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Abstract— Intermittently connected mobile networks are
wireless networks where most of the time there does not exist
a complete path from source to destination, or such a path
is highly unstable and may break soon after it has been
discovered. In this context, conventional routing schemes
would fail.

To deal with such networks we propose the use of an
opportunistic hop-by-hop routing model. According to the
model, a series of independent, local forwarding decisions
are made, based on current connectivity and predictions
of future connectivity information diffused through nodes’
mobility. The important issue here is how to choose an
appropriate next hop. To this end, we propose and analyze
via theory and simulations a number of routing algorithms.
The champion algorithm turns out to be one that combines
the simplicity of a simple random policy, which is efficient
in finding good leads towards the destination, with the
sophistication of utility-based policies that efficiently follow
good leads. We also state and analyze the performance
of an oracle-based optimal algorithm, and compare it to
the online approaches. The metrics used in the comparison
are the average message delivery delay and the number of
transmissions per message delivered.

I. INTRODUCTION

Intermittently connected mobile networks (ICMN) are
mobile wireless networks where, at any time (or most of
the time), there does not exist a complete path from a
source to a destination or such a path is highly unstable
and may change or break soon after it has been discovered
(or even while being discovered). This situation arises
when the network is quite sparse, in which case it can
be viewed as a set of disconnected clusters of nodes. Due
to node mobility, clusters may change over time. Addi-
tionally, extreme mobility may render a complete path
discovery highly inefficient, if not useless. Intermittently
connected mobile networks belong to the general category
of Delay Tolerant Networks [1], that is, networks were
incurred delays can be very large and unpredictable.

Since in the ICMN model there may not exist an end-to-
end path between a source and a destination, conventional
mobile ad-hoc network routing routing schemes, such

as DSR [2], AODV [3], etc., would fail. Specifically,
reactive schemes will fail to discover a complete path,
while proactive protocols will fail to converge, resulting
in a deluge of topology update messages. However, this
does not mean that packets can never be delivered in
such networks. Over time, different links come up and
down due to node mobility. If the sequence of connectivity
graphs over a time interval are overlapped, then an end-
to-end path might exist. This implies that a message could
be sent over an existing link, get buffered at the next hop
until the next link in the path comes up, and so on and
so forth, until it reaches its destination.

This approach imposes a new model for routing. Rout-
ing consists of a sequence of independent, local forward-
ing decisions, based on current connectivity information
and predictions of future connectivity information. In
other words, node mobility needs to be exploited in order
to deliver a message to its destination. This is reminiscent
of the work in [4]. However, there mobility is exploited
in order to improve capacity, while here it is used to
overcome the lack of end-to-end connectivity.

Hop-by-hop routing implies that a packet gets buffered
in an intermediate (relay) node, until an ”appropriate”
next hop is found for the message to be forwarded. The
important issue here is what constitutes an appropriate
next hop. In other words, how can a node, currently
carrying a packet for a specific destination, make a for-
warding decision that will bring the packet ”closer” to the
destination? Of greatest importance for such a forwarding
decision is going to be how appropriateness of a node as
a potential next hop will be defined.

Depending on the number of copies of a single message
that may coexist in the network, one can define two
major categories of hop-by-hop routing schemes, namely
single-copy routing schemes and multiple-copy routing
schemes. In single-copy routing schemes there’s only a
single custodian for each message. When the current
custodian forwards the copy to an appropriate next hop,
this becomes the message’s new custodian, and so on and
so forth until the message reaches its destination. On the



other hand, multiple-copy routing schemes may generate
multiple copies of the same message which can be routed
independently for increased efficiency and robustness. The
majority of routing schemes proposed in the literature in
the context of ICMNs are flooding or gossip-based, and,
therefore, multiple-copy in nature [5], [6], [7], [8], [9].

Despite their increased robustness, flooding-based pro-
tocols like epidemic routing and its derivatives consume a
high amount of bandwidth and energy, as has been noted
in [6], [8], [10]. Thus, a very high cost may be the price
for the anticipated performance gain, or, even worse, these
schemes may result in poor performance due to high con-
tention for shared resources [11]. These shortcomings may
render such algorithms prohibitive for energy-constrained
and bandwidth-constrained applications, which is the
common case in wireless networks. Additionally, as the
average node degree increases, they are faced with im-
portant scalability issues, both in terms of memory size
needed [8] (a scarce resource in COTS sensors), and
amount of transmissions performed [10]. Consequently, it
is highly desirable to design efficient single-copy routing
schemes for resource-constrained ICMNs.

