
A Token-based Greedy Chain Scheduling
Algorithm (T-GCSA) for Situation Aware Wireless LANs12

Akis Spyropoulos , Cauligi Raghavendra

University of Southern California
Los Angeles, CA 90089-2562

213-740-9133
spyro@halcyon.usc.edu, raghu@amazon.usc.edu

1 0-7803-7231-X/01/$10.00/© 2002 IEEE
IEEEAC paper #261, Updated Sept 29, 2001
2 This research is supported by the DARPA Contract F33615-C-00-1633 in
the Power Aware Computing and Communications Program

Abstract— In this paper we propose a MAC
protocol for situation aware, long range wireless LANs
consisting of highly mobile nodes. We choose to schedule
nodes’ transmissions instead of using contention-based
protocols for accessing the channel. This approach is
attractive for improving the performance of wireless LANs
with long propagation delays. An example of such wireless
LANs is a set of planes in a range of hundred miles with
radio communications. The problem with contention-based
MAC protocols is that each node has to wait for the
maximum propagation delay (from one end of the coverage
area to the other), before it can decide whether the channel
is free or the previous node had no packet to transmit. We
propose an “educated” token-based adaptive algorithm that
schedules individual nodes transmissions in a way that
minimizes the total propagation delay for each round, based
on global location information. This way, nodes that are
near one another are also adjacent in the schedule, and
therefore have to wait significantly less time before they
can decide whether it’s safe to transmit or not. We call this
algorithm “Token-based Greedy Chain Scheduling
Algorithm” . We compare the Token-based Greedy Chain
Scheduling Algorithm with a random scheduling algorithm
and a worst-case scheduling algorithm. Simulation results
show latency and throughput improvements by a factor of
up to 5 to 7 times compared to the random scheduling
algorithm.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. SCHEDULED MEDIA ACCESS
 3. SIMULATION RESULTS
 4. WIRELESS ENVIRONMENT AND APPLICATION

SPECIFIC CONSIDERATIONS
 5. CONCLUSIONS AND FUTURE WORK
 6. REFERENCES

 1. INTRODUCTION

There exists a plethora of media access protocols for local

area networks. These include the earlier Aloha [2]
(unslotted and slotted), reservation based protocols [11],
and the widely deployed CSMA/CD protocol [3]. There are
considerable research results on the performance of these
MAC protocols in the literature [10]. For example, the
performance of CSMA/CD is highly depended on end-to-
end propagation delay and this is the reason why there’s a
restriction on the maximum cable length for Ethernet.
With the explosive growth in laptops and hand-held devices
using wireless communications, design of MAC protocols
is once again becoming an important research area.

Protocols like CSMA/CD and newer ones based on fiber
optics networks like FDDI and DQDB, have been widely
deployed for wired LANs and can achieve remarkably high
throughputs and channel utilizations close to 100%.
However, their application in a wireless environment has
not been that straightforward. Mobile environments are
governed by phenomena like shadowing, multi-path fading
and interference that invalidate crucial assumptions made
for wired networks. Further, there is the hidden terminal
problem in wireless ad hoc networks [1]. Protocols like
MACA [7] and MACAW [8] were proposed for ad hoc
networks that use explicit handshake mechanisms. A
widely deployed MAC protocol for wireless networks is the
IEEE 802.11 standard [9] that is based on the MACA and
its variants.

A common thread in all these media access protocols for
wireless networks is that they are contention-based.
However, contention based protocols are inefficient, costly
and therefore undesirable in certain contexts. For example,
if energy is a concern for the nodes then a potential
collision and a following retransmission is rather costly,
and should therefore be avoided. When nodes have
predictable or periodic traffic, scheduling algorithms or
reservation-based protocols can improve both performance
and energy consumption. In many applications there is
limited traffic from each node, and therefore, it is more
important to design MAC protocols that conserve energy,

reduce access time when there is a need, and improve
channel utilization. Schemes like TDMA and reservation-
based protocols will perform quite well for these scenarios.
 When the nodes are highly mobile and/or the propagation
delays involved are quite high, new MAC protocols are
needed to achieve the objectives stated above.

