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Abstract— In this paper we propose a MAC 
protocol for situation aware, long range wireless LANs 
consisting of highly mobile nodes. We choose to schedule 
nodes’  transmissions instead of using contention-based 
protocols for accessing the channel. This approach is 
attractive for improving the performance of wireless LANs 
with long propagation delays. An example of such wireless 
LANs is a set of planes in a range of hundred miles with 
radio communications. The problem with contention-based 
MAC protocols is that each node has to wait for the 
maximum propagation delay (from one end of the coverage 
area to the other), before it can decide whether the channel 
is free or the previous node had no packet to transmit. We 
propose an “educated”  token-based adaptive algorithm that 
schedules individual nodes transmissions in a way that 
minimizes the total propagation delay for each round, based 
on global location information. This way, nodes that are 
near one another are also adjacent in the schedule, and 
therefore have to wait significantly less time before they 
can decide whether it’s safe to transmit or not. We call this 
algorithm “Token-based Greedy Chain Scheduling 
Algorithm” . We compare the Token-based Greedy Chain 
Scheduling Algorithm with a random scheduling algorithm 
and a worst-case scheduling algorithm. Simulation results 
show latency and throughput improvements by a factor of 
up to 5 to 7 times compared to the random scheduling 
algorithm.  
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 1. INTRODUCTION 

There exists a plethora of media access protocols for local 

area networks. These include the earlier Aloha [2] 
(unslotted and slotted), reservation based protocols [11], 
and the widely deployed CSMA/CD protocol [3].  There are 
considerable research results on the performance of these 
MAC protocols in the literature [10]. For example, the 
performance of CSMA/CD is highly depended on end-to-
end propagation delay and this is the reason why there’s a 
restriction on the maximum cable length for Ethernet.  
With the explosive growth in laptops and hand-held devices 
using wireless communications, design of MAC protocols 
is once again becoming an important research area. 
 
Protocols like CSMA/CD and newer ones based on fiber 
optics networks like FDDI and DQDB, have been widely 
deployed for wired LANs and can achieve remarkably high 
throughputs and channel utilizations close to 100%. 
However, their application in a wireless environment has 
not been that straightforward. Mobile environments are 
governed by phenomena like shadowing, multi-path fading 
and interference that invalidate crucial assumptions made 
for wired networks. Further, there is the hidden terminal 
problem in wireless ad hoc networks [1]. Protocols like 
MACA [7] and MACAW [8] were proposed for ad hoc 
networks that use explicit handshake mechanisms. A 
widely deployed MAC protocol for wireless networks is the 
IEEE 802.11 standard [9] that is based on the MACA and 
its variants.  
 
A common thread in all these media access protocols for 
wireless networks is that they are contention-based. 
However, contention based protocols are inefficient, costly 
and therefore undesirable in certain contexts. For example, 
if energy is a concern for the nodes then a potential 
collision and a following retransmission is rather costly, 
and should therefore be avoided. When nodes have 
predictable or periodic traffic, scheduling algorithms or 
reservation-based protocols can improve both performance 
and energy consumption. In many applications there is 
limited traffic from each node, and therefore, it is more 
important to design MAC protocols that conserve energy, 



reduce access time when there is a need, and improve 
channel utilization. Schemes like TDMA and reservation-
based protocols will perform quite well for these scenarios. 
 When the nodes are highly mobile and/or the propagation 
delays involved are quite high, new MAC protocols are 
needed to achieve the objectives stated above. 
 
In this paper we develop a MAC protocol suitable for 
highly mobile nodes in a single-hop wireless LAN 
environment. We have n airplanes/nodes randomly 
distributed over an area (Figure. 1), the size of which is 
determined by the maximum range of the airplane radios 
used. The radios used by airplanes are quite strong, though, 
and can reach up to 100 miles far. This creates an effective 
area of about 100*100 miles2 where each node can hear all 
other nodes. Each node broadcasts its current position 
(taken by a satellite system – e.g. GPS) to all other nodes, 
so that every node has an up to date picture of all the other 
nodes positions (along with its own). Furthermore, other 
types of data (e.g. voice) can also be sent over the channel, 
along with the location update data. All nodes are highly 
mobile, moving with speeds around 500 miles/hour. Their 
direction of movement is considered to be arbitrary and can 
change at any time, a fact that creates a rapidly changing 
topology. Contention and therefore collisions can destroy or 
significantly delay important location update (or command 
and control) info and are highly undesirable. Furthermore, 
the application itself can also provide valuable information 
in determining a more efficient way to arbitrate packet 
transmissions among individual nodes. Contention-free 
schemes like TDMA are more preferable for this scenario 
and are not too difficult to implement for relatively small 
networks.  
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Figure 1 – Positions of jets in two different time instants 
along with an example of (sub-optimal) schedules for each 
case 

