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Abstract— There are many contexts in distributed wireless networks
where there is a critical threshold, corresponding to a minimum amount
of the communication effort or power expenditure by individual nodes,
above which a desirable global property exists with high probability. When
this individual node effort is below the threshold the desired global prop-
erty exists with a low probability. This “phase transition” is typically seen
to become sharper as the number of nodes in the network increases. We
discuss in this paper some examples of properties that exhibit such critical
behavior: node reachability with probabilistic flooding, ad-hoc network
connectivity, and sensor network coordination. We discuss the connec-
tions between these phenomena and the phase transitions that have been
shown to arise in random graphs. We argue that a good understanding
of these phase transition phenomena can provide useful design principles
for engineering distributed wireless networks.

I. INTRODUCTION

Research on distributed multi-hop wireless networks, other-
wise referred to as wireless ad hoc networks [1], has evolved
from the early 1970’s DARPA packet radio program [2]. There
has been a renewed interest in this field as inexpensive, energy-
efficient, and miniaturized wireless technologies are beginning
to mature and take hold commercially. Wireless ad hoc net-
works, which can be deployed rapidly as they do not require
much existing infrastructure, are expected to find applications
in a number of diverse settings. Examples include sensor net-
works, disaster recovery, law enforcement, military commu-
nications, distributed computing, wireless LANs, and special
events such as conferences and festivals.

Recent work [3], [4] has shown that if we assume each node
in an ad-hoc network has constant power, there is a critical
transmission power required to ensure with high probability
that two nodes in the network can communicate with each other
through multi-hop paths. It is desirable to minimize the energy
consumption of the wireless nodes, but if the node transmis-
sion powers are decreased below the critical level, there is a
precipitous drop in the connectivity of the network. We show
in this paper that similar “phase transitions” occur in other sit-
uations as well in distributed wireless networks. From an en-
gineering standpoint, it is crucial that we study and understand
these phase transitions because we would like to design sys-
tems which operate just beyond the critical point, where there
is efficient resource utilization.

Such behavior has been known to mathematicians for sev-
eral decades in the form of “zero-one” laws in Bernoulli Ran-
dom Graphs. The basic idea is that for certain monotone graph
properties such as connectivity, as we vary the average density
of the graph, the probability that a randomly generated graph
exhibits this property asymptotically transitions sharply from
zero to one at some critical threshold value.

The rest of the paper is organized as follows: in section II,
we discuss two models for generating random graphs - one that
has been extensively studied earlier, and one that is more rel-
evant to an ad-hoc wireless network. We present some known
results on phase transitions from random graph theory and dis-
cuss their applicability to the fixed transmission radius model
in section III. In sections IV, V, and VI, respectively, we
present three contexts where phase transitions arise: ad-hoc
network connectivity, coordination in a sensor network, and
probabilistic flooding for route discovery. We conclude with a
discussion of the results and future work in section VII.

II. RANDOM GRAPH MODELS

A random graph G can be loosely described as a graph that
is generated by some prescribed random experiment. The de-
scription of the random experiment constitutes a random graph
model. In most cases these models contain a tuning parame-
ter which varies the average density of the random graph con-
structed. Here are some examples of random graph models:

� Fixed edge number model: G = G(n; e), given e and n,
choose G uniformly at random from all graphs consisting of n
vertices and e edges.

� Bernoulli model: G = G(n; p), given n, and p, construct
G with n vertices such that there is an edge between any two
pairs of nodes with probability p.

� Fixed radius model: G = G(n;R), given n points placed
randomly according to some distribution in the Euclidean plane,
construct G with n vertices corresponding to these points in
such a way that there is an edge between two vertices v and w
if and only if the corresponding points are within a distance R
of each other.

� Dynamic model: G = G(n; t), given n points, at each dis-
crete time step add a randomly chosen edge to the graph, i.e.
add the tth edge at time t.

We describe two of these models in further detail in the sub-
sections below. The first, the Bernoulli Random Graph (BRG)
model is the one that has been considered by mathematicians
and there is considerable literature on this subject [6]. The sec-
ond, the Fixed Radius (FR) model is one that most naturally
models the communication graphs formed in wireless networks
where each node has a fixed transmission radius.
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Fig. 1. Typical Random Graphs with Varying Degrees of Connectivity Generated using the Bernoulli and Fixed Radius Models (n=15)

A. Bernoulli Random Graphs

As described above, one can imagine a single Bernoulli ran-
dom graph G = G(n; p) being generated by an experiment
where we take the n vertices and flip a coin for each pair of
vertices to decide if there should be an edge between them.
When p = 0, the resulting random graph has no edges, while
when p = 1, we always get the complete graph Kn. As the
parameter p increases from 0 to 1, the average density of the
random graphs increases (see figure 1, top row).

