
Estimating BIST Resources in High-level
Synthesis

Ishwar Parulkar, Sandeep K. Gupta
and Melvin A. Breuer

CENG Technical Report 96-06

Department of Electrical Engineering - Systems
University of Southern

Los Angeles, California 90089-2562
(213)740-4469

March 1996

Estimating BIST Resources in High-level Synthesis *

Ishwar Parulkar, Sandeep K. Gupta and Melvin A. Breuer

Abstract

Estimation of resources at various stages of the high-level synthesis process is essential

to guide high-level synthesis algorithms towards optimal solutions. Lower bound es
timation bounds the design space and gives an indication of the quality of the design
synthesized. Previous work in high-level synthesis focused on bounds on functional
resources. In this paper, we present lower bounds on the number of test resources (i.e.
test pattern generators, signature analyzers and CBILBO registers) required to test
the synthesized data path by the partial intrusion built-in self-test (BIST) method
ology. The estimation is performed on scheduled data flow graphs and provides a
practical way of selecting or modifying module assignments and schedules such that
the synthesized data path requires a small number of test resources to test it.

"This work was supported by the Advanced Research Projects Agency and monitored by the Department of the
Army, Ft.Huachuca, under Contract No. DABT63-95-C-0042. The information reported here does not necessarily
reflect the position or the policy of the Government and no official endorsement should be inferred.

1

1 Introduction

Estimation ofdata path resources during high-level synthesis is essential for two reasons. First, it
enables the designer to evaluate thedesign quality by comparing the estimates ofany design metric
with the constraints specified for that metric. For example, if the estimated number of functional
resources in the design corresponds to an area that is greater than the area constraint, then the

schedule may have to be modified to allow a functional resource allocation that is within the area

constraint. Second, estimates enable the designer to explore design alternatives by providing quick

feedback for any design decision. This way a designer can explore a greater number of alternatives

instead of synthesizing a complete implementation and measuring the particular design metric for

each design alternative. Lower bounds on resources not only greatly reduce the size of the solution

space but also provide a means to measure the proximity of the final solution to the optimal one.

There is some recent work for estimating lower bounds on functional resources [1],[2],[3],[4],[5],

[6]. These works are concerned with functional resources such as registers, adders and multipliers.

For making a synthesized design testable using a built-in self-test (BIST) strategy, some of the

registers in the design have to be modified into test pattern generators (TPGs), signature analyzers
(SAs), built-in logic block observers (BILBOs) or concurrent BILBOs (CBILBOs). One of the con
siderations in BIST techniques is the extra area needed for these test resources. How to reduce the

BIST area overhead without sacrificing the quality of the test is an important research problem [7].
A number of high-level synthesis approaches that incorporate BIST have been investigated in the

recent past [8],[9],[10],[11],[12]. In these approaches allocation is done to reduce the BIST area
overhead. Cost functions and heuristics are used to guide the allocation algorithms towards low

BIST area overhead designs. None of the approaches have a mechanism for estimating the effect
of a decision on the final number of test resources required. We believe this is the first work on

estimating lower bounds on test resources for self-testable data paths in high-level synthesis.

In [12] an allocation approach was presented that was based on maximizing the sharing of
registers as BIST resources and minimizing the number of CBILBO registers required in the BIST
version of the synthesized design. This work assumed that a scheduled data flow graph was given
and that module assignment was done without regard for testability overhead. However assuming
a module assignment for the given scheduled DFG, limits the degree of sharing of test resources
and CBILBO minimization that can be done by the approach suggested in [12]. In other words, for
each selection of a module assignment for a scheduled DFG, there are lower bounds on the number
of test resources that will be needed to test all the modules.

In this paper, we derive the lower bounds on test resources for BIST. The lower bounds are
tight, in the sense that they can beachieved if there are no functional resource constraints. The lower

bounds can be used as an estimate to determine the quality ofthe schedule and module assignment
in termsofBIST areaoverhead of thesynthesized design. The lower bound estimation technique can
be used on partial schedules and module assignments to guide them towards testability optimal
solutions. The bounds also serve as an independent measure of comparing the performance of
different high-level synthesis systems and algorithms that perform testability optimization.

The remainder of the paper is organized as follows. In Section 2 we present the the testability

model and some basic definitions. Section 3 deals with derivation of lower bounds on the number

of signature analyzers, test pattern generators and CBILBOs. The computational complexity

of the lower bounds and their use in high-level synthesis algorithms is discussed in Section 4.

Section 5 describes data relating to lower bounds on the test resources of some high-level synthesis

benchmarks.

2 Preliminaries

2.1 Test methodology

The high-level synthesis process assumed in this work is directed towards synthesizing data paths
that are to be tested using a partial intrusion pseudo-random BIST methodology. A structural
model of register-transfer level (RTL) designs synthesized by high-level synthesis systems is shown
in Fig. 1. In partial intrusion BIST, a subset of registers are used in the test mode and all the
functional modules and part of the steering logic and interconnections are tested as depicted in
Fig. 1. In the test mode, some of the registers in the data path are reconfigured to support test
pattern generation (TPG), and some to support signature analysis (SA). By appropriate selection
of test resources (TPGs and SAs) all the functional modules in the design can be tested. In the
process, some of the interconnections (multiplexer paths and wires) are also tested. The rest of
the data path is assumed to be tested using functional tests. Note that in this partial-intrusion
BIST methodology the test resources and paths used to generate, transport and collect test data
are a subset of the functional data path. No additional data path components such as registers,

multiplexers or interconnect are added for the purpose of testing.