In this work we investigate the problem of efficient
routing in intermittently connected mobile networks using
single-copy approaches. (In [10] we study the same prob-
lem using multi-copy approaches.) We assume that the
only information available to each node regarding other
nodes is a set of timers recording the time elapsed since
every other node was last encountered. These timers carry
indirect location information about a node, which gets
diffused into the network through other nodes’ mobility.
To capture the amount of useful information contained
in these timers it is natural to maintain some kind of a
utility function for each node (on a per-destination basis)
that would, at all times, reflect the probability that a
node will deliver the packet to the destination. We define
such a utility function and propose a utility-based routing
scheme, based on it. We compare its performance, both
analytically and using simulations, to that of a simple
randomized routing algorithm. Then, we propose a hybrid
routing protocol, called “seek and focus”, that combines
the best features of both the random and utility-based
strategies. Our simulations show that this hybrid scheme
presents the best tradeoff in terms of message delivery
delay and number of transmissions per message delivered.
Finally, we derive and analyze an oracle-based optimal
algorithm, and compare its performance to that of the
online algorithms.

In the next section we go over some existing related
work. Then, in Section III, we present our basic assump-
tions about the problem in hand, and in Section IV we

present the random, the utility-based, and the “seek and fo-
cus” routing algorithms. Section V introduces the oracle-
based optimal algorithm, and analyzes the performance
of this and the random routing scheme. Then, Section VI
presents simulation results where the performance of all
the strategies is compared with respect to message delivery
delay and number of transmissions per message delivered.
Finally, Section VII concludes the paper and gives some
directions for future work.

II. RELATED WORK

In the context of routing for intermittently connected
mobile networks a number of efforts exist that mostly try
to deal with application-specific problems, especially in
the field of sensor networks. In [12] a number of mobile
nodes, modeled as performing independent random walks,
serve as DataMules that carry data from static sensors to
base stations, in a sparse sensor network. The statistics
of random walks are used to analyze the expected perfor-
mance of the system. The idea of carrying data through
disconnected parts using a virtual mobile backbone has
also been used in [7], [9], [13], [14].

In a number of other works, all nodes are assumed to be
mobile and algorithms to transfer messages from any node
to any other node are sought for [4], [5], [6], [8], [14],
[15], [16], [17]. In [5] the concept of epidemic algorithms
is applied to routing, as a flooding method in the context of
intermittently connected mobile networks. In [8] epidemic
routing is used to reliably collect data from sensor nodes
attached to zebras. Additionally, a simple method to take
advantage of the history of past encounters is implemented
in order to reduce the overhead of epidemic routing and
improve its performance. The concept of history based or
probabilistic routing is further elaborated in [6]. There
it is shown that using the age of last encounter with
a node, when making a forwarding decision, results in
superior performance than flooding. Similar results have
been found in the context of regular, connected, wireless
networks in [16].

The authors in [15] generalize the concept of history-
based/probabilistic routing to that of utility-based routing,
where the utility of a node for a destination may be a func-
tion of the history of encounter, frequency of encounter,
node speed, future or scheduled encounter, node resources,
etc. Additionally, they propose a periodic request and
reply method, similar to that used in DSR [2] and [16], to
query potential next hops, instead of the encounter-based
approach of [5], [6], [8].

Despite the variety of existing approaches, a majority
of them is based on epidemic-routing or some other
form of controlled flooding [5], [6], [7], [8], [9]. Hence,
they are multiple-copy schemes, in nature. Furthermore,



the minority that deal with single-copy techniques only
study utility-based schemes, and provide no theoretical
analysis of their performance [15]. To the best of our
knowledge, the only prior analytical work is on direct
transmission schemes [12]. In this paper, we propose a
number of different single-copy routing algorithms, and
evaluate their performance both through simulation and
analysis. Additionally, we describe an “oracle-base” opti-
mal algorithm, that achieves the minimum delivery delay
among all possible single and multiple copy schemes, and
analyze its performance. On top of that, we introduce
a hybrid single-copy routing algorithm, that is shown
to achieve the best performance among all existing and
proposed single-copy schemes.

III. PRELIMINARIES

Unless mentioned otherwise, we make the following
assumptions regarding our problem setting.

A.i M nodes perform independent random walks on
an N × N 2D torus (finite lattice). The random
walk model is primarily chosen for its analytical
tractability. Simulation results are also given for the
random waypoint model [18], and, in future work,
we plan to experiment with additional mobility
models [19], [20].

A.ii Each node can transmit up to K > 0 grid squares
away. K/N is much smaller than the value required
to guarantee connectivity with high probability [21].
We assume that transmission of a message is faster
than movement, and can occur in parallel with the
latter.

A.iii We use Manhattan distance dab = |ax−bx|+|ay−by|
to measure proximity between two positions a and
b (or between two nodes).