 
Special care is needed, though, in choosing or designing an 
appropriate MAC protocol for such an application. The 
extremely long distances between nodes (a characteristic 
not found in wired networks) cause accordingly long signal 
propagation delays. As a matter of fact propagation delay 
will be higher in many cases than packet transmission time. 
As in the case of Ethernet (CSMA/CD), end-to-end (and 
node-to-node) propagation delay will play a major role in 

determining the media access algorithm’s performance. 
Careless application of common scheduling or reservation-
based schemes in this context may cause the system to 
perform far from optimal and could prove less effective 
than contention-based schemes. 
 
In Section 2 we will describe and analyze three different 
scheduling algorithms, namely the “worst-case random 
scheduling algorithm” , the “ token-based random 
scheduling algorithm”  and the “token-based greedy 
scheduling algorithm. In Section 3 we will provide 
simulation results for these algorithms, taken by simulating 
a large number of random node topologies, and we’ ll use 
those results to evaluate their performance. In Section 4 we 
will discuss some additional environment-specific and 
application-specific characteristics that could complicate 
the problem’s solution and we will outline possible ways to 
deal with them. Finally, in Section 5 we will conclude the 
paper and propose some future work to be done. 
 

2. SCHEDULED MEDIA ACCESS 

Our application with n planes has particular characteristics 
that demand for a careful design of the scheduling 
algorithm to be used for media access. Some nodes only 
will have data at any time to send and we want to schedule 
access to the media to improve performance. There are 
considerable signal propagation delays involved, which, 
depending on the size of packets used for transmission, can 
seriously degrade the performance of the system if 
overlooked. We therefore need a scheduling scheme that 
will deal with this propagation delay efficiently. 
 
There are several different scheduling schemes that can be 
used to arbitrate the access of a shared media. All of these 
algorithms have in common the fact that they’ re designed 
to prevent contention on the media and therefore avoid 
collisions. Various performance metrics can be used to 
measure the effectiveness of media access control 
algorithms; throughput and latency are the most widely 
used. Throughput is the maximum number of packets (or 
bytes) that can be transmitted over the shared channel per 
second. Latency, on the other hand, is the amount of time a 
user has to wait before gaining access to the channel when 
he or she has a packet to send. For scheduling schemes the 
maximum access latency is directly related to the total 
frame duration and we’ ll use them interchangeably to 
evaluate different algorithm’s performance. Throughput 
and latency are usually directly proportional, which makes 
it impossible to optimize for both, simultaneously. 
Optimizing for throughput will raise the average latency 
incurred by a single user, while trying to bound latency will 
probably leave the channel underutilized. There’s an 
additional performance metric used occasionally to evaluate 
a media access control scheme, fairness. An abstract 
definition for fairness would be that “all users have an 
equal chance to gain access to the shared media” . Each 



media access control scheme and, consequently, each 
scheduled media access control scheme aims at optimizing 
for one of the above metrics, while retaining an acceptable 
performance for the other two.  
 
Worst case random scheduling 

One straightforward and easy-to-implement approach to 
schedule individual transmissions over the common 
channel would be to design for the worst case. An arbitrary 
schedule is chosen, based perhaps on nodes IDs (e.g. Radio 
card ID), which could be hardwired or programmed in 
advance. Each node waits for the previous node in schedule 
to finish its transmission, before transmitting. However, if 
the previous node has no packet to transmit, the next node 
has to wait for the maximum possible propagation time 
(that is, the time for signal to propagate from one end of the 
coverage area to the other), in order to be sure that the 
previous node has no packet to transmit during this frame 
cycle. Waiting for the maximum propagation time is a 
commonly used approach in wired networks (e.g. when 
“sensing”  the channel in CSMA protocols) for two major 
reasons. First, as we already mentioned, it’s the safest and 
simplest thing to do. Second and most important, 
propagation time in wired LANs is usually bounded by 
imposing a limit on the maximum physical wire length, 
thereby securing the protocol’s performance. This is not the 
case, though, for the type of extended area wireless LANs 
we’ re considering.  
 