For testing all the functional modules in the design using a small number of test resources,
different mappings of registers to TPGs and SAs need to be considered. The concept of an I-path
can be used effectively to explore the various mappings [13]. An identity path, I-path is a data path
from a primary input or a. register to an input port of an operator module or from an output port
of an operator module to a primary output or a register so that data can be transferred unaltered.
The first and the last elements of an I-path are called the head and tail, respectively, of the I-path.

M= {M1,M2 Mm}

DATA PATH

CONTROL
UNIT

R - {R-|, R2, ..., Rr}

|—Part of data path tested

I— Test resources for partial intrusion BIST

Figure 1: Test methodology

A simple I-path is an I-path consisting of at most one register and no operator modules.

An example of a binary operator module M\ and simple I-paths to and from its ports is
shown in Fig. 2. Input port B has a simple I-path from R3. This I-path is active at all times
and is the only I-path to port B. Input port A has simple I-paths from R\ and R2 that pass
through multiplexer 777,1. I-paths with multiplexers can be activated by appropriate control signals,

for example, c\ in this case.

Aconfiguration of I-paths that covers all the ports ofa module is called a BIST embedding
of the module. The heads of the I-paths to the input ports are modified as TPGs and the tails of
the I-paths from the output ports are modified as SAs. Embeddings for modules could be chosen
such that a register that is a TPG for a module is an SA for a different module. In this case the
register acts as a TPG and SA at different times and has to be modified to a BILBO register. The
BILBO register has a higher overhead than a TPG or a SA. If the embedding chosen is such that
a register is a TPG and an SA for the s«777e module then that register has to act as a TPG and
SA at the same time. To ensure high fault-coverage a concurrent built-in logic block observation

(CBILBO) register is required [14].

Functional constraints determine the sharing of modules (portion of data path to tested)
by operations and the sharing of registers (data path components to be used as test resources)
by variables . The functional constraints thus impose lower bounds on the number of functional
resources that can be used as test resources. If additional registers and/or interconnections (not

used in the functional mode) were to be used to test a circuit, only twoTPGs and one SA would

Figure 2: A generic configuration with simple I-paths

be required, assuming binary operations. But since test resources are selected from the set of

functional registers this is not the case. Another point to note is that the objective of our testability

optimization is BIST area overhead. Hence test concurrency (number of modules that can be
tested simultaneously) does not depend on functional concurrency but rather on the sharing of test

resources between modules.

2.2 Notation and definitions

The behavioral description is assumed to begiven in the form ofa data flow graph (DFG) G = (V, E)
where V is the set ofoperations and E is the set ofvariables (operandsand resultsof the operations)
and a schedule S : V -» {1, 2, 3, ...} where S(v) corresponds to the control step in which operation
v is scheduled. Single operation per clock cycle is assumed and the synthesized data path is non-
pipelined. All operators are assumed to be binary and commutative for the purpose of discussion
in this paper. Non-commutative operators can be handled by adding additional constraints. Unary
operators can be treated as a special case of binary operators. The module assignment is defined
as Ejirf : V -4 M where M is the set of available modules. The subset of V mapped onto module
Mi will be referred to as V,-. Each operation v GV) will be referred to as an instance of A/,-. Um
can be viewed as a partition {Mi, M2,...,Mm} of the set of operations V into 777. modules.

Definition 1 The temporal multiplicity of module Mi, TM(M{) is the number of operations

from V mapped onto Mi, i.e. TM(Mi) =\ V) \.

Consider the scheduled DFG shown in Fig. 3 and the following module assignment. Opera
tions +i and +2 are assigned to module Mj and operations *i and *2 are assigned to module M2.
Thus Vi ={+i,+2} where each element is an instance of M% and TM(M\) = 2.

© c 1

\d / /

(+2) 2

\f 9/

/ •

2) 3

h
4

Figure 3: A scheduled DFG

Definition 2 T/ie input variable set of module Mi, /a/, is the set of all the operand variables
associated with each instance j of module Mt\ The output variable set of module Mi, Om, is the
set of all the output variables associated with each instance j of module Mi.

For the scheduled DFG of Fig. 3 and the above mentioned module assignment Im{ = {a,b,c,d}

and Omx = {d,f}.

The following observation has been made in [12].

Observation 1 Given a schedule and a module assignment,

(a) An assignment of variables to a register Ri such that RiHlMj if1 $ and Bif\fMk ¥" ^> guarantees
the creation ofsimple I-paths to an input port of module Mj and to an input port of modide Mk that
share a common head, namely register Ri, independent of the subsequent interconnect assignment.

(b) An assignment of variables to a register Ri such that Ri n Omj 7^ $ °nd Ri DOmu ^ <l>,
guarantees the creation of simple I-paths /ro/7?. the output port of module Mj and from the output
port of module Mk that share a common tail, namely register Ri, independent of the subsequent
interconnect assignment.