In this paper we develop a MAC protocol suitable for
highly mobile nodes in a single-hop wireless LAN
environment. We have n airplanes/nodes randomly
distributed over an area (Figure. 1), the size of which is
determined by the maximum range of the airplane radios
used. The radios used by airplanes are quite strong, though,
and can reach up to 100 miles far. This creates an effective
area of about 100*100 miles2 where each node can hear all
other nodes. Each node broadcasts its current position
(taken by a satellite system – e.g. GPS) to all other nodes,
so that every node has an up to date picture of all the other
nodes positions (along with its own). Furthermore, other
types of data (e.g. voice) can also be sent over the channel,
along with the location update data. All nodes are highly
mobile, moving with speeds around 500 miles/hour. Their
direction of movement is considered to be arbitrary and can
change at any time, a fact that creates a rapidly changing
topology. Contention and therefore collisions can destroy or
significantly delay important location update (or command
and control) info and are highly undesirable. Furthermore,
the application itself can also provide valuable information
in determining a more efficient way to arbitrate packet
transmissions among individual nodes. Contention-free
schemes like TDMA are more preferable for this scenario
and are not too difficult to implement for relatively small
networks.

6

1

3

4

2

5

1 6 4 3 5 2 6 1 3 2 5 4

6

1

3

4
25

Figure 1 – Positions of jets in two different time instants
along with an example of (sub-optimal) schedules for each
case

Special care is needed, though, in choosing or designing an
appropriate MAC protocol for such an application. The
extremely long distances between nodes (a characteristic
not found in wired networks) cause accordingly long signal
propagation delays. As a matter of fact propagation delay
will be higher in many cases than packet transmission time.
As in the case of Ethernet (CSMA/CD), end-to-end (and
node-to-node) propagation delay will play a major role in

determining the media access algorithm’s performance.
Careless application of common scheduling or reservation-
based schemes in this context may cause the system to
perform far from optimal and could prove less effective
than contention-based schemes.

In Section 2 we will describe and analyze three different
scheduling algorithms, namely the “worst-case random
scheduling algorithm” , the “ token-based random
scheduling algorithm” and the “token-based greedy
scheduling algorithm. In Section 3 we will provide
simulation results for these algorithms, taken by simulating
a large number of random node topologies, and we’ ll use
those results to evaluate their performance. In Section 4 we
will discuss some additional environment-specific and
application-specific characteristics that could complicate
the problem’s solution and we will outline possible ways to
deal with them. Finally, in Section 5 we will conclude the
paper and propose some future work to be done.

2. SCHEDULED MEDIA ACCESS

Our application with n planes has particular characteristics
that demand for a careful design of the scheduling
algorithm to be used for media access. Some nodes only
will have data at any time to send and we want to schedule
access to the media to improve performance. There are
considerable signal propagation delays involved, which,
depending on the size of packets used for transmission, can
seriously degrade the performance of the system if
overlooked. We therefore need a scheduling scheme that
will deal with this propagation delay efficiently.

There are several different scheduling schemes that can be
used to arbitrate the access of a shared media. All of these
algorithms have in common the fact that they’ re designed
to prevent contention on the media and therefore avoid
collisions. Various performance metrics can be used to
measure the effectiveness of media access control
algorithms; throughput and latency are the most widely
used. Throughput is the maximum number of packets (or
bytes) that can be transmitted over the shared channel per
second. Latency, on the other hand, is the amount of time a
user has to wait before gaining access to the channel when
he or she has a packet to send. For scheduling schemes the
maximum access latency is directly related to the total
frame duration and we’ ll use them interchangeably to
evaluate different algorithm’s performance. Throughput
and latency are usually directly proportional, which makes
it impossible to optimize for both, simultaneously.
Optimizing for throughput will raise the average latency
incurred by a single user, while trying to bound latency will
probably leave the channel underutilized. There’s an
additional performance metric used occasionally to evaluate
a media access control scheme, fairness. An abstract
definition for fairness would be that “all users have an
equal chance to gain access to the shared media” . Each

media access control scheme and, consequently, each
scheduled media access control scheme aims at optimizing
for one of the above metrics, while retaining an acceptable
performance for the other two.

