling time ts must obey the following inequal-
ity for the discrete approach to converge [5]: ts < h2

2D .

III. Problem Formulation

We consider a finite set of sensor nodes S = {si} de-
ployed over the one-dimensional sensor field [0, L]. The
nodes measure discrete-time samples of the scalar field
x(ξ, t), continuous in time, for t > 0, and space, for
0 < ξ < L. We assume that the evolution in time and
space of x(.) can be modeled by the following sourceless
parabolic equation:

xt(ξ, t) = θ1xξξ(ξ, t) + θ2xξ(ξ, t) + θ3x(ξ, t), (4)

with IC x0(ξ). The two boundary points, ξ = 0 and ξ = L,
are also subject to some boundary conditions (BC’s). Note
that (4) does not include a source term. The knowledge of
sources may not be available in a realistic sensor networks
scenario. The topic of the joint source and parameter es-
timation is an open problem for future research. However,
the effect of external sources can be modeled through the
BC’s.

It is assumed that node measurements are corrupted by
additive zero mean white Gaussian noise. Furthermore,
nodes {si}, partitioned into clusters {Sj}, know their ab-
solute locations {pi} in the field and the BC’s (e.g. through

1For simplicity we consider a uni-dimensional (1-D) case in space.
The extension to a higher dimensional case is straightforward [2].
However, note that equation (1) can already model real phenomena
such as the diffusion of fluid in a water channel or the propagation of
heat in a metallic rod.

some data flooding mechanism). We also assume that there
is reliable communication among nodes (i.e. no packets get
lost) and that member nodes can talk simultaneously to the
leader without interference within a cluster.

Here, we focus on the problem of identifying the param-
eters {θj}, j = 1, 2, 3, at some of the nodes {si} (i.e. the
cluster heads). We assume that the sensor network can
transmit parameter estimates, along with IC’s and BC’s,
to the BS through some data gathering mechanisms, so
that the BS can predict the measured scalar field, by nu-
merically solving the PDE.

Besides data gathering, distributed estimation of param-
eters can have several other applications in sensor networks.
For instance, the parameters can be estimated in return
to a query from the BS to study the physical properties
of a particular environment. The estimates of parameters
can be used for in-network prediction of the phenomenon.
Furthermore, the estimates can be used to perform coding
schemes [3].

IV. Distributed Identification of PDE
Parameters

In this section, we present an approach to the distributed
estimation of PDE parameters. The identification of the
parameters is performed at some of the cluster heads in a
possibly data fusion modality. That is, a cluster head re-
ceives measurements from its member nodes and processes
them adaptively. We first define a discrete-time state-space
model of the sampled scalar field in Sec. IV-A. Then, we
propose an approach to identification of the parameters
based on the extended Kalman filter in Sec. IV-B. Finally,
some criteria for switching to decision fusion are discussed
in Sec. IV-C.

A. Model Discretization and Clustering

In the discretized model for the PDE (4), the scalar field
x(ξ, t) is sampled in space and time at points (ih, kts),
where h and ts are the sampling periods in space and time,
respectively, and i and k are integers. The discrete samples
xi(k) represent the state of the system. The choice of the
sampling space h divides the sensor field in N + 1 points
where N = L

h . The sampling time ts must be selected ac-
cording to the inequality constraint presented at the end
of Section (II) and thus it is usually smaller than h. The
discretization in space and time of the PDE (4) is obtained
by approximating the spatial and time derivatives via the
finite difference approximations in (2-3). To complete the
definition of the discretized model, called the lumped sys-
tem, the noisy measurements of nodes are related to the
state according to the positions of the sensor nodes with
respect to the points of the state variable.

The discretization in space and time of PDE and mea-
surements leads to the lumped model described by the fol-
lowing state-space equations:

x(k + 1) = A(θ)x(k) + B(θ)u(k), (5)

yj(k) = Cjx(k) + v(k), (6)



where j is the index of cluster Sj . The state vector x(k)
represents the uniformly sampled version of scalar field
x(ξ, t) with xi(k) := x(ih, kts). The state matrix A(θ)
is a square matrix depending on the spatial derivatives of
x(.) on the right hand side of (4), the BC’s, the sampling
periods h and ts and the set θ of parameters to identify. If
the parameters are constant over the space, A(θ) is given
by:

A(θ) = ts

3∑
m=1

θmAi + I, (7)

where I is the identity matrix and matrices Ai depend on
the discretized spatial derivatives on the right hand side of
(4).

Equation (6) represents the noisy sensor measurements
at cluster Sj . v(k) is a vector of AWG noise. Matrix Cj

is defined on the basis of the geometrical relations between
the sampling points of the scalar field x(k) and sensor lo-
cations. If a sensor is not located in one of the points in
the set {ξ = ih : i = 1, 2, ...}, the relationship between
the measurement and the state variables can be defined by
either linear or polynomial interpolation.

All cluster leaders share the model defined by (5),
through the knowledge of their absolute location in the
field, but have different measurement equations given by
(6). Note that the general expression of the system model
in (5) and (6) is valid even if the coefficients θi vary with
time and space. The parameters of the lumped model (e.g.,
spatial sampling h and state dimension) can be passed to
the nodes through some information flooding mechanism.