For a. module, any register to which an input variable is assigned can be used as a TPG
and any register to which an output variable is assigned can be used as an SA. The distribution

6

of the elements of the input variable sets and output variable sets of modules determines the
possible candidates for TPGs and SAs for modules. In determining a minimal area BIST solution
for a design, different BIST embeddings for a module are explored. Embeddings that share test
resources between modules are desired since they reduce the total number of test resources required

to test the data path. Thus for maximizing the sharing of TPGs between the input ports of modules

a register assignment 1I# is desirable such that for each Rj the number of input variable sets with

which it has at least one variable in common is maximized. Similarly the number of output variable

sets with which each Ri has at least one common variable should be maximized. Observation 1

identifies the conditions that can be used to perform such register assignments. Also a CBILBO

register is expensive since its area is approximately twice that of a normal register. In a globally

minimal BIST area overhead solution, a register might be modified into a CBILBO register even

though it is not necessary to do so. However a situation where modifying a register to a CBILBO
is absolutely necessary for good fault coverage is the one which results in high BIST area overhead.
A detailed description of the conditions for maximizing sharing of test resources and minimizing
essential CBILBOs during register and interconnect assignment and the associated algorithms is

given in [12],[15].

3 Lower bounds on test resources

A necessary condition for a module assignment to produce a valid circuit implementation is that
the operations corresponding to a shared resource (i.e. all v G Mi) do not execute concurrently.
A schedule determines the module assignment space. Module assignment in turn determines the
input and output variable sets of modules. The variables in these sets can be distributed across
registers to ensure maximum sharing of registers as test resources between modules resulting in
low BIST area overhead. A schedule also determines the lifetimes of variables and affects their

assigning compatibility to registers. Thus a schedule and a module together assignment constrain
the register and interconnect assignment in terms of the potential of sharing registers as test
resources and avoiding essential CBILBOs.

The module assignment space is much smaller than the register and interconnect assignment
space because each operation has an operation type. Only certain modules that can implement that
operation type can be assigned to that operation. This is in contrast to register and interconnect
assignment where there is only one type of hardware to be assigned - registers for storage values
and wires for data transfer. Hence there is a great deal of flexibility in register and interconnect
assignment in terms of optimizing for BIST area overhead. However, the optimum that can be
achieved is bounded by the schedule and module assignment. Typically, several schedules and

module assignments that have a desirable latency and functional area, can differ significantly in
their test resource requirement. For a given schedule and module assignment, establishing what
can be achieved in terms of register and interconnect assignment to minimize test resources, is a

key question in incorporating testability overhead optimization techniques in the scheduling phase
of high-level synthesis.

3.1 Lower bounds on the number of TPGs and SAs

We address the following two questions. Given a scheduled DFG and a module assignment U\f,

among all register and interconnect assignments that can be associated with the given schedule and

module assignment

1. what is the lower bound on the number of TPGs required to generate patterns to test all the

modules, and

2. what is the lower bound on the number of SAs required to compress test responses for all the

modules?

Note that weare interested in finding the lower bounds on the BIST area while relaxing the
functional area, constraints. The total number of registers or amount of interconnect required to

achieve this bound is not being considered. A data path that achieves these bounds could have a
higher functional area than another data path that might not meet the bounds on the number of
TPGs or SAs.

Consider the following example of a scheduled DFG shown in Fig. 4(a) and the following

two module assignments.

1. Assignment I:(Fig. 1(b)) Operations '-H' and '-f3' are assigned to one module and operation
'+2' is assigned to a second module. M\ = {+ 1, +3} and Mi = {+2}-

2. Assignment II:(Fig. 4(c)) Operations 4+f and '+2' are assigned to one module and operation
'+3' is assigned to a second module. Mi = {+1, +2} and M2 = {+3}-

Consider all possible register and interconnect assignments for the above two module as
signments. Any register which is assigned at least one variable from the output variable set of a
module can be used as a. SA for that module (from Observation 1 in Section 2).

For Assignment II, variables a and c can be assigned to thesame register since their lifetimes
do not overlap and this register can be used as a SA to test both Mj and M2 since a £ Omx and
e GOm2- Hence the lower bound on the number of SAs in this case LB#sas = I-

(a)

ASSIGNMENT ASSIGNMENT II

(b) (c)

Figure 4: Effect of module assignment on LB#sAs an(l LB#TPGs

For Assignment I it is not possible to find such a register assignment. In this case Omx =
{a,c} and Oa/., = {b}. Since the lifetime of6 overlaps with the lifetimes of both a and c it cannot
be assigned the same register to a register to which a or c is assigned. Hence for any register
assignment the minimum number of SAs required to test M\ and M2, LB#sAs = 2.

An analogous situation occurs in the case of the input variables ofoperations corresponding
to the lower bound on the number of TPGs. We have defined the concepts of output storage

concurrency, inputs storage concurrency and maximal concurrent operation set in this paper that
help model the dependence of BIST area on schedules and module assignments.

Definition 3 a) The output variable of an operation v G V is the variable corresponding the
outgoing edge ofv in G. For a scheduled DFG, G= (V, E) the output storage concurrency of
a subset of operations Q CV, denoted by Gos(Q), is the maximum number of output variables of
operations in Q alive at the same time.

b) An input variable ofan operation v GV is a variable corresponding to an incoming edge
of v in G. For a scheduled DFG, G = {V,E) the inputs storage concurrency of a subset of
operations Q CV, denoted by Cis{Q), is the maximum number of input variables of operations in
Q alive at the same time.

9

The output storage concurrency is a measure of the minimum number of storage locations
that would be required to store the outputs of the operations in Q. For the scheduled DFG in

Fig. 4 for the subset of operations Q\ = {+1 ,+2}, the output storage concurrency G'osiQi) = 2
since both the output variables a and b are alive at the same time. Similarly for Q2 = {+ \,Jr3},
C0S(Q2) = 1 and for Q3 ={+i,+3,+2}, GosiQs) = 2.