A.iv Every node i maintains a timer τi(j) for every
other node j it has encountered. These timers are
the only information available to a node regarding
the network (i.e. no location info, speed, etc.). We
assume that two nodes “encounter” each other when
they come within transmission range of each other.
The timers are maintained as follows: Initially all
τi(j) are set to ∞. When node i encounters node j
set τi(j) to 0. At every time unit elapsed increase
τi(j) by 1.

A.v Let m be a message that originates at some node
S and needs to be delivered to some node D.
Furthermore, let Rm(t) denote the set of nodes
carrying message m at time t. All nodes follow
either a single-copy or a multiple-copy forwarding
strategy, according to the following definition:

• single-copy strategy: ‖Rm(t)‖ ≤ 1, ∀t, m.

• multiple-copy strategy: ‖Rm(t)‖ ≤ M , ∀t, m.

In this paper, we consider only single-copy strate-
gies and discuss multiple-copy schemes in [10].

We will use the following metrics to evaluate different
routing algorithms: i) message delivery delay, and ii)
number of transmissions per message delivered.

Finally, we note that most of the times we use the same
notation as in [22]. However, we define here a couple of
hitting-time related quantities that we will use repeatedly.

Definition 3.1 (Expected Hitting Time): We define the
following expected hitting times (where j can be replaced
by a subset of states A):

i. EiTj : the expected hitting time until a walk starting
at position i first arrives at position j; on a symmetric
graph, this quantity only depends on dij and we
denote it as ET (d).

ii. EπTj : the expected hitting time until a walk starting
from the stationary distribution reaches j; on a sym-
metric graph, this quantity is independent of j, and
we denote it as ET .

iii. EMij the expected time until two independent ran-
dom walks, starting at positions i and j, respectively,
first meet each other.

iv. EM the expected time until two independent random
walks, starting from the stationary distribution, first
meet each other.

Throughout Section IV, we shall be mainly referring to
the hitting time of a single walk. However, on a symmetric
graph (like the 2D torus), the expected meeting time is just
half the respective hitting time [22].

IV. SINGLE COPY ROUTING STRATEGIES

In this section we describe a number of single-copy
routing algorithms. Each routing algorithm will decide
under what circumstances a node, currently holding the
single message copy, will handover a message to another
node it encounters. Each forwarding step should, on the
average, result in progress of the message towards its
destination, measured as a reduction in the distance from
or expected meeting time with the destination. Due to lack
of space, we omit all the proofs in this section, and give
only some intuition or sketches of proofs, instead. The
interested reader can find all proofs in [23].

A. Direct Transmission

The simplest possible scheme imaginable is the fol-
lowing: a node A forwards a message to another node
B it encounters, only if B is the message’s destination.
This scheme has an unbounded delivery delay [4], but has
the advantage of performing only a single transmission
per message. It has been considered in some previous



works [4], [12], and will serve here as our baseline for
comparison.

B. Randomized Routing Algorithm

The first non-trivial routing algorithm that we’ll look
at is a randomized forwarding algorithm, which may use
relays to deliver a message to its destination.

Definition 4.1: In the randomized routing algorithm p,
a node A hands over a message to another node B it
encounters with probability p > 0.

Our first result, captured in Theorem 4.1, states that
even this simple routing strategy results in expected
progress at each forwarding step (i.e. locally).

Theorem 4.1: Let a node A carrying a message for
some node D at distance dAD = d from A, encounter
another node B at distance dAB . The expected progress
made by the randomized forwarding algorithm is equal
to G1, when dAB = 1, and at least G1, when dAB > 1,
where G1 is given by

G1 = p

[

ET (d) − ET (d − 1) + ET (d + 1)

2

]

− o(N).

(1)
This result is slightly counterintuitive, but can be ex-

plained by the fact that the expected hitting time ET (d) is
a concave monotonically increasing function of distance
d [22], [24], and transmission speed is faster than speed
of movement.

Nevertheless, this progress is marginal, especially when
far from the destination, as can be seen in Fig. 2. This
scheme does not take advantage of the only information
available to each node regarding the network, that is, the
timers containing the time since last encounter with every
other node.

C. Utility-based Routing

Position information regarding different nodes gets in-
directly logged in the last encounter timers, and gets
diffused around it though the mobility process of other
nodes. This position information is not absolute, but rather
relative to the position of another node. If a node is seen
at some time instant having a low timer value for another
node, then this other node is expected to be somewhere
nearby.

However, the amount of useful information contained in
the timer values strongly depends on the speed of move-
ment of nodes and the specific mobility model assumed.
Therefore, we would like to define a utility function
UX(Y ), maintained by each node for every other node
that indicates how useful node X might be in delivering
a message to a node Y . A gradient-based scheme can then
be used to deliver a message to its destination, as has been

noted in [6], [15], [16]. This scheme will try to maximize
the utility function for this destination.