Assuming there are n total nodes in the network, it is 
important to know how many of those nodes on average are 
actually active (that is, they have a packet to send) during a 
frame period. If we define the number of active nodes as m, 
then the maximum latency to access the channel or, 
equivalently, the total frame duration will be given by:  
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K is the number of bits in a packet, D*2  is the network 
diameter for a square D*D coverage area, B is the radio 
bandwidth and c is the speed of light in vacuum. The total 
network throughput, which is defined as the maximum 
amount of traffic (in bps) that can be transmitted over the 
channel, when there are m active nodes is:  
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Defining utilization ( � ) as the percentage of time data bits 
are occupying the channel then: 
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For an example configuration of k = 512 bytes, B = 10 
Mbps, n = 100 and D = 100 miles then, if just one node is 
active (m = 1), the time to access the channel is 54ms and 
the channel utilization is only 0.0075, even if the node has 
packets to transmit all the time. In Figure 2 and Figure 3 
we show how channel access latency and channel 
utilization changes with the number of active nodes: 
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Figure 2 – Channel access latency for the worst-case 

random scheduling: k=512 bytes, B = 10 Mbps, n =100 and 
D=100 miles 
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Figure 3 – Channel utilization for the worst-case random 
scheduling: k=512 bytes, B = 10Mbps, n =100 and D=100 
miles 
 
Token-based Random Scheduling 

We saw that the simple worst-case random scheduling is 
extremely inefficient when applied to our scenario. 
Specifically, for cases where total traffic is contributed by a 
small number of nodes at a time (m is small), this scheme 
performs worse than the less sophisticated contention-based 
media access protocols (i.e. pure Aloha). The reason that 
the previous scheme performs so poorly is due to the fact 
that each node has to wait for the maximum possible 
propagation delay, before deciding whether another node is 



transmitting or not. This, practically, means that each node 
has to assume that the preceding node in schedule is always 
as far away as possible. 
 
An obvious improvement to the random scheduling 
algorithm is to include a token. A token is a small packet 
(5-20 bytes) that is exchanged among nodes and is used to 
arbitrate individual node’s transmissions. The node that 
possesses the token is automatically granted permission to 
access the channel and transmit. When the node has 
finished transmitting a packet (or possibly more) or if the 
node does not have any packet to transmit, it relays the 
token to the following node in schedule and so forth. This 
way, the amount of time a node has to wait, before 
concluding that the previous node does or does not have a 
packet to transmit, will on average be less than the 
maximum propagation time. 
  
An important quantity for this scheduling algorithm is the 
total time it takes for the signal to traverse the path formed 
by connecting all the nodes according to the transmission 
schedule. We’ ll be referring to this path as the “chain”  in 
the rest of this paper. This chain propagation time is given 
by: 
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di->i+1 is the physical distance from node i to the node 
scheduled to transmit immediately after i.  
The frame duration, total throughput and channel 
utilization for this scheme are therefore given by: 
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As a matter of fact, we can do some further analysis to try 
to estimate the average inter-node distance for the random 
scheduling algorithm. This would give us a value of about 

3

D*2
  to

3

D
 for inter-node distance.  

 
We mentioned earlier that there’s another type of 
contention-less media access control protocols, called 
reservation-based protocols. Nodes make reservations 
during the reservation period and transmit their packet 
during the data transmission period. Although in many 
cases the reservation-based scheme is very efficient, it 
doesn’ t perform well in this context. The reason for this is 
that the duration of each “mini-slot”  within the reservation 
“sub-frame”  should be equal to the maximum propagation 
time to avoid ambiguity and potential contention among the 
nodes. That is, a node’s reservation should be propagated 
first throughout the entire network, before another node can 
reserve the media. We can easily see that this scheme is 
equivalent to the original worst-case random scheduling 
scheme, in terms of performance, and is therefore not a 
candidate for extended area wireless LANs. 
 
Token-based “ Greedy Chain”  Scheduling 

 Just by using the token, we managed to improve 
the performance of the simple worst-case random 

scheduling algorithm by a factor of about 
2

3
 to 3 (when 

m or k or both are low). We can do even better by looking 
more closely at the equations that define the frame length, 
total throughput, and channel utilization. We saw that for 
the token-based random scheduling algorithm, the total 
propagation time is the important quantity in all three 
equations. Additionally, the smaller the size of packets used 
for transmission, the more dramatic the propagation time’s 
impact on system’s performance. Our goal should be, 
therefore, to schedule the individual nodes to minimize the 
total chain length. 
 