Definition 4 Given a scheduled DFG, G = (V,E) and a module assignment ITa/ = {M\,M2,...,

Mm] a maximal concurrent operation set Vcmnx is a set of m operations, each of which is

assigned to a different modide.

A maximal concurrent operation set refers to the maximal set of operations that can be

executed simultaneously in real time because each of them have a dedicated hardware resource to

which they are mapped by the module assignment. Note that in the actual behavior (scheduled
DFG) these operations might not be executing concurrently. However the module assignment has
assigned resources such that they can execute concurrently. For Assignment II discussed previously
there are two maximal concurrent operation sets V£max = {+1,+:}} and V^mw = {+2,+3}-

Using the concepts of maximal concurrent operation set, output storage concurrency and
inputs storage concurrency we can compute the lower bound on the number of SAs and TPGs
required for any data path synthesized from a particular schedule and module assignment.

Theorem 1 For a given scheduled DFG, G = (VtE) and a module assignment Um, the lower
bound on the number of SAs required to test all the modules in the data path is given by

min Gos{Vcmox)

where the minimum is over all maximal concurrent operation sets ofYlM-

Proof:

Let min Cos{VCmax) = n
V VC„„,x

and the total number of modules assigned be ?/?. Assume that there exists a way of assigning
variables to registers such that the ??? modules can be tested using 7?/ SAs and n' < n.

For a register to be a SA for a module A/,-, at least one variable from output variable set
Omi must be assigned to that register. Since m modules can be tested using n' SAs, there exist m
variables each belonging to a distinct output variable set Om, {i = 1,2,...,/») such that they can
be assigned to n' registers. Let the set ofoperations that have a variable from these m variables as
an output variable be denoted by Vc. Each of the operations in Vc is mapped to a distinct module

10

and | Vc |= 77?.. Hence Vc is a maximal concurrent operation set from Definition 4. Since the output
variables of operations in Vc can be assigned to n' registers, the output storage concurrency of Vc,
Gos(Vc) < »'• Since Vc is a maximal concurrent operation set of the given module assignment, this
contradicts the fact that

min Cos(Vcmax) = 11.
V Vf

Hence the lower bound on the number of SAs required to test the 77?. modules is /?. •

For Assignment I in the previous example, the maximal concurrent operation sets are Vq

= {+i,+2} and V§ = {+35+2}• Hence the lower bound on the number ofSAs, LB#sAs = min {
Cosine)iCos{Vc) } ~ min {^i 2} = 2. For Assignment 11, the maximal concurrent operation
sets are V$mas = {+i,+3} and V§max = {+2,+3}. Hence lB#SAs = min {Cosi^J.Cm^J
} = min {2, 1} = 1.

Similarly the lower bound on the number of TPGs can be found.

Theorem 2 For a given scheduled DFGG = (V,E) and a module assignment Um, the lower bound
on the number of TPGs required to test all the modules in the data path is given by

min Cis{VCmax)
v vcmaI

where the minimum is over all maximal concurrent operation sets 0/11 a/ •

Proof: Similar to proof of Theorem 1.

The lower bounds derived above are tight. Given complete flexibility in assigning registers

and interconnect without any area constraint, these bounds can be achieved. Theorems 1 and 2

indicate that to lower the BIST area overhead of the synthesized data path a module assignment

that has a maximal concurrent operation set with low output (and inputs) storage concurrency is

preferable.

3.2 Lower bounds on CBILBOs

A CBILBO is required to test a module if all possible BIST embeddings of the module use the same
register as TPG and SA. It is a necessary condition for a register to be a self-adjacent register in
order to be a CBILBO. Hence to determine the lower bound on the number of CBILBOs we first

need to know the module assignment condition that when followed by any possible register and
interconnect assignment results in a self-adjacent register.

11

Lemma 1 Given a scheduled DFG, G = (V, E) and a module assignment Um = {Mi,M2,...,
Mm] a self-adjacent register is created in the data path irrespective of the register and interconnect
assignments if and only if there exists a module M{ such that /m.-HOm,- i=- <f>- The registers to which
any element(s) of Im, fi Oa/, is assigned are self-adjacent registers.

Proof:

(If):

Let there be a module Mj such that 1%$. D Om{ i=- (j). Let variable x G Im, H 0 a/, and let R be

the register to which x gets assigned. Since .t G /a/,, therefore R is an input register of module

Mi. Since x G Omu therefore R is also an output register of module Mi- From the definition of a

self-adjacent register, R is a. self-adjacent register.

(Only if):

Let there be a self-adjacent register /? in the data path associated with module Mi- Since R is an

input register as well as an output register of module Mi, therefore a variable from 7a/, (say x) and
a variable from Om{ (say y) are assigned to register R. But x and y have non-overlapping lifetimes
and can always be assigned to different registers in an alternative register assignment precluding
a self-adjacent register. The only possibility for aJ and y to be assigned to the same register in all
possible register assignments is when x = y (i.e. a; and y are the same variable). Hence a; = y G Im,
and x = y GOa/,, implying Im, H Om{ ^ 4>. D

Self-adjacency is only a necessary condition for the CBILBO requirement. The temporal
multiplicity of a module can be useful in avoiding CBILBOs in spite of the presence of self-adjacent
registers [12]. We have defined the concept of an essential concurrent operation and storage con
currency to find lower bounds on the number of CBILBOs.