We define a pure utility-based routing protocol as
follows:

Definition 4.2 (Pure Utility-based Routing): When
a pure utility based routing strategy is used, a node
A forwards to another node B a message destined
to a node D, if and only if UB(D) > UA(D), and
∀X : UD(D) ≥ UX(D).

Before we give the expected local progress by a for-
warding step of this scheme, we state the following
Lemma that connects last encounter timer values with
expected proximity to a node.

Lemma 4.1: Let two nodes A and B have a recorded
age of last encounter with node D equal to τA(D) and
τB(D), respectively. Furthermore, let 1 ≤ dAB ≤ K, and
τB(D) = τA(D) − dτ , for some dτ > 0. Finally, let
PBA = P{dBD < dAD|dAB, dτ} denote the probability
that B is closer to D than A is to D, given their distance
and that B has a lower timer value for D than A. Then

PBA ≤ 1 − PBA.
Fig. 1 depicts PBA versus (1− PBA) for two different

values of dAB and dτ .

Fig. 1. Probability PBA as a function of A’s timer value τA(D), for
different dAB and dτ .

We can now state the following result concerning the
efficiency of a pure utility-based routing strategy:

Theorem 4.2: A pure utility-based routing protocol,
which uses any utility function UX(Y ) that is a mono-
tonic function of τX(Y ), guarantees a positive expected
progress at each forwarding step, which is larger than
that of the randomized routing algorithm p, and for
neighboring nodes (dAB = 1) is given by:

G2 =

ET (d) − [PBAET (d − 1) + (1 − PBA)ET (d + 1)].(2)
In Fig. 2, we compare the expected progress of the

randomized algorithm and the utility-based algorithm,
measured as a reduction in the expected hitting time, when
handing a message over from A to B.

As mentioned in Theorem 4.2 any monotonic utility
function of the timer τX(Y ) will have the same expected



Fig. 2. Expected progress for the randomized and utility-based
forwarding policies, measured as a reduction in the expected hitting
time to the destination.

progress at every forwarding step. However, there are
situations where the anticipated progress by a specific
forwarding decision will have to justify the transmission
cost (or other costs). In those cases, we would like to have
a utility function that accurately quantifies the potential
gain of transmission, so that it can be compared to the
cost to be incurred, before making a decision.

We propose such a utility function that directly takes
into account the statistics of the specific mobility process,
and quantifies the exact expected reduction in hitting time
by a specific forwarding decision. Specifically, let EjT

+
j

denote the first return time, that is, the time until a walk
starting at state/position j first returns back to j. Then,
we propose the utility function UX(Y ) to be defined as
the expected hitting time of X on Y , given that X has not
seen Y for τX(Y ) time units:

UX(Y ) = EX

[

TY |EY T+
Y ≥ τX(Y )

]

.

The above quantity is only a function of τX(Y ), and
therefore can be calculated by any node, with no addi-
tional information.

D. The Seek and Focus Routing Protocol - A Hybrid
Approach

We saw that, in the randomized routing protocol case,
handing over a packet to a neighbor is better than holding
it. The intuition behind this is that transmissions are
faster than physical movement. However, this results in a
large number of wasted transmissions. On the other hand,
utility-based routing protocols make better forwarding
decisions by taking advantage of indirect location infor-
mation. Nevertheless, utility-based protocols suffer from a
slow start initial phase, which is more manifested in large
networks. Specifically, in a large network, where expected
distance between a source and a destination is large, it will
take the source a long time until it finds a higher utility
next hop at the beginning. In other words, it will have

to wait until it moves within a certain vicinity around
the destination, where diffused location information has
managed to propagate.

We have therefore implemented a hybrid routing pro-
tocol that aims to avoid the slow-start phase of utility-
based protocols, while still taking advantage of the higher
efficiency of utility-based forwarding. We call it the “seek
and focus” routing protocol, due to its going through the
following two phases.

Definition 4.3 (Seek and Focus Algorithm (Hybrid)):
The seek and focus routing algorithm consists of two
phases: (seek phase) if the utility around the node is
low, perform randomized forwarding with parameter p
to quickly search nearby nodes; (focus phase) when a
high utility node (i.e. above a pre-specified threshold) is
discovered, switch to utility-based forwarding.

This scheme initially looks around greedily for a good
lead towards the destination, and then uses a utility-based
approach to follow that lead efficiently.

V. PERFORMANCE ANALYSIS

A. Direct Transmission – An Upper Bound on Delay

We first state here some useful, known, results regard-
ing the expected hitting time of a single random walk,
and meeting times of independent random walks on a√

N ×
√

N torus [22], [24]. These results also give the
performance of the direct transmission scheme, which will
serve as our baseline.