The application itself running over this (extended range) 
wireless LAN is a useful ally in our effort to minimize total 
propagation time. As described earlier, part of the data 
exchanged between jets is their actual locations. Each node 
has, therefore, global knowledge of the network topology 
and our problem is to find the shortest way to traverse all 
nodes, starting from an arbitrary node (e.g. the one with 
lowest ID). This is the well-known Traveling Salesman 
Problem [5], a very popular problem in the Algorithms 
literature (specifically Graph Theory) and is known to be 
NP complete. There are non-optimal solutions available for 
this, the most widely known of which may be Christofedes 
algorithm [4]. Our concern, however, is not solely to 
minimize total propagation time, but to improve the overall 
system performance. The amount of improvement we can 
achieve is bounded by the time it takes to transmit a packet. 
Therefore, the degree of sophistication of the solution we 
will choose for reducing the total path length should be 
dependent on the impact on overall system performance.  
  
We propose a simple heuristic to schedule nodes 



transmissions, which can be easily implemented in a real 
network and performs close to optimal for most of the 
scenarios we consider. It’s a greedy type algorithm that 
starts from an arbitrary node (e.g. lowest ID node) and 
jumps to the nearest node not already traversed, until all 
nodes are included in the path. Below, we provide a 
pseudo-code for the greedy algorithm. 
 
Set N = {node 0, node 1,…,node N} 
Set S = {node 0} 
Preceding node = node 0 
While NS ≠  

begin 
next = node nearest to preceding node among 
nodes S∉  
S = S U {next} 
Preceding node = next 

end 
 

Furthermore, we’ ll keep the token as a means of 
synchronization among the nodes, without which timing 
issues could seriously impede the application of our 
scheduling algorithm. Each node uses the last position 
updates of all the other nodes to recalculate the schedule 
after each complete transmission cycle. This means that 
nodes re-calculate the schedule for every frame. Although 
the nodes we consider are highly mobile (speeds of 
500miles/hour), they can only move in the range of few 10s 
or 100s of feet within a frame’s period, which is quite low 
relative to the inter-node distances, which are more than 1 
mile. Consequently it’s relatively safe to base the 
scheduling for the next frame on the nodes locations from 
the previous update (which may or may not have occurred 
during the last frame period). Since all nodes can “hear”  
everyone, and all nodes perform the same algorithm to 
compute the schedule, this scheme will work correctly. It 
would only produce a sub-optimal schedule for one cycle, 
which would be fixed when the next location update is 
available.  
 
The performance equations for the greedy algorithm are the 
same as in the case of the token-based random scheduling 
algorithm. The algorithm’s performance depends on the 
topology of the nodes and in particular on the node density. 
If, for example, n nodes were positioned on a D*D 2-
dimensional grid, the optimal chain length would be 

D*n
n

D
*n = , which is the bound to our algorithm’s 

performance. Notice that this gives a factor of 2n   
improvement over the original worst-case random 
scheduling scheme (which has an equivalent total path 

length of D*2*n ).  For an arbitrary distribution of 
nodes it’s difficult to estimate the algorithm’s performance 
and we will use simulation to evaluate our scheme. 

 
3. SIMULATION RESULTS 

We saw that the system’s performance is defined in every 
case by the total frame duration: 
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We can only try, however, to reduce the total chain length, 
since packet length and radio bandwidth are not an 
optimization target, but rather input parameters to the 
problem. The impact of a potential reduction in total frame 
length depends on the transmission time component of the 

frame (
B

k
m* ) and therefore on the amount of active nodes 

(nodes that have packets to transmit), on packet size and on 
radio bandwidth. The applicable packet sizes are between 
64 bytes and 512 bytes, while the radio bandwidth is 1-
10Mbps. Finally, the amount of improvement of the token-
based greedy algorithm over the token-based and worse-
case random scheduling algorithms also depends on the 
node density. The denser the network is the better the 
chances are for the greedy algorithm to perform closer to 
optimal. For our simulation we assume that nodes are 
randomly distributed on a 100*100 miles2 square area and 
the minimum inter-node distance is 1 mile. Results are 
averaged over 100 runs for different random topologies and 
different random schedules. 
  