Definition 5 An operation is an essential concurrent operation if it is an element of all

maximal concurrent operation sets of a module assignment.

From the definition of a maximal concurrent set, the module to which an essential concurrent

operation is assigned has only one operation assigned to it, i.e., the temporal multiplicity of the
module is 1. The condition for essential CBILBO is stated next as Theorem 3. To prove the

condition we use the following lemma that has been proved in [12].

Lemma 2 // all the possible BIST embeddings of module Mk require a CBILBO register then Mk
has no more than 2 output registers.

12

Theorem 3 Given a schedule and a module assignment Um = {Mi,M2,...iMm} a CBILBO is
essential to test module Mi for all. register and interconnect assignments ifTM{Mt) = 1 (i.e. the
operation assigned to Mi is an essential concurrent operation) and Im, HOm, i=- (f>-

Proof:

A necessary condition for a register R to be a CBILBO is that it is a self-adjacent register.

For there to exist a CBILBO for all possible register assignments given a module assignment, there

has to exist a. module Mj such that IMi HO^/ ^ 9 (Lemma 1).

Assuming that 1^ H Om, ^ 9 we will prove that TM(Mi) = 1 is necessary and sufficient.

(If):

If TM{Mi) = 1, it has only one output variable and the register to which it gets assigned will be

the only SA for the module. Since it also an input variable the same register will be the only TPG

for one of the input ports of the module. Hence a CBILBO would be essential for module M,-.

(Only if):

Case(i): TM(M;) > 2 More than two operations are assigned to Mt. Since each operation

has a distinct output variable, therefore | Oa</, |> 2 . Each of these output variables can be assigned
to a separate register resulting in more than 2 output registers for Mi. From Lemma 2, a BIST

embedding without a CBILBO can be found in this case.

Case(ii): TM{Mi) —2 Exactly two operations are assigned to Mi. Hence | Oa-/, |= 2. the
two output variables can be assigned to two separate registers, say Ri and R2. In the worst case

both output variables also belong to Im,- If Ri and R2 are connected to the same input port, a

CBILBO is not required since one can be a TPG for that input port and the other can be an SA

for the module. If they are connected to different input ports, one of the input variables which is

not an output variable can be assigned to a register R3. R3 will serve as a TPG for one of the input
ports and the self-adjacent register connected to this port (72j or R2) can act as an SA precluding

a CBILBO. n

If a module assignment has the property stated in Theorem 3, the register assignment and
interconnect assignment cannot avoid a CBILBO. If the register and interconnect assignment is
performed without regard for functional area but with the sole objective of minimizing CBILBOs,
the number of CBILBOs would depend on the number of essential concurrent operations with

overlapping input and output variable sets.

Definition 6 Theessential concurrent operation set V'e.9S of a module assignment is a maximal

set of operations that exist in all the maximal concurrent operation sets of the module assignment.
The set of modules corresponding to the operations in Vcss shall be denoted by Mess.

13

The essential concurrent operation set associated with a module assignment is thus the set
of all essential concurrent operations of that module assignment.

Definition 7 The storage concurrency of a set of variables Q, C's(Q) is the maximum number
of variables in Q alive at the same time.

Theorem 4 Given a scheduled DFG. G = [V,E) and a module assignment Etjw = {M\,M2,...,
Mm], the lower bound on the number of CBILBOs required to test all the modules in the data path
is given by

Cs{ U ih,,r\OM,))
VyV/,GA'/e«

Proof:

Let Cs(|J (lM,nOM,))= n.
va/,g.v/„.

Assume that there exists a register assignmentsuch that all modules can be tested with n' CBILBOs
and 77' < /?,. From Theorem 3, only modules with a temporal multiplicity of 1 require CBILBOs.

The set of modules Mi such that TM(Mi) = 1 is the set Mess, corresponding to the essential

concurrent operation set as per Definition 6. The other condition for each module M,- to require a

CBILBO is IMi r\OMi ¥" 4> and the register to which the variable from (7a/, HOa/,-) gets assigned
forms the CBILBO. Since we have assumed that n' CBILBOs can test all modules, therefore the

variables in (/a/, HOmJ for all modules in Mess can be assigned to 77/ registers. But the storage
concurrency of these variables is 77 and hence there is a contradiction. Therefore at least n CBIlBOs

are required for any register assignment following the given schedule and module assignment. •

Consider the scheduled DFG shown in Fig. 5(a). Note that the output and one input

variable of operations '+3' and '+21 Is the same, namely, a and d. This occurs in the case of

iterative computations. For scheduling purposes the loop is broken. Consider the following three

module assignments for the scheduled DFG.

1. Assignment I: (Fig. 5(b)) Operations '+i\ '+2' and '+31 are all assigned to a different module,

i.e. Mj = {+ 1}, M2 = {+2} and M3 = {+3}. Since /ji/2 nOA/2 = W) 7^ <P and ImsC\Om3 =
{a} / (p, therefore according to Lemma 1, registers to which variables a and d will be assigned
will be self-adjacent registers. There is only one maximal concurrent operation set Vcmax =
{-4-,,-+-2,+3} and each of the operation is an essential concurrent operation. However the
intersection of the input and output variable sets is non-empty only for two of the three

modules to which these essential concurrent operations are assigned, namely M2 and M3.

The lower bound on the number of CBILBOs according to Theorem 4 is G's{ {a,d.}) = 2

since both variables are alive at the same time.

