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Abstract—One of the principal characteristics of large scale
wireless sensor networks is their distributed, multi-hop nature.
Due to this characteristic, applications such as query propagation
rely regularly on network-wide flooding. Besides consuming
energy and bandwidth resources, the flooded packet may keep
the transmission medium within the network busy for too long,
reducing overall network throughput. We analyze the impact
of the transmission radius on the average settling time — the
time at which all nodes in the network finish transmitting the
flooded packet. We show that for large wireless networks there
exists a transmission range which minimizes the settling time
— corresponding to an optimal tradeoff between reception and
contention times.

I. INTRODUCTION

Sensor networks present new challenges due to their unique
characteristics, one of them being their distributed, multi-hop,
dynamic nature. Due to this characteristic, applications rely
regularly on flooding as a robust way to reach all the nodes
in the network. An example of these applications is query
propagation in directed diffusion [2].

If the transmission radius of the nodes is not carefully
chosen, the flooded packet may take too long to be transmitted
by all the nodes in the network, impacting overall network
throughput. This becomes a serious problem in large-scale
sensor networks where hundreds or thousands of nodes are
present. This paper addresses the problem of finding an
optimal transmission radius for flooding in sensor networks
in order to minimize the time that the channel is captured by
the flooded packet.

The intuitive idea is that as the transmission radius in-
creases, each node will be able to send a packet directly
(one hop away) to more nodes, thus reducing the number
of hops required to reach all nodes. On the other hand, a
bigger transmission radius implies more neighbors competing
to access the medium, and hence a longer contention delay for
packet transmission. The purpose of our work is the analysis
of this trade-off in MAC protocols based on the exponential
back-off algorithm, such as IEEE 802.11.

In this study, we assume that the nodes are static, do not
fail and that they are deployed in either a grid or a uniform
topology in a square area. In a uniform topology, the physical
terrain is divided into a number of cells based on the number
of nodes in the network, and a node is placed randomly within
each cell.

The remainder of the paper is organized as follows. Section

II positions our work in the literature, discussing other related
work. Section III describes the analytical model that we
formulate to obtain the optimal transmission radius in sensor
networks. Section IV shows the results obtained through
simulations. Finally, Section V describes the conclusions and
future work.

II. RELATED WORK

In recent years, sensor networks have engaged the attention
of the research community due to their multiple applications,
ranging from environmental sensing, structural monitoring,
and industrial process control to emergency response and
mobile target tracking. In [1], Akyildiz et al. present a survey
of protocols and algorithms to date. Many of these protocols
rely on flooding to disseminate information in the network.

Even though flooding has some unique advantages — it
guarantees that all reachable nodes inside a network will
receive the packet — it has several disadvantages as well. The
broadcast storm paper by Ni et al. [3] has addressed how
harmful this phenomenon can be. In that work, the authors
study the broadcast storm problem in the context of wireless
mobile ad-hoc networks, these networks consists of tens or
hundreds of nodes. The broadcast storm problem is aggravated
by the fact that there might be thousands of nodes in large-
scale sensor networks.

Other studies have looked at the impact of the transmission
range in wireless networks. In [5] and [8] the authors analyze
the critical transmission range to maintain connectivity in
wireless networks, [5] presents an statistical analysis and [8§]
provides an algorithm for maintaining connectivity with some
probability. On the same line of work, [6] and [7] analyze
the minimum number of neighbors that a node should have to
keep the network connected. Krishnamachari et al. [11] discuss
critical transmission ranges for other global network properties
such as Token Ring formation and channel allocation.

In [10], the authors also use the trade-off due to the
increase of the transmission radius: a short range implies
less collision and a long range implies moving a packet far
ahead in one hop. However, in that work the authors want to
maximize a parameter called the expected one-hop progress
in the desired direction, which measures how fast a packet
reaches its destination.