B. Fixed Radius Model

Consider an ad-hoc wireless network with n nodes, located
randomly in some service area, each of which is assumed to
transmit with a fixed radio power in an idealized environment
where it can be heard by other nodes that are within some ra-
dius r. Thus two nodes can communicate directly with each
other if an only if they are no more than a distance r apart.
We can now talk about the underlying communication graph
G� = G�(n;R) in this fixed radius (FR) model - at a given
instant let each node in the network correspond to a unique
vertex in G�, with an edge between a pair of vertices if the cor-
responding nodes can communicate with each other. The lower
row of figure 1 illustrates sample random graphs generated ac-
cording to this model. It is assumed that the service area is a
square with unit sides. As the parameter R increases from 0 top
2, the average density of the random graphs increases.

A random graph generated using the fixed radius model has
some different characteristics than the Bernoulli random graph.
Consider three nodes i; j; and k. In the fixed radius model, “the
event that there are links between i and j and j and k is not in-
dependent of the event that there is a link between i and k ... as
the former is true given the latter only if j lies in the intersec-
tion of two discs of radius [R] centered at i and k” [3]. Still,
they do have some things in common. In both models, there is
a parameter which varies the density of the graphs produced.
We will show in later sections examples where phase transi-
tions with respect to the parameter p observed in the Bernoulli
graph model also show up with respect to the parameter R in
the fixed radius model. It may thus be possible to apply some
results from the literature on Bernoulli random graphs to fixed
radius random graphs that are of interest to us in the context of
wireless ad-hoc networks.

III. RANDOM GRAPHS AND PHASE TRANSITIONS

To quote Bollobás : “one of the main aims of the theory
of random graphs is to determine when a given [graph] prop-
erty is likely to appear... Erdös and Rényi were the first to
show that most monotone properties appear rather suddenly. In
rather vague terms, a threshold function is a critical time, be-
fore which the property is unlikely and after which it is likely”
[6].

Let us consider one example of zero-one laws for random
graphs which applies for first order graph properties. First or-
der properties of graphs are those that can be described using
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Fig. 2. Phase Transition in Probability of Connectivity in the Bernoulli Ran-
dom Graph Model (n=15)

a language consisting of the basic Boolean logic connectives
(^;_;:), existential and universal quantifiers (9;8), variables
depicting nodes, equality and adjacency (written I(x; y)). Ex-
amples of first order properties are a) “there are no isolated
points” (8 x; 9y s:t: I(x; y)), and b) “contains a triangle”
(9(x; y; z) s:t: I(x; y) ^ I(x; z) ^ I(y; z)).

Theorem 1: For every first order graph property A,
lim
n!1

Pr[G(n; p) has A] = 0 or 1.

A proof of this theorem can be found in [5].

If the property A is monotone with respect to the addition
of edges, then Pr[G(n; p) has A] is also monotone. Thus
asymptotically, for large n, the probability of a random graph
property undergoes a sharp zero-one transition for some criti-
cal edge parameter value p = pcrit.

We conjecture that properties which satisfy a zero-one law
for Bernoulli Random Graphs also satisfy a zero-one law for
the Fixed Radius model.

IV. NETWORK CONNECTIVITY

Although the property “the graph is connected” is not a first
order property, it also undergoes a similar zero-one transition
in a Bernoulli random graph [6]. This is shown in figure 2.
Similar experimental work showing phase transition behavior
in BRG is described in [7]. Among other things, the results in
that paper demonstrate that the transitions become sharper as
n becomes larger.

In [3], the authors proved that such transitions also take place
in an ad-hoc network with fixed transmission powers for all
nodes where the communication graph can be described as a
fixed radius random graph. Sanchez et al. showed in [4] that
this behavior is in fact robust with respect to different mobil-
ity models. In other words, even when the nodes are moving
around, there is still a critical transmission range that is re-
quired to ensure connectivity in the network.
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Fig. 3. Phase Transition in Probability of Connectivity in the Fixed Radius
Ad-hoc Wireless Network (n=15)

V. COORDINATION IN A SENSOR TRACKING NETWORK

Consider the following scenario: there are some wireless
Doppler radar sensors with some computational resources dis-
tributed in some location, each of which can communicate di-
rectly with only a subset of other sensors. There are some mov-
ing targets in the area whose position and velocity these sensors
are required to track. In order to obtain this tracking informa-
tion it is required that three sensors co-ordinate directly with
each other in a distributed manner to track each target. What
should the minimum communication level be in this system to
ensure that all targets can be tracked?