14

SCHEDULED DFG

a\ \b c/ ,d e,

ASSIGNMENT II

a\ \b 5^ \d e/

ASSIGNMENT I

av \b c/ vd e;

ASSIGNMENT III

Figure 5: Module assignments and LB#cbilbOs

2. Assignment II: (Fig. 5(c)) In this assignment the essential concurrent operation '+3' in As
signment I isassigned to the same module as operation '+1'. Now we have Mi = {+1 ,+3} and
M2 = {+2}- This module assignment has only one essential concurrent operation, namely,
operation '+3'. Since for module M2 to which this essential concurrent operation is assigned,

Im2 f"1 Oa/., = {d} j£ (p therefore according to Theorem 4, the lower bound on the number
of CBILBOs is Cs{ {d}) - 1. Note that, IM{ C\0Ml = {«,/} ^ <!>• So registers to which
variables a and / will be assigned will be self-adjacent registers. Note that assignment of
variable / results in a. self-adjacent register only because 4V and '+3' are assigned to the
same module. Also even though Mj has self-adjacent registers it does not require a CBILBO

asTM(Mi) = 2.

3. Assignment HI: (Fig. 5(d)) In this assignment we have Mi = {+1} and M2 = {+2,+3}-
This module assignment also has only one essential concurrent operation like in Assignment
II, namely, operation ;+i'. However for the module M\ to which this essential concurrent
operation is assigned , /a/, nOjw, = 0. Hence the lower bound on the number of CBILBOs is
0. Note that 7a/2 HOa/2 = {a.d) so registers to which a and dare assigned will be self-adjacent
registers but a register assignment can be found such that M2 does not require a CBILBO.

15

Thus, to lower the number of CBILBOs in the data path the number of essential concurrent
operations that have intersecting input and output variable sets should be reduced. The lower bound

can be achieved by relaxing the functional area constraint. A register assignment that achieves this
lower bound could have more than the minimum number of functional registers required.

4 Use of lower bound estimation in synthesis algorithms

The ability to predict area-performance characteristics of designs without actually synthesizing

them is vital to produce quality designs in a reasonable time. Using a high-level synthesis system,

a designer often needs to repeat the synthesis process several times while searching for a satisfac

tory design. Comparison of synthesis results using different module sets, module assignments and

schedules are made to locate the desired design. Computation of lower bounds on test resources

provides a. synthesis system with a quick way of evaluating the testability overhead of the design.

More specifically, the proposed lower bounds can be used for the following.

1. To select schedules from a set of schedules with the same latency and resource requirement.

For a given behavior different schedules are possible such that they have a desired latency and
satisfy a constraint on the number of modules. However the minimum number of test resources

required to test the designs synthesized using these schedules could vary significantly. The
lower bounds on the test resources can be used to select an appropriate schedule.

2. Given a schedule, to find a module assignment that requires few test resources. For a given

schedule, different module assignments have different lower bounds on test resources. The
lower bound estimation technique can be used to compare different module assignments for

the same schedule. Alternatively, the lower bound estimation can be done incrementally

during module assignment using information from partial module assignments. For example,
if at some stage in the module assignment process there is a choice between many assignments,
then an assignment that results in a maximal concurrent operation set with a lower output

storage concurrency should be chosen.

3. To trade-off latency for area. Sometimes latency is increased if a. reduction in the number of
modules is desired. In some cases, increasing the latency by a few clock steps does not reduce

the module requirement. However it does increase the number of different possible schedules,
and thus a schedule that has a. small lower bound on the number of test resources may be

identified. Such a schedule could lead to savings in area.

4. To prune the search space and direct the search during register and interconnect assignment

towards low testability overhead designs. The information used in the estimation of the lower

16

bounds (e.g. maximal concurrent operation sets and storage concurrency) can be used to
prune the search space and select assignments that will achieve those bounds or will be close

to the bounds.

5. To provide an independent measure of comparing the performance of different high-level
synthesis systems and algorithms that perform testability optimization. High-level synthesis

systems that have testability overhead as an optimization criterion use a variety of heuristics

and cost functions in their algorithms. The bounds provide a common base to evaluate the

quality of the various synthesis algorithms.

We have developed efficient algorithms for quick computation of the lower bounds. The

algorithm for computing lower bounds on the number of TPGs and SAs has worst case complexity

0(L • m • (—)'"), where L is the latency of the schedule, n is the number of operations (nodes

in the DFG) and 777, is the number of modules assigned. The algorithm is efficient in spite of the

exponential complexity because the number of modules 777. is usually small. Furthermore, properties

of module assignments and maximal concurrent operation sets can be used to reduce the size of

the exponential space. For example, consider two maximal concurrent operation sets Vcmax anc^
V% • If all the operations in Vk are scheduled in the same control step, then it can be shown

'-'max '-'max

that Co^iVr-) < CosiVX). Hence maximal concurrent operation sets such as V). can be
^•J \ '.-•max' — v '-'max' * '-•max

ignored during the lower bound computation. The lower bound on CBILBOs can be computed in
0(L • m) time.

5 Experimental results

In order to demonstrate the use of the proposed lower bound computation in evaluating the testa

bility qualities of schedules and module assignments, we applied it to some well-known high level
synthesis benchmarks: 1) the 2nd order differential equation - diffeqn [16], 2) the Tseng data flow
graph - Tseng[l7], 3) the auto regression filter element - All Filter[18], and 4) the 5th order elliptic

wave filter - eta/[19].