Worst case random scheduling

One straightforward and easy-to-implement approach to
schedule individual transmissions over the common
channel would be to design for the worst case. An arbitrary
schedule is chosen, based perhaps on nodes IDs (e.g. Radio
card ID), which could be hardwired or programmed in
advance. Each node waits for the previous node in schedule
to finish its transmission, before transmitting. However, if
the previous node has no packet to transmit, the next node
has to wait for the maximum possible propagation time
(that is, the time for signal to propagate from one end of the
coverage area to the other), in order to be sure that the
previous node has no packet to transmit during this frame
cycle. Waiting for the maximum propagation time is a
commonly used approach in wired networks (e.g. when
“sensing” the channel in CSMA protocols) for two major
reasons. First, as we already mentioned, it’s the safest and
simplest thing to do. Second and most important,
propagation time in wired LANs is usually bounded by
imposing a limit on the maximum physical wire length,
thereby securing the protocol’s performance. This is not the
case, though, for the type of extended area wireless LANs
we’ re considering.

Assuming there are n total nodes in the network, it is
important to know how many of those nodes on average are
actually active (that is, they have a packet to send) during a
frame period. If we define the number of active nodes as m,
then the maximum latency to access the channel or,
equivalently, the total frame duration will be given by:

c

D*2
*n

B

k
*mframeTmaxL +== (1)

K is the number of bits in a packet, D*2 is the network
diameter for a square D*D coverage area, B is the radio
bandwidth and c is the speed of light in vacuum. The total
network throughput, which is defined as the maximum
amount of traffic (in bps) that can be transmitted over the
channel, when there are m active nodes is:

c

D*2
*n

B

k
*m

k*m
Throughput

+

= (2)

Defining utilization (�) as the percentage of time data bits
are occupying the channel then:

c

D*2
*n

B

k
*m

B

k
*m

capacity channel

throughput�

+

== (3)

For an example configuration of k = 512 bytes, B = 10
Mbps, n = 100 and D = 100 miles then, if just one node is
active (m = 1), the time to access the channel is 54ms and
the channel utilization is only 0.0075, even if the node has
packets to transmit all the time. In Figure 2 and Figure 3
we show how channel access latency and channel
utilization changes with the number of active nodes:

Channel Access Latency

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

5 15 25 35 45 55 65 75 85 95

of active nodes

tim
e

(m
se

c)

Figure 2 – Channel access latency for the worst-case

random scheduling: k=512 bytes, B = 10 Mbps, n =100 and
D=100 miles

Channel Utilization

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

5 15 25 35 45 55 65 75 85 95

of active nodes

� (
u

ti
li

za
ti

o
n

)

Figure 3 – Channel utilization for the worst-case random
scheduling: k=512 bytes, B = 10Mbps, n =100 and D=100
miles

Token-based Random Scheduling

We saw that the simple worst-case random scheduling is
extremely inefficient when applied to our scenario.
Specifically, for cases where total traffic is contributed by a
small number of nodes at a time (m is small), this scheme
performs worse than the less sophisticated contention-based
media access protocols (i.e. pure Aloha). The reason that
the previous scheme performs so poorly is due to the fact
that each node has to wait for the maximum possible
propagation delay, before deciding whether another node is

transmitting or not. This, practically, means that each node
has to assume that the preceding node in schedule is always
as far away as possible.

An obvious improvement to the random scheduling
algorithm is to include a token. A token is a small packet
(5-20 bytes) that is exchanged among nodes and is used to
arbitrate individual node’s transmissions. The node that
possesses the token is automatically granted permission to
access the channel and transmit. When the node has
finished transmitting a packet (or possibly more) or if the
node does not have any packet to transmit, it relays the
token to the following node in schedule and so forth. This
way, the amount of time a node has to wait, before
concluding that the previous node does or does not have a
packet to transmit, will on average be less than the
maximum propagation time.

An important quantity for this scheduling algorithm is the
total time it takes for the signal to traverse the path formed
by connecting all the nodes according to the transmission
schedule. We’ ll be referring to this path as the “chain” in
the rest of this paper. This chain propagation time is given
by:

c

n

1i 1i - id

c

thChain_leng
propT

�
= +>

== (4)

di->i+1 is the physical distance from node i to the node
scheduled to transmit immediately after i.
The frame duration, total throughput and channel
utilization for this scheme are therefore given by:

c

n

1i 1i - id

B

k
*mL

�
= +>

+= (5)

c

n

1i 1i - id

B

k
*m

k*m
allThroughput �

= +>
+

= (6)

c

n

1i 1i - id

B

k
*m

B

k
*m

�
�
= +>

+

= (7)

As a matter of fact, we can do some further analysis to try
to estimate the average inter-node distance for the random
scheduling algorithm. This would give us a value of about

3

D*2
 to

3

D
 for inter-node distance.