Specifically, let us assume there are k distinct targets and
n = 3k radar sensors. Each target is visible to each sensor.
We want to know if we can assign three mutually communicat-
ing sensors for tracking each target. Observe that this can be
done if and only if the underlying communication graph can
be partitioned into triangles. The following theorem tells us
something about the probability that a random graph can be
partitioned into triangles.

Theorem 2: A = “There exists a partition into triangles” is a
monotone, first-order graph property.

Proof: A is clearly monotone - if there exists a partition into
triangles with some graph G, additional edges do not remove
this property. Further, it can be expressed in the first order
language of graphs as follows:

8x; f 9(y; z) s:t: fI(x; y) ^ I(y; z) ^ I(x; z)g g ^
f 8x0 s:t: fI(x; x0) ^ :(x0 = y; z)g; 9(y0; z0) s:t: f: (y0; z0 =
x; y; z) ^ I(x0; y0) ^ I(y0; z0) ^ I(x0; z0)g g 2

Corollary 1: The probability that there exists a partition of
a Bernoulli random graph G(n; p) into triangles will show an
asymptotically sharp phase transition from 0 to 1 with respect
to the edge probability p.

Proof: This is an immediate consequence of Theorems 1 and
2. 2
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Fig. 4. Phase Transition in Probability of Tracking All Targets for Sensors
with a Bernoulli Random Graph Model for Communication (n=9)
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Fig. 5. Phase Transition in Probability of Tracking All Targets for Sensors
with a Fixed Radius Model for Communication (n=9)

Figures 4 and 5 present experimental results that show this
phase transition when the underlying communication graph is
modeled by the two random graph models. Thus again it ap-
pears there is a critical value of communication level/ transmis-
sion power which is required to ensure that the desired coordi-
nated tracking can take place. We illustrate in the next section
another phase transition that arises in the context of route dis-
covery in an ad-hoc network.

VI. REACHABILITY IN PROBABILISTIC
FLOODING SCHEMES

Gossiping, a technique originally proposed for probabilistic
multicast in communication networks [9], has recently been
applied to minimize query traffic while flooding in reactive on-
demand routing protocols [8]. The basic idea is as follows: the
source node initiates a flood of route query packets for the pur-
poses of discovering a route to the destination. It is desired that
the route query packets be forwarded to all nodes in the net-
work so that the destination can respond to it. In basic flooding,
each node always forwards the query packet to all its neighbors
when it receives it. In probabilistic flooding, the source initi-
ates the query and all other nodes that receive a query packet
will transmit in order to forward it to their neighbors with some
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Fig. 6. Phase Transition in Probability of Reaching All Nodes in a Probabilis-
tic Flooding Scheme (n=15, FR model with radius R = 0.5)

probability q and discard the packet with probability 1� q.

Experimental results suggest that there is a critical value of
the query forwarding probability q that is required to ensure
with high probability that all nodes receive the route query.
The corresponding phase transition is shown in figure 6. We
note that the critical value of q, the value beyond which flood-
ing succeeds with very high probability, in itself would depend
upon the transmission range / average node-degree of the un-
derlying communication graph. As the number of neighbors
that each node has increases the critical value of q decreases,
as is to be expected. Thus there is an interesting trade-off in
this situation: if the transmission radius is large, more power
is expended, but the query traffic is minimized, whereas if the
transmission radius is small then less power is expended by
each node, but the number of route query packets will increase
as the critical value of q increases.

VII. DISCUSSION AND CONCLUSIONS

We have presented in this paper some examples of phase
transitions that arise in wireless ad-hoc networks, and discussed
briefly the related theory of Bernoulli random graphs which
can aid us in proving when such phase transitions will occur.

What is the significance of phase transition behavior in wire-
less ad-hoc networks from a system design perspective? The
key is to notice that in all these examples, the x � axis rep-
resents the utilization of some resource. In the case of net-
work connectivity and the radar sensor network we were con-
cerned with the transmission power of each node. This is, of
course, directly linked to the consumption of energy at each
node. In the case of the probabilistic flooding scheme we were
concerned with the probability q of query-forwarding. When q
is high there is a correspondingly high number of query packets
that will be generated in the network which incur a bandwidth
overhead cost.

We would like to engineer wireless networks to be just to
the right of the phase transition in each of these cases. This
represents the point where the resource utilization for the in-
dividual nodes is minimized while the desired global property
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is realized with high probability. A greater understanding of
such transitions provides us with valuable engineering design
principles.
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