B. Parameter Estimation via Kalman Filtering

We adopt the extended Kalman filter (EKF) for the task
of adaptive identification of unknown parameters θ. The
key idea of the EKF approach is to treat unknown pa-
rameters as additional state variables [6], by defining an
augmented system, where the state vector is

z(k) :=
[

x(k)
θ

]
.

The augmented system is non linear, since parameters θ
are multiplied with state variables x(k). Under these cir-
cumstances, the Kalman filter is used as the state predictor
to the linearized version of the augmented system and the
estimates of parameters θ are obtained because they are
treated as additional state variables in the augmented sys-
tem. The augmented system can be written as

z(k + 1) = f(z(k),u(k))

=
[

A(θ)x(k) + B(θ)u(k)
θ

]
, (8)

yj(k) = Cjx(k) + v(k). (9)

To apply Kalman filtering, the Jacobians of the state and
measurement equations must be derived. From (8) and (9),

we have the following:

J(k) :=
∂f(z(k)u(k))

∂z

∣∣∣∣
z=ẑ

, (10)

Hj := [Cj 0]. (11)

Then, the Kalman filter can be applied. Given the mean
of the state vector, z̄0, the initialization for the covariance
matrix P can be found conventionally as

P0 = E[(z − z̄0)(z − z̄0)T ]. (12)

At each measurement time, the filter equations are [6]:

L(k) = P(k/k − 1)HT
(
HP(k/k − 1)HT + R

)−1

(13)
P(k/k) = P(k/k − 1) − L(k)HP(k/k − 1) (14)
ẑ(k/k) = ẑ(k/k − 1) + L(k) (y(k) − Cix̂(k/k − 1))

(15)

where R is the covariance matrix of noise measured by
sensors the fact that Hẑ = Cx̂ is applied in the derivation
of (15). Then, the state estimate and the covariance are
propagated to the next measurement time via

P(k + 1/k) = J(k)P(k/k)JT (k) (16)
ẑ(k + 1/k) = f(ẑ(k), u(k)). (17)

C. Hybrid Data and Decision Fusion Techniques

The distributed algorithm described above implies that
the member nodes in a cluster pass their measurements to
the cluster head so that the head can perform the EKF.
This process is called data fusion. The transmission of
collected time series from member nodes may be expensive
in terms of energy consumption due to a large number of
data samples being transmitted, even if the size of a cluster
is kept small. An alternative approach is to let each node in
a cluster to process its own measurements and then to pass
estimated parameter values to the cluster head. This is a
decision fusion process, which is less expensive in energy
consumption. The cluster head needs only to average the
received estimates as

θ̂j =
1

|Sj |
∑

sl∈Sj

θ̂sl
, (18)

where |Sj | is the number of member nodes sl in the cluster
Sj . However, this approach may result in poor estimates
since only the measurements of one sensor are available to
the EKF algorithm (i.e. ysi

is a scalar) at each node.
A critical factor to consider for decision fusion based es-

timates is the spatial bandwidth of the sampled process.
Switching too soon to decision fusion can lead into spatial
aliasing, and, therefore, wrong estimates, because the spa-
tial sampling frequency decreases. On the other hand, the
smoothing effect (as described in Sec. II) will progressively
decrease the bandwidth of the sampled field.

To find a good balance between the estimate quality and
the communication cost, we consider a hybrid strategy that



integrates in time data and decision fusion. Some prelim-
inary iterations are performed within each cluster via the
data fusion modality. Then, the algorithm switches to the
decision fusion modality. This allows to save energy, since
no time series are exchanged among the nodes after the ini-
tial iterations. We propose two criteria for the switching:
(1) a function defined on some diagonal terms of covari-
ance matrix associated with parameters estimates and (2)
the number of sample being sent. The algorithm switches
to decision fusion if either

f(pi(θ)) < t1, (19)

or
nit > t2, (20)

where t1 and t2 are two thresholds and nit is the number of
samples sent to the fusion point since the beginning of the
iterative algorithm. The two above conditions should be
also integrated with a spatial frequency test to avoid the
risk of aliasing.

Condition (20) is used to avoid excessive battery con-
sumption for participating nodes. Threshold t2 can be de-
creased as the remaining energy level of nodes is decreasing
to extend the lifetime of the network with a soft degrada-
tion of the performance.

The simple computation of the arithmetic average of the
parameter estimates may have some drawbacks, since the
estimates from some of the nodes can be less reliable than
others. Our experiments show that the SNR is not the only
factor influencing the quality of the estimates. The perfor-
mance depends also on the rate of variability of the field.
In other words, areas where the scalar field is close to be
stationary cannot lead to good estimates because the PDE
problem turns in an ODE problem at the equilibrium and
becomes under-determined. In other words, in the case of
equilibrium, there is no longer a net diffusion of concen-
tration to observe and therefore the diffusion coefficients
cannot be estimated. Hence, weighted averages given by

θ̂j =
1

|Sj |
∑

sl∈Sj

wlθ̂sl
, (21)

should be performed instead, in order to give more rele-
vance to the estimates coming from areas with better dy-
namics.