It is important to remark that all these previous studies were

not analyzing a protocol like flooding, but trying t
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Fig. 1. Analytical result for reception time

an optimal transmission range for graph-based metrics such
as connectivity. [4] investigates the impact of link layer non-
idealities on the dynamic behavior of flooding. In that work,
an experimental testbed of 150 rene motes [9] run flooding
as the routing protocol. The study showed empirical relations
between the reception and settling times — parameters used in
our work — for different transmission ranges.

Our work also tries to find an optimal radius. However, in
our case the important metric is the amount of time that a
flooded packet captures the transmission medium. This metric
is of great importance in large scale wireless networks because
of its relation to the throughput: the less time the channel
is captured by a flooding event, the more queries can be
disseminated and the more time the channel is available for
data packets transmission.

We can state the relation between settling time and through-
put in sensor networks as follows:

1
throughput « —— 1
gnp settlingtime M
To accomplish our goal — minimizing the settling time — we

study the tradeoff between reception and contention times.

III. ANALYTICAL MODEL

Our analytical model is based on the following definitions:

+ Reception Time ( Tk ): Average time when all the nodes
in the network have received the flooded packet

o Contention Time ( T ): Average time between reception
and forwarding (delivery) of a packet by all the nodes in
the network.

o Settling Time ( 75 ): Average time when all the nodes
in the network have forwarded (delivered) the flooded
packet.

From these definitions we observe that:
Te =Tr+1¢ (2)

The purpose of our study is to determine an optimal
transmission radius that minimizes the settling time. Since the
settling time is the sum of the reception and contention times,

Fig. 2. Different regions to calculate the number of neighbors as we increase
the transmission radius of the node. The first region is for values of R between
0 and R.. The second region goes from R. to R, ; in this region we can
observe that some parts of the coverage area does not contribute with more
nodes. In the third region -when R is greater than R., - all the nodes in the
network are neighbors.

the remaining of this section will analyze the relation between
Tr and T with the length of the transmission radius.

Let us first consider the relation between the transmission
radius and the reception time. If the transmission radius of
each node is increased, the reception time in the network will
decrease. The two extreme cases are as follows:

o The nodes have a minimum radius that guarantees a

connected network.

o The nodes have a radius that covers the whole network.

In the first case, the number of hops required between the
source and the last node to receive the packet is maximum and
hence the reception time will increase. In the second case, all
the nodes will be one hop away from the source, and hence
all of them will receive the packets at almost the same time.

Now, let us consider the relation between the transmission
radius and the contention time. If a node increments its trans-
mission radius, it will increase its number of neighbors (degree
of the node), which will subsequently increase the contention
time. We will consider again the two extreme cases to visualize
this effect. If the transmission radius is the minimum that
guarantees the connectivity of the network, each node will
have the minimum number of neighbors and thus the node will
face a minimum contention time when transmitting the packet.
On the other hand, when the transmission radius covers the
whole network, all the nodes in the network will compete for
accessing the medium, thus increasing their contention time.

To summarize this discussion, we state that as the trans-
mission radius increases, the reception time decreases and
the contention time increases. Since equation (2) shows that
the settling time is the sum of these quantities, the minimum
settling time will correspond to some intermediate radius. We
now analyze this phenomenon mathematically.

A. Reception Time

The reception time T is going to be directly proportional
to the distance between the transmitter and the rece:
TEEE @
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Fig. 3. Average number of neighbors for 500 nodes in a 1000x1000 area

inversely proportional to the transmission radius. Due to
the kind of topologies considered in our research (grid or
uniform), the distance between nodes is proportional to the
length of the side of the area. Let us define:

R: transmission radius.
S: length of the side of the square area.
Then we have that

S
Tro 5 3)

Figure 1 shows the analytical result for the reception time.
In this figure we are interested in the trend of the curve and
for that reason the plot does not show any units.

More accurately, Tk is not only proportional to the distance
between the transmitter and the receiver, and inversely propor-
tional to the transmission radius. But if the flooding operation
needs more than one hop to reach all nodes, Tr will also
depend on the contention time faced at each hop. However, we
are interested in the first time the flooded packet is received by
the nodes and for this reason we are primarily interested in the
first packet that is retransmitted by a set of contending nodes.
The first successful packet in this contention will not have a
significant delay. Hence, we do not consider the contention
time in equation (3).