In Figure 4, we show the total “ idle”  frame duration (that is 
a frame without any transmissions occurring) for all three 
scheduling algorithms and for different network densities. 
We can see that for the two random algorithms the frame 
duration increases linearly with the number of nodes in 
network, as predicted by our previous analysis. However, 
the greedy algorithm performs better with higher numbers 
of nodes. The reason for that is that the denser the network 
the more flexible our algorithm when making decisions and 
the lower the penalty for making a sub-optimal decision. 
The simulation results confirm our analysis that estimated 
the scaling factor of the path produced by the greedy 

scheme as n , where n is the number of nodes. The 
increased scalability of the greedy algorithm results in a 20 

times ( 200*2 ) and 7.5 times improvement over the 
worst-case and token-based random algorithms, 
respectively, for a 200 nodes topology. Furthermore, we can 
observe the anticipated 3 times improvement of the token-
based random scheduling over the worse-case random 
scheduling.   
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Figure 4 – Idle frame duration for the worse-case random, 
token-based random and token-based greedy scheduling 
algorithms 
 
Because the worst-case random scheduling scheme is 
heavily outperformed by the greedy algorithm, we’ ll 
concentrate on the two token-based schemes. Figure 5 
depicts the relative performance of the token-based greedy 
scheduling over the token-based random scheduling for 
different amounts of network activity. We assume 512 bytes 
packets and 10Mbps radio bandwidth. 

 

Random/Greedy Frame Length Ratio

0
1

2
3

4
5

6
7

8

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

total # of nodes

im
p

ro
ve

m
e

n
t 

fa
ct

o
r 0% active

10% active

20% active

50% active

100% active

 
 
Figure 5 – Token-based random over token-based greedy 
frame length reduction for different node activity 
 
We can see from the graph above that the performance gain 
of the greedy algorithm over the random one is becoming 
less prominent for increasing network traffic. The reason 
for this is due to the fact that more network traffic means 
that the transmission time component becomes a larger part 
of the total frame time, therefore reducing the impact of the 
propagation time in system performance. 
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Figure 6 – Throughput gain of a token-based greedy 
scheduling over a token-based random scheduling for 100 
node network 
 
In Figure 6, we show how packet size and bandwidth affect 
the relative performance gain of the greedy algorithm (or 
any other algorithm) over a less sophisticated one like the 
token-based random algorithm. We assume a network size 
of 100 nodes. There are a couple of observations we can 
make regarding the system’s behaviour for different packet 
sizes: 
  

i. Packet size used impacts the maximum performance 
improvement achievable by the greedy scheduling 
algorithm. Smaller packets imply propagation time 
is a larger part of the total frame time, and therefore 
reduced propagation time will have a larger impact 
on the overall system performance. This is, 
essentially, Amdahl’s law [6] applied to this 
particular system. 

ii. For low node activity the improvement factor on 
total throughput converges, for increasingly smaller 
packet sizes, to the absolute improvement factor in 
propagation time of the greedy algorithm.   

  
Finally, we claimed during our analysis in section 2 that 
our heuristic, albeit simple, performs close to optimal 
(regarding overall system performance) for most cases of 
interest and that the potential use of a more sophisticated 
heuristic for the Traveling Salesman Problem could not 
achieve any significant improvement on our system. In 
Figure 7, we show the channel utilization levels achieved 
by the token-based random scheduling and the token-based 
greedy scheduling algorithms for several scenarios.  
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Figure 7 – Channel Utilization for the token-based random 
scheduling and token-based greedy scheduling algorithms 
 
It is apparent that for large packet sizes or low radio 
bandwidth (i.e. 512bytes packets and 1Mbps radio 
bandwidth) the random scheduling algorithm performs 
relatively well, since it achieves a utilization of 80-100% 
most of the time (>20-30% active nodes). For such a 
configuration, there’s not much room for improvement. A 
better algorithm can only push the curve a little up 
(something that the greedy algorithm actually does), closer 
to the 100% utilization bound, but obviously not any 
further. It is for smaller packet sizes that the random 
scheduling reveals its weaknesses. The greedy algorithm 
can still achieve high channel utilization levels (>50-60% 
for most cases), even for really small packet sizes, showing 
significant improvement over the random one. One could 
argue that 50-60% or less (for low percentages of active 
nodes) is certainly not optimal. We have to keep in mind 
however, that, for small packet sizes, the overall system 
performance is constrained by the total chain length. The 
total chain length is finite and cannot be as low as zero. 
This means that channel utilization can never be one, but 
will be bounded by the value achieved for the shortest 
possible path through all the nodes. This shortest path is an 
NP-complete problem to calculate and even the best 
heuristic produces a path whose length is two times the 
value of the optimal one. This gives us enough evidence 
that the token-based greedy scheduling algorithm is 
acceptably close to the best we could do for a practical 