Lemma 5.1: Let independent random walks be per-
formed on a

√
N ×

√
N torus. Then:

i. ET = cN log N , where c = 0.34. (This results is
valid as N → ∞. However, according to [24], [12]
this results becomes quite accurate for N > 25.)

ii. The hitting time probability distribution function
can be approximated by an exponential function:
P (T > t) = exp

(

− t
cN log N

)

.

iii. EM = 1
2ET .

Proof: See [22]

B. An “Oracle-based” Optimal Algorithm – A Lower
Bound on Delay

In this section we analyze the performance of an
optimal, “oracle-based” algorithm. Although a random
mobility process governs the movement of all nodes, the
oracle-based algorithm is aware of all future movement of
nodes. A “die” is thrown at the beginning of each scenario,
whose outcome decides the full trajectory of all nodes.
The algorithm then takes as input all these trajectories, and
computes the optimal set of forwarding decisions (i.e. time
and next hop), which delivers a message to its destination
in the minimum amount of time. Therefore, it will serve



as a lower bound on the performance of all online routing
strategies, both single-copy and multiple-copy ones. (Note
that this algorithm will find the same path as epidemic
routing with infinite capacity and buffer space.)

In order to analyze the expected delivery time of the
optimal algorithm we need to average over all possible
scenarios. Since all node movements, at every time instant,
are independent of each other, and of past movement, we
can use the following coloring problem analog, in order
to analyze the performance of the optimal algorithm:

• A number M of nodes are assumed to perform
independent random walks on a

√
N ×

√
N torus.

• A dice is thrown whose outcome designates a source
node and a destination node for a message.

• The source node is colored red and all other nodes
(including the destination) are colored blue.

• Whenever a red node encounters a blue node, the
latter is colored red, too.

It is evident that the expected time until the destination
node is colored red is equal to the expected message
delivery time of the optimal algorithm.

C. Performance of Optimal Algorithm for Transmission
Range K = 0

Here we assume that two nodes can communicate with
(i.e. encounter) each other only if they lie on the same
position. The following theorem calculates the expected
time until the destination node is colored red. It uses the
meeting time of direct transmission in order to calculate
the expected time until a new node is colored red, and then
estimates the total number of coloring steps necessary.

Theorem 5.1: Let EDopt denote the expected message
delivery delay of the optimal algorithm. When transmis-
sion range K is equal to zero

EDopt =
cN log N

2(M − 1)
· HM−1, (3)

where Hn is the Harmonic Number of order n, i.e, Hn =
∑n

i=1
1
i

= Θ(log n).
Proof: We will use the coloring problem analog. All

M nodes start from the stationary (i.e. uniform) distribu-
tion and perform independent random walks. Thus, they
remain in the stationary distribution at all times. Let us
assume that at some time instant we have m red nodes and
M−m blue nodes, and let us pick a red node i and a blue
node j. According to Lemma 5.1, the meeting time Xij

of nodes i and j is exponentially distributed with average
cN log N/2. Let Xi denote the meeting time of i with
any of the M − m blue nodes, that is, Xi = minj(Xij).
Finally, let X(m) denote the time until any of the red nodes
meets any of the blue ones, when there are m total red
nodes. Then, X(m) = mini(Xi) = minij(Xij). However,

all Xij are IID exponential random variables with average
cN log N/2. Thus, X(m) is also an exponential random
variable with average cN log N

2m(M−m) .Finally, since we have
started with 1 red node, the time until all nodes are colored
red is given by

∑M−1
m=1 X(m), whose expected value can

be calculated by

cN log N

2

M−1
∑

m=1

1

m(M − m)
.

This is the expected time until all nodes are colored red.
However, the destination may be colored red in any of the
M − 1 total coloring steps with equal probability. Conse-
quently, the expected coloring time for the destination is
the following:

cN log N

2(M − 1)

M−1
∑

m=1

m
∑

n=1

1

n(M − n)
=

cN log N

2

HM−1

M − 1
.

Corollary 5.1: When transmission range is equal to
zero, the asymptotic improvement in the expected delivery
delay of the optimal algorithm over any online single-copy
routing algorithm is equal to

Θ

(

M

log M

)

. (4)

Proof: When transmission range is zero, a node
can only forward a message to another node at the same
position (state) with it. This however means that the two
nodes are statistically equivalent (i.e. the two independent
walks are coupled) at that time instant. Consequently,
any online single-copy forwarding strategy has the same
expected performance as direct transmission, which per-
forms a factor Θ

(

M
log M

)

worse than the optimal, as can
be seen by Lemma 5.1 and Theorem 5.1.

D. Performance of Optimal Algorithm For Transmission
Range K > 0

We will now assume that every node has transmission
range K ≥ 1. This means that any node that comes
within (Manhattan) distance d ≤ K from a node i, can
communicate with i (i.e. encounters i).