V. Simulation Results

The purpose of the first experiment is to show the effect
of spatial aliasing on the estimate performance. Here we
consider the parabolic equation

xt(ξ, t) =
1
50

xξξ(ξ, t) − 1
50

xξ(ξ, t) − .32x(ξ, t). (22)

The equation models a phenomenon of so called advection-
diffusion with dissipation, due to non zero velocity and
dispersion parameters. The IC is x(ξ, 0) = exp(−(ξ −
.3).2/(.04)), with homogeneous Dirichlet BC’s: x(0, t) =
x(1, t) = 0. The field x(ξ, t) is shown in Figure 1. It is ini-
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Fig. 1. Scalar field described by the parabolic equation (22). An
advection phenomenon can be observed: the concentration is moving
toward one of the boundaries.
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Fig. 2. Estimate of scalar field via hybrid method.

tially characterized by a relatively large spatial bandwidth,
as it is a narrow pulse. In Figure 3, we compare the esti-
mates of the parameters performed according to different
modalities: (1) data fusion of three sensor nodes, (2) only
one sensor node processing its own data and (3) data fusion
with three nodes switched to one after 20 iterations. One
node alone since the first iteration gives poor estimates,
because of aliasing problems. On the other hand, thanks
to the smoothing effect (Sec II), switching to one node af-
ter few iterations of data fusion in a cluster gives results
comparable to data fusion alone, as it can be also noticed
from the estimated scalar field (Fig. 2).

In the second experiment, we want to study how the
quality of the estimate varies with respect to the noise and
to the location of the nodes sampling the field. In this
setup, a single node estimates the diffusivity parameter
from its own noisy readings. We measure how the esti-
mation error varies with the location of the node in the
space and the level of the noise. The measured scalar
field is modeled by the diffusion equation

xt(ξ, t) =
1
π2

xξξ(ξ, t),

defined in the interval 0 < ξ < 1 and t > 0, with ini-
tial condition x(ξ, 0) = 2 cos(π

2 ξ) and Dirichlet boundary
conditions: x(0, t) = 2, x(1, t) = 0.



0 1 2 3 4 5 6 7 8 9 10
−0.01

0

0.01

0.02

0.03

t

θ 1

1 sensor    
true value  
3/1 sensors 
3 sensors   

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

t

θ 2

0 1 2 3 4 5 6 7 8 9 10
−0.1

0

0.1

0.2

0.3

t (time)

θ 3

Fig. 3. Estimates of coefficients via data fusion of three sensors, one
sensor and then three switched to one sensors.
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Fig. 4. Percentage of converging iterations versus sensor location
and noise level (top). Profile of the scalar field at the initial state and
at the steady state (bottom).

A single node s in position p is estimating the diffusivity
parameter with sampling time ts = 0.004. Note that the
sampling space of the lumped model (5)-(6) is set to 1/11.
We assume that the node knows the BC’s. The position p of
s varies uniformly on the ξ axis. Different noise levels, σ2

n,
are considered. The average percent error is measured over
200 Monte Carlo trials and for p = k/11, k ∈ {1, 2, ..., 10}.
We notice that the algorithm does not always converge.
The divergent iterations are excluded from the computa-
tion of the mean error.

The percentage of convergent trials is shown in the upper
part of Figure 4 while the mean error w.r.t. the sensor lo-
cation is shown in Figure 5 for two different levels of noise.
The profiles of the scalar field at the initial time and at the
steady state are also shown in Figure 4. It can be noticed
that the performance is worst closer to the boundaries and
it is not simply proportional to the SNR. The latter pa-
rameter is monotonically decreasing when approaching the
point ξ = 1, but the estimation performance seems to de-
pend also on the rate of temporal variability of the sample
scalar field, as mentioned in Subsec. IV-C.

For the same experimental setup, but with three nodes
involved in the process, we compare the performance of
data fusion with two different modalities of decision fusion:
consisting respectively in the arithmetical and weighted av-
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Fig. 5. Percent mean estimation of parameter error versus sensor
location and noise level.

erages of the estimates of the three nodes. Table V com-
pares the errors in estimating the diffusivity. The weights
are defined proportional to the distance of the nodes to the
boundaries.

TABLE I

Comparison between data and decision fusion

Data Decision Weighted
fusion fusion decision f.

Mean err. .44% 1.85% 1.78%
Std 3.57 % 7.98 % 2.61%

VI. Conclusion

This work addressed the problem of the distributed iden-
tification of parameters of PDE models for environmental
monitoring in wireless sensor networks. In a source free
environment, PDE models allow a compact representation
of physical phenomena which is based on initial conditions,
BC’s and PDE coefficients. This representation is suitable
for data gathering applications. Here we proposed a hy-
brid data and decision fusion approach to the estimation
of PDE parameters. We focused our attention on the con-
straints and guidelines that come out by assuming PDE
models for the phenomena being monitored. Future re-
search will study more in depth the relationships between
node locations and estimation performance.
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