We mentioned earlier that there’s another type of
contention-less media access control protocols, called
reservation-based protocols. Nodes make reservations
during the reservation period and transmit their packet
during the data transmission period. Although in many
cases the reservation-based scheme is very efficient, it
doesn’ t perform well in this context. The reason for this is
that the duration of each “mini-slot” within the reservation
“sub-frame” should be equal to the maximum propagation
time to avoid ambiguity and potential contention among the
nodes. That is, a node’s reservation should be propagated
first throughout the entire network, before another node can
reserve the media. We can easily see that this scheme is
equivalent to the original worst-case random scheduling
scheme, in terms of performance, and is therefore not a
candidate for extended area wireless LANs.

Token-based “ Greedy Chain” Scheduling

 Just by using the token, we managed to improve
the performance of the simple worst-case random

scheduling algorithm by a factor of about
2

3
 to 3 (when

m or k or both are low). We can do even better by looking
more closely at the equations that define the frame length,
total throughput, and channel utilization. We saw that for
the token-based random scheduling algorithm, the total
propagation time is the important quantity in all three
equations. Additionally, the smaller the size of packets used
for transmission, the more dramatic the propagation time’s
impact on system’s performance. Our goal should be,
therefore, to schedule the individual nodes to minimize the
total chain length.

The application itself running over this (extended range)
wireless LAN is a useful ally in our effort to minimize total
propagation time. As described earlier, part of the data
exchanged between jets is their actual locations. Each node
has, therefore, global knowledge of the network topology
and our problem is to find the shortest way to traverse all
nodes, starting from an arbitrary node (e.g. the one with
lowest ID). This is the well-known Traveling Salesman
Problem [5], a very popular problem in the Algorithms
literature (specifically Graph Theory) and is known to be
NP complete. There are non-optimal solutions available for
this, the most widely known of which may be Christofedes
algorithm [4]. Our concern, however, is not solely to
minimize total propagation time, but to improve the overall
system performance. The amount of improvement we can
achieve is bounded by the time it takes to transmit a packet.
Therefore, the degree of sophistication of the solution we
will choose for reducing the total path length should be
dependent on the impact on overall system performance.

We propose a simple heuristic to schedule nodes

transmissions, which can be easily implemented in a real
network and performs close to optimal for most of the
scenarios we consider. It’s a greedy type algorithm that
starts from an arbitrary node (e.g. lowest ID node) and
jumps to the nearest node not already traversed, until all
nodes are included in the path. Below, we provide a
pseudo-code for the greedy algorithm.

Set N = {node 0, node 1,…,node N}
Set S = {node 0}
Preceding node = node 0
While NS ≠

begin
next = node nearest to preceding node among
nodes S∉
S = S U {next}
Preceding node = next

end

Furthermore, we’ ll keep the token as a means of
synchronization among the nodes, without which timing
issues could seriously impede the application of our
scheduling algorithm. Each node uses the last position
updates of all the other nodes to recalculate the schedule
after each complete transmission cycle. This means that
nodes re-calculate the schedule for every frame. Although
the nodes we consider are highly mobile (speeds of
500miles/hour), they can only move in the range of few 10s
or 100s of feet within a frame’s period, which is quite low
relative to the inter-node distances, which are more than 1
mile. Consequently it’s relatively safe to base the
scheduling for the next frame on the nodes locations from
the previous update (which may or may not have occurred
during the last frame period). Since all nodes can “hear”
everyone, and all nodes perform the same algorithm to
compute the schedule, this scheme will work correctly. It
would only produce a sub-optimal schedule for one cycle,
which would be fixed when the next location update is
available.