Table 1depicts bounds for three different schedules of diffeqn. The minimum latency for this
benchmark is 4. As-late-as-possible (ALAP) scheduling and as-soon-as-possible (ASAP) scheduling
are two popular scheduling techniques for achieving minimum latency schedules. Both ASAP and
ALAP schedules of the diffeqn require 5 modules. In Table 1 schedule Si is the ALAP schedule
and schedule S2 is the ASAP schedule. It can be seen that the lower bound on SAs, TPGs and
CBILBOs required if schedule S2 is used is lower than the lower bounds ofschedule %. The bounds
for an intermediate schedule, S3, with the same latency are also shown. Three more schedules each

17

Table 1: Lower bounds for minimum latency schedules of diffeqn

Schedule Type of

schedule

Latency

(L)

Number of

modules (m)
LB#SAs LB#TPGs LB#C BILBOs

Si ALAP 1 5 3 5 1

s2 ASAP 4 5 2 4 0

s3 Intermediate 4 5 3 1 0

Table 2: Lower bounds for dilTcan

Schedule Latency Number of

modules (m)
LI3#SAs LB#TPGs LB#CBILBOs

•s, ()• 4 2 4 1

s2 6 1 2 4 0

s3 6 1 1 4 0

with a. latency of 6 and using 4 modules are shown in Table 2. These results demonstrate that

schedules that are equally attractive from the functional resources and latency point of view can

differ greatly in the minimum test resource requirement.

The Tseng benchmark does not have any variable that is an input as well as an output

variable of the same operation. Hence according to Theorem 3, the lower bound on CBILBOs

is zero. We investigated the lower bounds on SAs and TPGs for all possible schedules and all

possible module assignments associated with each schedule for this benchmark. Table 3 shows the

lower bounds on SAs and Table 4 shows the lower bounds on TPGs. Each entry in the tables

corresponds to the minimum lower bound among all possible schedules and module assignments for
that particular latency and number of modules. For example, among all module assignments using

6 modules that were possible for different schedules of latency 5, the minimum lower bound on

the number of SAs was 3. A '-' entry indicates that no schedule and module assignment solution

is possible for that (L, 7?7.) value of the DFG. It can be observed that the bounds increase as the
number of modules increases. Note that the actual functional area corresponding to the modules is

not being considered here. The actual functional area depends on the particular module assignment
and a higher number of modules does not necessarily imply a larger functional area [20]. The lower
bounds have a strong corelation to the number o[modules. The lower bounds on the test resources
increase with number of modules because there are more modules to test which results in a larger

l.s

Table 3: Variation in SA lower bounds for Tseng

Number of modules (777)

Latency (L) 1 2 3 4 5 6 7 8

4 - - 1 2 2 3 3 4

5 - 1 1 1 2 3 3 4

6 - 1 1 1 2 2 2 4

7 - 1 1 1 2 2 2 4

8 1 1 1 1 2 2 2 4

Table 4: Variation in TPG lower bounds for Tseng

Number of modules (777)

Latency (L) 1 2 3 4 5 0 7 8

1 - - 2 3 3 1 5 5

5 - 2 2 3 3 4 5 5

6 - 2 2 3 3 4 4 5

7 - 2 2 3 3 4 4 5

8 2 2 2 3 3 •I 1 5

number of input and output variable sets, while the storage concurrency of the variables remains

the same. Tables 3 and 4 demonstrate that among two module assignments HA,; and UM such that

I UM I < I UlM |, assignment YlM might be desirable from the test resources point of view even if
Area{Ul,) > .4reft(H\7).

Table 5 shows the bounds for different module assignments of the ASAP and ALAP schedules

for the AR Filter benchmark. The latency of both schedules is 8 and the minimum number of

modules for this latency is 12. All module assignments in Table 5 use 12 modules. Table 6 shows

the bounds for different module assignments for a schedule of the ewf benchmark. The latency of

the schedule used is 19. These results show that a significant variation in test resources exist for

different module assignments of the same schedule as well as different schedules of the same latency.

The lower bound estimates can be used to compare the quality of the synthesized designs

in terms of BIST resources. The closer the number of BIST resources are to the lower bounds, the

better the quality of the synthesis algorithms in synthesizing low BIST overhead designs. Table 7

19

Table 5: Lower bounds for AM Filter

Schedule Latency Module

assignment

Number of

modules (771)
LB#SAa LB#TPGs LB#CBILBOs

ft

ALAP 8

Mj 12 5 16 0

M, 12 4 12 0

M3 12 2 8 0

s2

ASAP 8

M\ 12 5 12 0

M2 12 3 8 0

M3 12 2 8 0

Table 6: Lower bounds for ewf (L = 19)

Module

assignment

Number of

modules (77?)

LB#SAs LB$TPGa LB#CBILBOs

Mi 8 3 6 2

M2 8 2 4 1

-I/a 8 1 3 0

compares the BIST resources required for design synthesized by the approach in [12] with the lower

bounds. ex2 is a DFG taken from [21]. Tsengl and Tseng2 are different module assignments of

the Tseng benchmark. The lower bound on test resources was achieved in most of the cases which

indicates that the synthesis algorithm performed well in optimizing test resources and that the

proposed bounds are achievable even when functional area constraints are imposed.

