Biomimetic Cortical Nanocircuits: The BioRC Project

Alice C. Parker

NSF Emerging Models of Technology Meeting

July 24, 2008
The BioRC Project Team and Support

- Alice Parker, PI and Chongwu Zhou, Co-PI
- Graduate Assistants
 - Chih-Chieh Hsu - CNT circuits and simulation
 - Jonathan Joshi - CMOS circuits and simulation
 - Ko-Chung Tseng - Mathematical models of interconnectivity
 - Chuan Wang - Carbon nanotube fabrication
- Affiliated Students
 - Adi Azar - Neural architecture
 - Khushnood Irani - 3-D circuit visualization
 - Jason Mahvash - analog circuits
 - Numerous directed research students

- Support for this research has been provided by the Viterbi School of Engineering and the WiSE Program at USC and NSF Grant 0726815.
Project Motivation: Challenges for a Synthetic Cortex

- Complexity:
 - Synaptic mechanisms - excitatory and inhibitory synapses
 - Dendritic computations and dendritic spikes
 - Quantum stochastic behavior of neurotransmitter release

- Scale:
 - 100 x 10^9 neurons
 - 10^4 to 10^5 synapses/neuron
 - ~100 transistors/synapse including dendritic computations
 - CMOS neurons for a cortex, absent interconnection area, could occupy an entire room, even in 2021

- Connectivity:
 - Fan-in/neuron 10^4 to 10^5 distinct connections
 - Fan-out 10^4
 - Address space 37 bits (assuming synaptic inputs are distinct)

- Plasticity:
 - New neural connections form within hours
 - Presynaptic depression/facilitation occur
 - Postsynaptic depression and potentiation occur
Meeting the Challenges for a Synthetic Cortex

- **Complexity:**
 - Exploit the analog computational power of transistor circuits

- **Scale:**
 - Consider nanotechnological solutions - nanotubes, nanowires, graphene, quantum dots

- **Connectivity:**
 - 3-D structure probably required

- **Plasticity:**
 - Add transistors as “knobs” to control neural behavior
 - Self-assembly, using a protein gel to provide scaffolding, and synthetic DNA to assemble/reconfigure neural circuits

- **We are very far from a synthetic human cortex, but it may be possible in the coming decades**
Results to Date

• Carbon nanotube fabrication (Chongwu Zhou)
 • Aligned nanotubes, logic gates

![Diagram showing experimental setup and graphs representing output voltage.]
Artist’s Conception of 3-D Carbon Nanotube Synapse
Biomimetic Neural Circuits

Figure from Principles of Neural Science [2] p.22
The whole neuron can be divided into these sub-circuits:

- **Synapse**
 - Excitatory/Inhibitory synapse circuit (Action Potential as inputs and EPSP/IPSP as outputs)

- **Dendritic Tree**
 - A pool of voltage adders (which can add two input stimuli in both linear or non-linear ways)

- **Axon Hillock**
 - Amplifier (in order to reach the threshold of carbon nanotube FET)
 - Spike-initiator (Action Potentials are all-or-none)
Results to Date: A Carbon Nanotube Synapse
Results to Date: A Carbon Nanotube Synapse
Results to Date: A CMOS Inhibitory Synapse
IPSPs with varying amounts of released neurotransmitter
Dendritic Computations

Linear or Non-linear summation

- Schiller et al. compared the measured and arithmetic results of EPSP summation at soma of layer-5 pyramidal neuron with respect to within-branch and between-branch stimulations.
- It appears that between-branch EPSP summation is linear for weak and medium stimuli and slightly superlinear for strong stimuli.
- On the other hand, within-branch EPSP summation shows both linearity and non-linearity depending on the strength of EPSP. It was linear – weak EPSP (~<1mV), superlinear – medium EPSP (1~3mV), sublinear – strong EPSP (3~10mV)

Adder structure

- Adding two inputs linearly, sublinearly, and superlinearly
Dendritic Computations with Inhibition

- **Shunting Inhibition**
 - Pulls the EPSP or the AP down to zero volts
- **Hyperpolarizing Inhibition**
 - More of a subtractive behavior

Diagram:
- Excitatory Synapse
- EPSP
- Dendritic Component
- Inhibitory Synapse
- IPSP
- Output on the dendritic tree with magnitude depending on PSP strength
Dendritic Computations with Inhibition
A Carbon Nanotube Neuron

Simplified Central Neuron Circuit

[Diagram of a simplified central neuron circuit with labels for synapses, dendritic tree, and axon hillock.]

Red: Action Potential (artificial input to the presynaptic terminal)
Green: EPSP from the dendrites (post-synaptic sites) of the neuron
Blue: Action Potential spike (initiated at the axon hillock of the neuron)
Thank You