The performance equations for the greedy algorithm are the
same as in the case of the token-based random scheduling
algorithm. The algorithm’s performance depends on the
topology of the nodes and in particular on the node density.
If, for example, n nodes were positioned on a D*D 2-
dimensional grid, the optimal chain length would be

D*n
n

D
*n = , which is the bound to our algorithm’s

performance. Notice that this gives a factor of 2n
improvement over the original worst-case random
scheduling scheme (which has an equivalent total path

length of D*2*n). For an arbitrary distribution of
nodes it’s difficult to estimate the algorithm’s performance
and we will use simulation to evaluate our scheme.

3. SIMULATION RESULTS

We saw that the system’s performance is defined in every
case by the total frame duration:

c

n

1i 1i - id

B

k
*mframeT

�

= +>
+= (8)

We can only try, however, to reduce the total chain length,
since packet length and radio bandwidth are not an
optimization target, but rather input parameters to the
problem. The impact of a potential reduction in total frame
length depends on the transmission time component of the

frame (
B

k
m*) and therefore on the amount of active nodes

(nodes that have packets to transmit), on packet size and on
radio bandwidth. The applicable packet sizes are between
64 bytes and 512 bytes, while the radio bandwidth is 1-
10Mbps. Finally, the amount of improvement of the token-
based greedy algorithm over the token-based and worse-
case random scheduling algorithms also depends on the
node density. The denser the network is the better the
chances are for the greedy algorithm to perform closer to
optimal. For our simulation we assume that nodes are
randomly distributed on a 100*100 miles2 square area and
the minimum inter-node distance is 1 mile. Results are
averaged over 100 runs for different random topologies and
different random schedules.

In Figure 4, we show the total “ idle” frame duration (that is
a frame without any transmissions occurring) for all three
scheduling algorithms and for different network densities.
We can see that for the two random algorithms the frame
duration increases linearly with the number of nodes in
network, as predicted by our previous analysis. However,
the greedy algorithm performs better with higher numbers
of nodes. The reason for that is that the denser the network
the more flexible our algorithm when making decisions and
the lower the penalty for making a sub-optimal decision.
The simulation results confirm our analysis that estimated
the scaling factor of the path produced by the greedy

scheme as n , where n is the number of nodes. The
increased scalability of the greedy algorithm results in a 20

times (200*2) and 7.5 times improvement over the
worst-case and token-based random algorithms,
respectively, for a 200 nodes topology. Furthermore, we can
observe the anticipated 3 times improvement of the token-
based random scheduling over the worse-case random
scheduling.

"Idle" Frame Duration

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

total # of nodes

ti
m

e
 (

s
e

c)

Token-
based
Greedy

Token-
based
Random

Worse-
case
Random

Figure 4 – Idle frame duration for the worse-case random,
token-based random and token-based greedy scheduling
algorithms

Because the worst-case random scheduling scheme is
heavily outperformed by the greedy algorithm, we’ ll
concentrate on the two token-based schemes. Figure 5
depicts the relative performance of the token-based greedy
scheduling over the token-based random scheduling for
different amounts of network activity. We assume 512 bytes
packets and 10Mbps radio bandwidth.

Random/Greedy Frame Length Ratio

0
1

2
3

4
5

6
7

8

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

total # of nodes

im
p

ro
ve

m
e

n
t

fa
ct

o
r 0% active

10% active

20% active

50% active

100% active

Figure 5 – Token-based random over token-based greedy
frame length reduction for different node activity

We can see from the graph above that the performance gain
of the greedy algorithm over the random one is becoming
less prominent for increasing network traffic. The reason
for this is due to the fact that more network traffic means
that the transmission time component becomes a larger part
of the total frame time, therefore reducing the impact of the
propagation time in system performance.

Throughput Gain of Greedy Scheduling over Random
Scheme

0

1

2

3

4

5

6

5 15 25 35 45 55 65 75 85 95
of active nodes

im
p

ro
ve

m
e

n
t

fa
ct

o
r

512B packets - 1Mbps
bandwidth

512B packets - 10Mbps
bandwidth

256B packets - 10Mbps
bandwidth

128B packets - 10Mbps
bandwidth

64B packets - 10Mbps
bandwidth

Figure 6 – Throughput gain of a token-based greedy
scheduling over a token-based random scheduling for 100
node network