B. Contention Time
The contention time 7 is a function of the number of
neighbors. If we consider the area covered by the network
as S?, then the expected number of neighbors of a given node
is:
m="T—=n @

Where n is the total number of nodes in the network.

The contention time is not directly proportional to the
equation given in (4). There are two effects that influence
Tec; we call them edge effect and exponential back off effect.
Both effects are described below.

Contention Time vs Number of
Neighbors
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Fig. 4. Exponential back off effect:A we can observe that the relation between
the contention time and the number of neighbors is not linear

1) Edge Effect: The edge effect can be described as fol-
lows; nodes on the edge will not increase their number of
neighbors proportionally to the square of the radius. The
reason is that only a fraction of the area covered by its
transmission range intersects the area of the topology. This
phenomenon is illustrated in Figure 2, which shows a square
topology with the source node placed in the intersection of
two lines. In this figure we can observe three regions as the
transmission radius is increased.

+ Region 1: When R goes from O to the closest distance of
the source node to any edge ([2.).

+ Region 2: When R goes from the closest distance of the
source node to any edge (F.), until it covers the whole
network (R).

+ Region 3: When R is greater than the value that covers
the whole network (R,,).

Figure 3 shows the curve for the average number of
neighbors versus the transmission radius, for a topology of
500 nodes in a 1000x 1000 m? area. To obtain this curve,
we calculate the number of neighbors for each node in the
topology and for different values of transmission radius. Then,
for each value of these transmission radius we take the average
number of neighbors for all the nodes in the network.

In figure 3, it is clear to observe the three regions described
in figure 2 — plots of a quadratic curve and a liner curve were
added to visualize the first two regions. Each of these regions
(1, 2 and 3) will have a different expression for the number
of neighbors. For the first region, the number of nodes under
the transmission radius is directly proportional to the square
of the transmission radius. In the second region, the number
of neighbors increases proportionally to the overlapping area
between the transmission range and the network area. We will
approximate this region by a linear relation. In the third region,
the number of neighbors remains constant and is equal to the
total number of nodes in the network.

Finally, we obtain that the average number of neighbors m

due to the edge effect is:
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Fig. 5.

Analytical contention time

Analytical Settling Time
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Fig. 6. Analytical settling time
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FFTL ; 0 < R < Re
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It is important to observe that in some realistic scenarios,
large scale wireless sensor networks may not be able to
reach regions 2 and 3 due to the large transmission range ¢
required. However, since we do not have a prior knowledge
of in what region the optimal radius is, we need to take into
account all the possible cases in the mathematical model.
In section III-C further analysis establishes that the optimal
radius is in region 1.

2) Exponential Back Off Effect: In IEEE 802.11, a node
checks if the medium is clear before sending a packet; when
the medium is clear for a small period of time (DIFS), the node
transmits the packet. If the channel becomes busy, it will back
off exponentially (in order to avoid congestion) to transmit
the packet. This mechanism, known as CSMA/CA, leads to
a non-linear relation between the contention time versus the
number of neighbors. We denote this non-linear relation as the
exponential back off effect.

Reception Time
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Fig. 7. Reception time obtained through simulations for 500 nodes in a
1000x 1000 m? area
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Fig. 8. Contention time obtained through simulations for 500 nodes in a
1000 1000 m? area

Figure 4 shows this non-linear relation obtained by simula-
tions as follows: a wireless network is created where all the
nodes are within the transmission range of any other node (i.e.
one hop away). One node floods a packet and the settling time
is measured. This experiment was done for different number
of nodes in the network.

The curve in figure 4 can be numerically approximated by:

f(m) = Jlogz(m) (6)

Where m is the number of neighbors and J is a constant.