We first state here a useful result, regarding hitting
times on subsets. Its proof is based on the electric network
analogy for random walks on graphs [22], [25]. We omit
the proof here, due to lack of space, but can be found
in [23].

Lemma 5.2: Let j be a position in the torus, and let
A(K) denote the subset of all positions a, such that |xa−
xj | + |ya − yj | = K. Let further TA denote the time
until a random walk starting from j first hits A(K). The



probability P (TA < T+
j ) that a walk starting from j hits

A(K) before it returns to j is then given by

P (TA < T+
j ) =

2K − 1

2K+1 − K − 2
. (5)

Lemma 5.3 extends the expected hitting and meeting
time from Lemma 5.1 to the case where transmission
range is equal to K ≥ 1.

Lemma 5.3: Let us pick uniformly a position j on an√
N ×

√
N torus. Let further T (K) denote the hitting

time until a random walk, starting from the stationary
distribution, comes within range K ≥ 1 of some position
j, and let M(K) denote the meeting time of two such
walks. Then, for large N ,

i. ET (K) = N

(

c log N − 2K+1 − K − 2

2K − 1

)

, (6)

ii. EM(K) =
1

2
ET (K). (7)

Proof: i) Let us assume that the random walk starts
outside of j’s range. The expected time T (K) until the
walk first comes within range (i.e. hits) of j is equal
to the first hitting time EπTA at A(K). Now let π(X)
denote the stationary probability of subset X , and πA

denote the stationary distribution on set A(K), that is,
πA(a) = π(a)/π(A), ∀a ∈ A(K). The expected hitting
time of the walk on j can be calculated as a function of
ET (K) as follows:

EπTj = ET (K) + EπA
Ty.

Let us further express the first return time of a walk
starting at j, EjT

+
j , as a weighted average on the cases of

the walk reaching or not reaching A(K) before it returns
back to j.

EjT
+
j = PA · (EπA

Ty + g1(K)) + (1 − PA)g2(K),

where g1(K) = EjTA(K) ≤ |A(K)|2 = O(K2) and
g2(K) = Ej [T

+
j |P (TA > T+

j )] = O(K), according
to [22]. Furthermore, using Kac’s formula [22] we get
that EjT

+
j = 1/π(j) = N , for the

√
N ×

√
N torus.

When N � K, the above equation can be rewritten as
EjT

+
j = PA · EπA

Ty. Replacing PA from Eq.(5) we get
that

EπA
Ty =

(

2K+1 − K − 2

2K − 1

)

N.

Finally, replacing EπA
Ty and EπTj from Lemma 5.1 in

the equation for EπTj we get the desired relation for
ET (K). ii) The proof is a straightforward extension of
the proof for Lemma 5.1.

Finally, Theorem 5.2 calculates the expected perfor-
mance of the optimal algorithm, when the transmission
range is equal to K ≥ 1.

Theorem 5.2: When every node has a transmission
range of K ≥ 1, the expected message delivery time of
the optimal algorithm is given by

EDopt(K) =
NHM−1

2(M − 1)

(

c log N − 2K+1 − K − 2

2K − 1

)

.

(8)
Proof: The proof follows directly from Lemma 5.3,

using the methodology of Theorem 5.1.
It is easy to see by Eq.(6),(7), and(8) that the asymptotic

performance improvement of the oracle-based (optimal)
scheme over the direct transmission one when K ≥ 1 is
the same as when K = 0. However, unlike the case when
transmission range K is zero, when K ≥ 1 the direct
transmission scheme is not statistically equivalent to all
other single-copy routing algorithms. One can gain from
transmitting the single copy of a message to an interme-
diate node, both locally, as explained in Section IV, and
globally, as we shall see in the following analysis of the
randomized algorithm, and in the simulation section.

E. Performance of the Randomized Routing Algorithm

In the case of the randomized routing algorithm the
single message copy performs a random walk on the
dynamically changing connectivity graph.

Definition 5.1 (Message’s Random Walk): Let a mes-
sage, currently at position j in the torus, be routed
according to the randomized routing algorithm p. Then
the message can be modelled as performing the following
random walk: with probability 1−p ·pr it performs a pure
random walk (i.e. moves to neighboring positions); with
probability p · pr it jumps to any of the states in subset
N(K) = {a : da,j ≤ K} with equal probability, where
pr is the probability that there is at least one more node
within the range of the current custodian.

The following Lemma calculates the probability of
transmission ptx and the average transmission distance.