6 Conclusions

Estimation of resources is important to guide high-level synthesis algorithms towards optimal solu

tions. Lower bounds on resources reduce the size of the search space and also provide a metric for

evaluating the quality of the synthesized design. In this paper we have derived tight lower bounds

on test resources that would be required to test the synthesized data path using partial intrusion

BIST. Given complete flexibility in the assignment of registers and interconnect, the lower bounds

can be achieved. The bounds give a mechanism for comparing the quality of area-performance

competitive schedules and module assignments with respect to test resource requirement. The

Table 7: Comparison of actual test resources with lower bounds

DFG # TPGs LB#TPGs # SAs LB#SAs # CBILBOs LB#CBILBOs
ex2 4 r 3 r 1 0

Tsengl 5 5" 1 3 1 0

Tseng2 3 3" 2 2" 0 (T

diffeqn 3 3* 2 2" 1 r

* Lower bound achieved

lower bounds along with a library of test register modules can give an estimate of the actual test

area overhead. The theory on test resource bounds can be used in conjunction with the theory for

estimating functional resources which has been studied extensively in literature. The total area of

the synthesized design including test area overhead can thus be estimated accurately.

References

[1] R. Jain, A.C. Parker, and N. Park. Predicting System-Level Area and Delay for Pipelined and

Non-pipelined Designs. IEEE Trans, on CAD, (11):955-965, August 1992.

[2] M. Rim and R. Jain. Estimating Lower-Bound Performance of Schedules Using a Relaxation

Technique. In Proc. Intn'l Conf. Comp. Design, pages 290-294, October 1992.

[3] Y. flu, A. Ghouse, and B.S. Carlson. Lower Boundson the Iteration Time and the Number of
Resources for Functional Pipelined Data Flow Graphs. In Proc. Intn'l Conf Comp. Design,

pages 21-24, October 1993.

[4] A. Sharma and R. Jain. Estimating Architectural Resources and Performance for High-Level
Synthesis Applications. IEEE Trans, on VLSI Systems, 1(2):175-190, June 1993.

[5] S. Chaudhari and R.A. Walker. Computing Lower Bounds on Functional Units before Schedul
ing. In Proc. 7th Intn'l Symp. on High-level Synthesis, pages 36-41, May 1994.

[6] S.Y. Ohm, F.J. Kurdahi, and N. Dutt. Comprehensive Lower Bound Estimation from Be
havioral Descriptions. In Proc. Intn'l Conf. Computer-Aided Design, pages 182-187, October

1994.

[7] P.R. Chalasani, S. Bhawmik, A. Acharya, and P. Palchaudhari. Design of Testable VLSI
Circuits with Minimum Area Overhead. IEEE Trans, on Computers, pages 1460-1462, 1989.

21

[8] L. Avra. Allocation and Assignment in High-level Synthesis for Self-testable Data Paths. In
Intn'l Symp. on Circuits and Systems, pages 463-472, Aug. 1991.

[9] C. Papachristou, S. Chiu, and II. Harmanani. A Data Path Synthesis Method for Self-Testable
Designs. In Proc. 2Slh Design Automation Conf, pages 378-384, June 1991.

[10] II. Harmanani and C. Papachristou. An Improved Method for RTL Synthesis with Testability
Tradeoffs. In Proc. Intn'l Conf. on Computer-Aidcd Design, pages 30-35, November 1993.

[11] I.G. Harris and A. Orailoglu. SYNCBIST:SYNthesis for Concurrent Built-in Self-Testability.
In Proc. Intn'l Conf. Comp. Design, pages 101-104, October 1994.

[12] I. Parulkar, S. Gupta, and M.A. Breuer. Data Path Allocation for Synthesizing RTL Designs
with Low BIST Area Overhead. In Proc. 32nd Design Automation Conf, pages 395-401, June

1995.

[13] M.S. Abadir and M.A. Breuer. A Knowledge-Based System for Designing Testable VLSI Chips.

IEEE Design & Test of Computers, pages 56-68, August 1985.

[14] L.T. Wang and E.J. McCluskey. Concurrent Built-in Logic Block Observer (CBILBO). In
Intn'l. Symp. on Circuits and Systems, pages 1054-1057, 1986.

[15] I. Parulkar. Data Path Allocation Techniques for High-level Synthesis of Low BIST Area

Overhead Designs. CEng Tech. Report 95-02, Univ. of Southern California, Dept. of Elect.

Engineering - Systems, April 1995.

[16] P.G. Paulin and J.P. Knight. Force-Directed Scheduling for the Behavioral Synthesis of ASICs.

IEEE Tiuns. on Computer-Aided Design, pages 661-679, June 1989.

[17] C. Tseng and D.P. Siewiorek. Automated Synthesis of Data Paths in Digital Systems. IEEE
Trans, on Computer-Aided Design, pages 379-395, July 1986.

[18] R. Jain, M. Mlinar, and A. Parker. Area-time Model for Synthesis of Non-pipelined Designs.

In Proc. Intn'l Conf. on Computer-Aided Design, pages 48-51, Nov. 1990.

[19] S.Y. Kung, H.J. Whitehouse, and T. Kailath. VLSI and Modern Signal Processing. Prentice-

Hall, 1985.

[20] K. Kucukcakar and A. Parker. Data Path Trade-offs using MABAL. In Proc. 27th Design

Automation Conf, pages 511-516, June 1990.

[21] C. Papachristou, S. Chiu, and H. Harmanani. A Data.Path Synthesis Method for Self-Testable

Designs. In Proc. 2Slh Design Automation Conf., pages 378-384, June 1991.

22