If we incorporate the two effects explained above, we obtain
that the contention time 7 is given by:

Kf(r%n) ,0<R<R.
Lf(£n) ,Re < R< Ry (N
Mn Ry < R

To =

Where K, L, and M are constants and f(.) is the function
described in equation (6).
Figure 5 shows the analytical curve for the content
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Area side (m) | 500 nodes | 600 nodes | 700 nodes | 800 nodes Area side (m) | 500 nodes | 600 nodes | 700 nodes | 800 nodes

1000 125.2 198.5 140.5 157.7 1000 0.0112 0.0107 0.0127 0.0135

2000 251.8 237.7 251.8 22277 2000 0.0102 0.0102 0.0104 0.0107

3000 335.8 355.7 282.5 355.7 3000 0.0085 0.0093 0.0100 0.0107

4000 422.8 474.3 447.8 376.8 4000 0.0083 0.0095 0.0101 0.0093

5000 474.3 474.3 447.8 502.4 5000 0.0086 0.0094 0.0099 0.0097
TABLE 1 TABLE III

OPTIMAL RADIUS OBTAINED FOR DIFFERENT TOPOLOGIES IN METERS

Area side (m) | 500 nodes | 600 nodes | 700 nodes | 800 nodes

1000 35% 33% 38% 35%

2000 45% 52% 55% 49%

3000 47% 50% 53% 52%

4000 40% 44% 48% 52%

5000 38% 49% 50% 52%
TABLE 11

PERCENTAGE OF THE MAXIMUM IMPROVEMENT THAT CAN BE OBTAINED
IN THE SETTLING TIME

As in figure 1, we are interested in the trend of the curve and
not the units.

C. Settling Time

Considering the different regions in the contention time due
to edge effects, the settling time 7T's — defined as the sum of
the reception and contention times — is given by:

k1%+[(f(7r1§—zn) 0< R<R.
k12 + Lf(%n) ,Re < R< Ry
kig+ Mn Ry < R

Figure 6 shows the analytical settling time. For illustrating
purposes, the analytical receiving and contention times were
also plotted. It is important to observe that according to our
model, we can obtain improvements up to 55% in the settling
times.

The settling time curve shows a minimum, as expected.
Furthermore, the curve shows that the minimum is in either
regions 1 or 2 according to figure 3, allowing us to restrict
our analysis to those two regions.

In order to obtain the optimal minimum, we take the
derivative respect to R of the settling time obtained in (8) and
set it to zero. Some basic mathematical manipulation leads to
the following expressions in regions 1 and 2 respectively:

Ty = @®)

2

k’1% = 4Klog(ﬂ'%n)log(6) ,O0< R< R, )

k1% = 2Llog(§n)log(e) ,R. < R< Ry (10)

In each region there is an R corresponding to the solution
of these equations. The optimum R is one of these two radii
(which offers the minimum 7). The constants k;, X and L
will be obtained through simulations.

IV. SIMULATION SET UP AND RESULTS

This section describes the set up of the simulations and the
results obtained.

CONSTANT k1 OBTAINED FOR DIFFERENT TOPOLOGIES

Area side (m) | 500 nodes | 600 nodes | 700 nodes | 800 nodes

1000 0.0031 0.0031 0.0032 0.0031

2000 0.0022 0.0022 0.0024 0.0023

3000 0.0018 0.0020 0.0019 0.0020

4000 0.0017 0.0016 0.0017 0.0017

5000 0.0017 0.0016 0.0017 0.0016
TABLE IV

CONSTANT K OBTAINED FOR DIFFERENT TOPOLOGIES

A. Simulation Set Up

In order to corroborate our analytical model we simulated
different size of networks in terms of area and number of
nodes. The simulation was done using the Global Mobile
Simulation (GloMoSim) developed at UCLA [12]. The MAC
layer used was IEEE 802.11 with a bandwidth of 2 Mbps,
since flooding only broadcast messages, IEEE 802.11 behaved
like CSMA/CA (i.e. no RTS/CTS nor ACK).