Lemma 5.4: Let a message perform a random walk
according to Definition 5.1, in a network consisting of
M nodes performing independent random walks on an√

N ×
√

N torus. Then, the transmission probability ptx

of the message at any time is given by

pr = 1 −
(

1 − 2K2 + 2K + 1

N

)M−2

. (9)

Additionally, the average transmission distance is given
by

f(K) =
K(8/3 + 2K + 4/3K2)

2K2 + 2K + 1
. (10)

Proof: Both equations can then be derived using
elementary probability theory and combinatorics [23].

We are now ready to analyze the performance of
the randomized algorithm. Theorem 5.3 provides a tight



(upper) bound on its delivery delay. We calculate the
probability of transmission, at every step, and the average
length of a transmission jump, and modify the proof of
Lemma 5.1 to derive the bound.

Theorem 5.3: When every node has a transmission
range of K ≥ 1, the expected message delivery time of
the randomized algorithm is given by

EDrnd ≤
N

(

c log N − 2K+1
−K−2

2K
−1

)

2 − p · pr + p · prf(K)
. (11)

Proof: Two independent random walks S and D on
a torus start from states x and y, respectively. Walk D
models the destination’s movement, which is a pure ran-
dom walk on the torus, while walk S models the message
movement and moves according to Definition 5.1. When
no transmission occurs, S (the message) will move only
to a neighboring state, while it makes a jump of average
length f(K) when a transmission occurs. Consequently,
the average length of a jump of S is given by

d(K) = 1 + (1 − p · pr) + p · prf(K).

Consider now the function f(x, y) = ExTy(K) −
EπTy(K). The expected hitting times in f(x, y) corre-
spond to hitting times for transmission range K ≥ 1.
EπTy(K) = ET (K), ∀y, and given by Eq.(6). Consider
further the random walk S ′, starting also at x, which
whenever walk S jumps d states far, it performs d in-
dependent single step movements (i.e. performs d pure
random walk steps), within one time unit. It is evident
that S will cover (i.e. bring within its transmission range)
a higher number of new positions than S ′, at every step,
and therefore S is expected to meet the destination node
D faster than S′.

Now let (X̂t, Ŷt) be the positions of (S ′, D) after t
moves. Consider Wt ≡ d(K)t + f(X̂t, Ŷt), and define
as Mxy the first meeting time between S ′ and D (i.e.
assuming that S′ started from position x and D from
position y). It is easy to verify that (Wt; 0 ≤ t ≤ Mxy) is
a martingale [26] (using similar arguments as in [22]:Ch.3
– Proposition 3). According to the optional stopping
theorem [26] EW0 = EWMxy

. This means that

ExTy(K) − EπTy(K) = d(K)EMxy + Ef(X̂Mxy
, ŶMxy

).

However, by definition X̂Mxy
= ŶMxy

and therefore
E

X̂Mxy

T
ŶMxy

(K) = 0. Finally, EπT
ŶMxy

(K) = ET (K).

Consequently, ExTy = d(K)EMxy, which for uniformly
chosen x, y implies that EM(K) = ET (K)/d(K). Re-
placing ET (K) from Eq.(6) gives us the expected meeting
time of S′ and D, which is an upper bound on the delivery
time of the randomized algorithm (i.e. meeting time of S
and D).

The theoretical results derived in this section are compared
with simulation results in Section VI-E. As a final note,
since the analysis of the utility-based and seek and focus
routing schemes is more complicated than the optimal
and randomized case, we evaluate their performance using
simulations only.

VI. SIMULATION RESULTS

A. Simulation Environment and Routing Protocols

We have used a custom discrete event-driven simulator
to evaluate and compare the performance of different rout-
ing protocols. A slotted collision avoidance MAC protocol
has been implemented, in order to arbitrate between nodes
contenting for the shared channel. The single-copy routing
protocols we have implemented and simulated are the
following:

1) Randomized routing with probability p = 0.5;
2) Randomized routing with probability p = 1.0. This

essentially is a deterministic greedy version, where a
message is always handed over to a node that hasn’t
seen the message yet;

3) Pure utility-based routing;
4) Seek and focus (Hybrid) routing protocol with prob-

ability p = 0.5 when in “seek” phase;
5) Seek and focus (Hybrid) protocol with probability

p = 1.0 when in “seek” phase;
6) Direct transmission.

As we explained in Section IV, any monotonic utility
function of the last encounter timer τ , suffices to achieve
the expected performance of utility-based schemes. For
this reason, in our simulations we have used a simpler
utility function than the one in Eq.( IV-C), namely the one
described in [6]. This utility function is maintained as fol-
lows: whenever node X encounters node Y , U

(new)
X (Y ) =

UX(Y ) + (1 − UX(Y ))0.75; else, at every time unit
U

(new)
X (Y ) = 0.99UX(Y ).