In Figure 6, we show how packet size and bandwidth affect
the relative performance gain of the greedy algorithm (or
any other algorithm) over a less sophisticated one like the
token-based random algorithm. We assume a network size
of 100 nodes. There are a couple of observations we can
make regarding the system’s behaviour for different packet
sizes:

i. Packet size used impacts the maximum performance
improvement achievable by the greedy scheduling
algorithm. Smaller packets imply propagation time
is a larger part of the total frame time, and therefore
reduced propagation time will have a larger impact
on the overall system performance. This is,
essentially, Amdahl’s law [6] applied to this
particular system.

ii. For low node activity the improvement factor on
total throughput converges, for increasingly smaller
packet sizes, to the absolute improvement factor in
propagation time of the greedy algorithm.

Finally, we claimed during our analysis in section 2 that
our heuristic, albeit simple, performs close to optimal
(regarding overall system performance) for most cases of
interest and that the potential use of a more sophisticated
heuristic for the Traveling Salesman Problem could not
achieve any significant improvement on our system. In
Figure 7, we show the channel utilization levels achieved
by the token-based random scheduling and the token-based
greedy scheduling algorithms for several scenarios.

Channel Utilization for Random
Scheduling

0

0.2

0.4

0.6

0.8

1

1.2

5 20 35 50 65 80 95

% of active nodes

� (
u

ti
liz

at
io

n
)

512B -
1Mbps
512B -
10Mbps
256B -
10Mbps
128B -
10Mbps

Channel Utilization for Greedy
Scheduling

0

0.2

0.4

0.6

0.8

1

1.2

5 20 35 50 65 80 95

% of active nodes

� (
u

ti
liz

at
io

n
)

512B -
1Mbps
512B -
10Mbps
256B -
10Mbps
128B -
10Mbps

Figure 7 – Channel Utilization for the token-based random
scheduling and token-based greedy scheduling algorithms

It is apparent that for large packet sizes or low radio
bandwidth (i.e. 512bytes packets and 1Mbps radio
bandwidth) the random scheduling algorithm performs
relatively well, since it achieves a utilization of 80-100%
most of the time (>20-30% active nodes). For such a
configuration, there’s not much room for improvement. A
better algorithm can only push the curve a little up
(something that the greedy algorithm actually does), closer
to the 100% utilization bound, but obviously not any
further. It is for smaller packet sizes that the random
scheduling reveals its weaknesses. The greedy algorithm
can still achieve high channel utilization levels (>50-60%
for most cases), even for really small packet sizes, showing
significant improvement over the random one. One could
argue that 50-60% or less (for low percentages of active
nodes) is certainly not optimal. We have to keep in mind
however, that, for small packet sizes, the overall system
performance is constrained by the total chain length. The
total chain length is finite and cannot be as low as zero.
This means that channel utilization can never be one, but
will be bounded by the value achieved for the shortest
possible path through all the nodes. This shortest path is an
NP-complete problem to calculate and even the best
heuristic produces a path whose length is two times the
value of the optimal one. This gives us enough evidence
that the token-based greedy scheduling algorithm is
acceptably close to the best we could do for a practical

range of values applicable to the situation aware
communication application.

4. WIRELESS ENVIRONMENT AND APPLICATION

SPECIFIC CONSIDERATIONS

Apart from the basic problem dealt with so far, there are
some additional issues to consider stemming from the
nature of wireless media and certain application specific
characteristics.

One of the problems we haven’ t considered yet is what
happens when new nodes move “ into range” or existing
nodes move “out of range” . Our token-based algorithms are
flexible enough to handle potential additions or departures
of nodes, because the frame length is not fixed and can
accommodate any number of nodes. Furthermore, existing
nodes always know the global topology and can detect
arrivals or departures of nodes automatically. The only
problem is how all nodes can make a common decision
regarding when a new node is in or an existing one is out of
range. It is obvious that some nodes will detect a newcomer
faster than others, something that could cause
inconsistencies in the schedules calculated by different
nodes. A possible solution would be for every node to have
a common definition of the coverage area and consider that
a node is in or out of range when a node crosses the
boundaries of this particular area and not when they come
in or out of their own radio range.