Algorithm 1 shows the stages at which we stored Tr, T¢
and T

Algorithm 1: Flooding
if message received for the first time then
Save receiving time; // used to calculate T
Rebroadcast Packet;
Save delivery time; // used to calculate T¢- and T

First we create a uniform topology placing n number of
nodes in a .S x S square area. All the nodes in the network
have the same transmission range R. Then, we run breadth first
search and binary search algorithms to obtain the minimum
radius that connects the network. Starting with that radius, we
increase the transmission radius of the nodes until it covers the
whole network. The source node is placed at the bottom left
corner of the area, hence the maximum transmission radius is
set to R = Sv/2.

The source sends a packet of fixed size (512 bytes). Usu-
ally queries or raw data packets in sensor networks will be
smaller than that. We believe that the packet size chosen is a
reasonable upper bound.

Area side (m) | 500 nodes | 600 nodes | 700 nodes | 800 nodes

1000 1315 123.5 131.2 136.2

2000 307.9 298.2 277.8 284.5
TABLE V

ANALYTICAL RADIUS FOR FIRST REGION IN METERS

YF]',F.
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Fig. 9.  Settling time obtained through simulations for 500 nodes in a
1000 1000 m? area

B. Results

Figure 7 shows the reception time for 500 nodes in a
1000x 1000m? area. We observe that the reception time de-
creases until the point where the transmission radius covers
all the nodes in the network. The plot resembles closely the
one obtained in the analytical model (figure 1).

Figure 8 shows the contention time for the same topology.
As expected, the contention time shows the edge effect in the
network. This figure also resembles the analytical plot (figure
5).

The settling time is showed in figure 9 — note similarity to
figure 6. We observe that an optimal transmission radius can be
obtained. In this case the radius is approximately 125 meters.
It is important to observe that the maximum settling time is
around 0.23 seconds and the minimum is around 0.15 seconds.
These results implies that the improvement obtained in the
settling time is approximately 35%. Table II shows that the
improvement obtained for different topologies ranges between
40% and 50% - our analytical model showed a maximum
improvement of 55% (figure 6).

Table I shows the optimal radius obtained for different
topologies. One obvious observation is that as we increase
the area of the network — keeping the number of the nodes
constant — the optimal transmission radius also increases.

One important step in the simulations is to obtain the value
of the constants that can be used to compute the analytical
optimal radius. Tables III and IV shows the values for &,
and K respectively. In all these constants we observe some
dependency on the side of the area. However, as the area of
the network is increased, all the constants tend to converge
to a single value. The reason for this trend is the influence
that the packet size has in the reception and contention times
in small-area networks. Due to the lack of space, we can not
discuss the details of this behavior.

According to the regions specified by the edge effect in
section III-B (figure 3), we can observe from figure 9 that the
optimal radius is in region 1, since the minimum settling time
is obtained for a radius less than 300 m.

By replacing the constants obtained in tables III and IV in
equation (9), we obtain that the analytical minimum radius are
fairly close to the ones obtained in the simulations, as shown
in table V.

V. CONCLUSIONS AND FUTURE WORK

This paper addresses the idea of finding an optimal trans-
mission range for flooding in sensor networks. Discussing this
problem in sensor networks is of great importance due to
flooding usefulness in applications like query propagation.

There is significant work in the literature that has studied
optimal transmission ranges for maintaining network connec-
tivity and to make efficient use of energy in the network. To
the best of our knowledge, finding an optimal transmission
radius to minimize the settling time in flooding events has not
been addressed in depth before.

This work proves that choosing a transmission radius with-
out previous analysis can lead to an unnecessarily large settling
time in the network which will decrease the overall network
throughput. We propose a mathematical model — supported
by simulations — to find an optimal radius for uniform and
grid topologies. Improvements between 30% and 55% can be
achieved in the settling time as shown in table II.

Finally, this work was based considering only uniform or
grid topologies. Future work will analyze this problem on
other kinds of deployments as well as other MAC schemes.
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