range of values applicable to the situation aware 
communication application. 
 

4. WIRELESS ENVIRONMENT AND APPLICATION 

SPECIFIC CONSIDERATIONS 

Apart from the basic problem dealt with so far, there are 
some additional issues to consider stemming from the 
nature of wireless media and certain application specific 
characteristics. 
 
One of the problems we haven’ t considered yet is what 
happens when new nodes move “ into range”  or existing 
nodes move “out of range” . Our token-based algorithms are 
flexible enough to handle potential additions or departures 
of nodes, because the frame length is not fixed and can 
accommodate any number of nodes. Furthermore, existing 
nodes always know the global topology and can detect 
arrivals or departures of nodes automatically. The only 
problem is how all nodes can make a common decision 
regarding when a new node is in or an existing one is out of 
range. It is obvious that some nodes will detect a newcomer 
faster than others, something that could cause 
inconsistencies in the schedules calculated by different 
nodes. A possible solution would be for every node to have 
a common definition of the coverage area and consider that 
a node is in or out of range when a node crosses the 
boundaries of this particular area and not when they come 
in or out of their own radio range. 
 
The wireless environment is widely considered as one of 
the “roughest”  environments for communications. 
Phenomena like shadowing, multi-path fading and 
interference have often been a problem for many protocol 
designers for wireless cellular and ad-hoc networks. 
Fortunately, in our case the high elevation of the jets 
permits us to assume LOS (Line Of Sight) communication 
between nodes and ignore any shadowing or multi-path 
fading effects. However, we still have to deal with 
interference, like noise or jamming, which can be quite 
high, since this is a military application we’ re considering 
and we have to take into account combat field situations. 
An important implication of the existence of interference is 
that it may cause the token to be lost. The nodes should be 
able to recover from such a token loss and continue with 
the regular schedule in a short amount of time, since fault-
tolerance is crucial in military applications. A simple way 
to make our algorithm more robust and able to handle 
token losses is to add timeouts. A node waits first to hear a 
packet transmission or a token transmission from the 
previous node in schedule, before it can transmit. If neither 
of these events occurs after a certain amount of time, the 
node can timeout and can assume it has permission to 
access to the channel. If it does not have a packet to send, it 
creates a new token and passes it to the next one. A safe 



timeout value would be as large as the end-to-end 
propagation delay plus the transmission time for the 
maximum sized packet. If just a few token losses occur per 
frame, such timeouts would not degrade the system’s 
performance considerably. If, on the other hand, 
interference is high and token losses may occur very often, 
smaller timeout values based on node-to-node propagation 
delays instead of maximum propagation delays, would 
perform better. Furthermore, a potential loss of a location 
update packet due to interference, as we explained earlier, 
is not crucial to our algorithm’s operation and is a self-
healing event.  
 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we explained how large propagation delays 
can degrade the performance of media access protocols for 
extended area wireless LANs, like the one used for 
communication among jet fighters. We also justified why 
special attention is needed when designing media access 
algorithms for such environments. We described a simple 
worst-case random scheduling algorithm that only caters 
for correctness, but not for efficiency, and proposed two 
token-based scheduling algorithms, a random schedule and 
a greedy chain based schedule, that try to solve the problem 
more efficiently. We proved using analysis and simulation 
that the token-based greedy scheduling algorithm performs 
up to 20 times better from the worst-case random 
scheduling and up to 7 times better than the token-based 
random scheduling algorithm.   
 
Finally, when packet sizes are small or radio bandwidth is 
high, additional improvement is possible. This will become 
increasingly important in the future, as wireless radio data 
transmission rates get even higher, while data packet sizes 
practically remain unchanged. Then it could be worthwhile 
to consider more sophisticated heuristics to approximate the 
shortest chain length.  
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