The wireless environment is widely considered as one of
the “roughest” environments for communications.
Phenomena like shadowing, multi-path fading and
interference have often been a problem for many protocol
designers for wireless cellular and ad-hoc networks.
Fortunately, in our case the high elevation of the jets
permits us to assume LOS (Line Of Sight) communication
between nodes and ignore any shadowing or multi-path
fading effects. However, we still have to deal with
interference, like noise or jamming, which can be quite
high, since this is a military application we’ re considering
and we have to take into account combat field situations.
An important implication of the existence of interference is
that it may cause the token to be lost. The nodes should be
able to recover from such a token loss and continue with
the regular schedule in a short amount of time, since fault-
tolerance is crucial in military applications. A simple way
to make our algorithm more robust and able to handle
token losses is to add timeouts. A node waits first to hear a
packet transmission or a token transmission from the
previous node in schedule, before it can transmit. If neither
of these events occurs after a certain amount of time, the
node can timeout and can assume it has permission to
access to the channel. If it does not have a packet to send, it
creates a new token and passes it to the next one. A safe

timeout value would be as large as the end-to-end
propagation delay plus the transmission time for the
maximum sized packet. If just a few token losses occur per
frame, such timeouts would not degrade the system’s
performance considerably. If, on the other hand,
interference is high and token losses may occur very often,
smaller timeout values based on node-to-node propagation
delays instead of maximum propagation delays, would
perform better. Furthermore, a potential loss of a location
update packet due to interference, as we explained earlier,
is not crucial to our algorithm’s operation and is a self-
healing event.

5. CONCLUSIONS AND FUTURE WORK

In this paper we explained how large propagation delays
can degrade the performance of media access protocols for
extended area wireless LANs, like the one used for
communication among jet fighters. We also justified why
special attention is needed when designing media access
algorithms for such environments. We described a simple
worst-case random scheduling algorithm that only caters
for correctness, but not for efficiency, and proposed two
token-based scheduling algorithms, a random schedule and
a greedy chain based schedule, that try to solve the problem
more efficiently. We proved using analysis and simulation
that the token-based greedy scheduling algorithm performs
up to 20 times better from the worst-case random
scheduling and up to 7 times better than the token-based
random scheduling algorithm.

Finally, when packet sizes are small or radio bandwidth is
high, additional improvement is possible. This will become
increasingly important in the future, as wireless radio data
transmission rates get even higher, while data packet sizes
practically remain unchanged. Then it could be worthwhile
to consider more sophisticated heuristics to approximate the
shortest chain length.

REFERENCES

[1] F. A. Tobagi and L. Kleinrock, “Packet switching in
radio channels, Part II: The hidden-terminal problem in
carrier sense multiple access and the bus-tone solution” ,
IEEE Transactions in Communications., COM-23,
pp.1417-1433, 1975.

[2] L.G. Roberts. “Aloha Packet System with and without
Slots and Capture,” ASS Notes 8, Advanced Research
Projects Agency, Network Information Center, Stanford
Research Institute, Stanford, CA, 1972.

[3] IEEE Standard 802.3-1985. “Carrier Sense Multiple
Access with Collision Detection CSMA/CD” , 1985.

[4] N. Christofedes, "Graph Theory: An Algorithmic
Approach," Academic Press Inc., 1975.

[5] http://www.math.princeton.edu/tsp/

[6] J.L. Hennessey and D.A. Patterson, "Computer
Architecture: A Quantative Approach, " Morgan Kaufman
Publishers, Inc. 1990.

[7] P. Karn., “MACA--a new channel access method for
packet radio,” In Proceedings of the 9th ARRL/CRRL
Amateur Radio Computer Networking Conference,
September 1992.

[8] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang,
“MACAW: A media access protocol for wireless LANs,” In
ACM SIGCOMM '94, pages 212--225, August 1994.

[9] IEEE Standards Department, Wireless LAN medium
access control (MAC) and physical layer (PHY)
specifications, IEEE standard 802.11-1997, 1997.

[10] N. Shacham and V. B. Hunt, “Performance evaluation
of the CSMA/CD (1-persistent) channel-access protocol in
common-channel local networks,” In Local Computer
Network, IFIP, pages 401--414. North-Holland, 1982.

[11] K. Eternad, “Enhanced random access and reservation
scheme in CDMA2000” , IEEE Personal Communications,
Vol. 8, issue 2, pages 30-36, April 2001