B. Scenario A—Random Walk on a 50 × 50 Torus

In this scenario we assume that 20 nodes perform
independent random walks on a 50× 50 two-dimensional
torus. The transmission range K of each node is equal
to 5. A single message between a randomly chosen
source and destination node is routed using each of the
aforementioned routing protocols. Results are averaged
over a large number of runs (1000).

Fig. 3 depicts the average delivery delay and total
number of transmissions. As one can see from the figure,
the hybrid scheme has the best performance in terms of
message delivery delay, while only slightly increasing the
total number of transmissions from the pure utility-based
protocol. It is interesting to note that, in this scenario, the



Fig. 3. Number of transmissions and average delay for Scenario A

Fig. 4. Number of transmissions and average delay for Scenario B.

utility-based scheme is faster than the randomized scheme.
This occurs because the network is quite small, letting
location information to get quickly diffused throughout
the entire network and allowing the utility-based scheme
to avoid the slow start phase. Finally, it can be seen that, in
a small scenario, it might be worth considering the direct
transmission scheme, when transmission cost is high.

C. Scenario B—Random Walk on a 500 × 500 Torus

Here, we evaluate the performance of different routing
protocols in a larger network. We assume that 50 nodes
perform independent random walks on 500 × 500 torus.
The transmission range K of each node is now equal
to 60. Finally, 50 messages are routed instead of 1, in
order to evaluate the performance of different protocols,
when some slight contention for the channel takes place.
We do not present here simulation results for the direct
transmission scheme which performs very poorly.

As can be seen in Fig. 4, in this larger scenario the
utility-based scheme has the largest average delivery de-
lay, as expected. The hybrid scheme manages to overcome
this, and achieve the lowest delivery delay, along with the
randomized scheme (with parameter p = 1.0). However,
as is evident from the same figure, it manages to do
so with much less transmissions than the randomized
schemes, and only a slight increase compared to the
utility-based one. We conclude therefore that the hybrid
scheme presents the best tradeoff in terms of message
delivery delay and number of transmissions.

D. Scenario C—Random Waypoint on a 500× 500 Torus

We have also evaluated all single-copy routing algo-
rithms under a mobility model commonly used in simula-
tions, namely the Random Waypoint model [18]. Again,
there are a total of 50 nodes on a 500 × 500 torus.
Transmission range is now equal to K = 20 (i.e. the
network is “more disconnected”).

As can be seen in Fig. 5, the average delay in this
scenario is similar to that in Scenario B, despite the shorter
transmission range. This is because the nature of the
mobility model is such that allows nodes to move faster
between disconnected clusters. Furthermore, we can see
in the same figure that the relevant performance between
the five schemes is similar to that in the random walk
case. However, the performance gain of the hybrid scheme
is not as pronounced here. The reason for this is that
the expected absolute distance covered in n steps by a
node moving according to the random waypoint model,
is higher than that by a node performing a random walk.
Consequently, the utility function in the former case is not
as informative as in the latter. We conclude therefore that,
as usual, the choice of mobility model plays a significant
role in the performance of different routing algorithms.

Fig. 5. Number of transmissions and average delay for Scenario C.

E. Simulation vs. Analysis

In this final section we compare our analytical results,
regarding the expected delay of different algorithms, to
simulation results. In the left plot in Fig. 6 we fix M to
20, K to 5, and depict the expected delay of the direct
transmission (upper bound) and optimal scheme (lower
bound) as a function of N . As one can see from this
figure, simulation and analytical plots present a relatively
close match. Some minor discrepancies are due to some
approximations (stated in the proofs) and statistical errors
(due to the finite number of simulation runs). Additionally,
the highlighted area indicates to the performance range of
any implementable routing scheme. Finally, in the right
plot, we fix N to 2500 and M to 20, and compare
the performance of direct transmission, randomized, and
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Fig. 6. Comparison of analytical and simulation results

optimal schemes, for increasing K. Both analytical and
simulation plots are provided. Note that, in the case of
the randomized algorithm, the analytical plot is only an
upper bound (as explained in Section V).

VII. CONCLUSION

In this work, we have dealt with the problem of single-
copy routing in intermittently connected mobile networks.
We proposed a number of different single-copy routing
strategies, and evaluated their performance through anal-
ysis and simulations. We conclude that the best algorithm
is a hybrid scheme we call “seek and focus”, which
combines the simplicity of a simple random policy with
the sophistication of utility-based policies. We also state
and analyze the performance of an oracle-based optimal
algorithm, and compare it to the online approaches.

In future work, we plan to perform a rigorous analysis
of the performance of utility-based schemes. Additionally,
we intend to look into routing schemes that attempt to
justify the cost incurred by a single transmission, when
making a forwarding decision. Finally, we plan to evaluate
the performance of some of the routing schemes proposed
under more realistic mobility models, that exhibit corre-
lation in both space and time [20], [19].
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