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I. ABSTRACT

As cellular wireless networks see increasing amount of
uplink traffic due to video applications, there is a need
to explore the use of multiple carriers. In such a system,
multiple operators (carriers) may compete to carry data
from a customer (transmitter). In order to optimally allocate
power and rate, a transmitter needs truthful channel state
information from the carriers. This can be challenging as
the carriers are self-interested entities. We model this as
a competitive rate allocation game, in which carriers send
bids about their channel quality to the transmitter, and the
transmitter allocates power and rate accordingly. To ensure
truthful bidding, we design an incentive mechanism where
the transmitter offers a payment based on a convex piecewise
linear function. We prove that as the number of bits per
bid is increased, the total rate obtained by the transmitter
approaches the maximum possible data rate obtained by
the transmitter under perfect information about the channel
statistics. To validate the performance of our proposed model,
we also conduct simulations using real base station locations
in London, and show that not only the customers benefit by
having higher throughput, this model is also profitable to
the operators. The operators gain more revenue due to more
potential customers and more efficient use of the channels.

Index Terms—auction, mechanism design, multi-bit bids, con-
vex piecewise liner function, truthful bidding.

II. INTRODUCTION

Wireless networks are on the verge of a third phase of
growth. The first phase was dominated by voice traffic, and
the second phase, which we are currently in, is dominated by
data traffic. In the third phase, it is predicted that the traffic
will be dominated by videos [1].

With the development of technologies in media productions
such as digital video, blogging, forums, social networking,
and social media, it is now accessible and affordable for
the general public to produce their own video content and
publish on the internet. The development of smartphones and
tablets and the continuing growth of laptops make the mobile
device be able to display and capture high quality video
contents. In addition, these devices are capable of supporting
new interactive video applications such as video conferencing.

Applications for video sharing, video blogging, and video
broadcasting are also supported by these devices.

According to Cisco, in 2012, the average mobile user
consumed 201 megabytes of data a month, including one hour
of video, two hours of audio and downloaded one app per
month. By 2017, it is predicted that the average mobile user
will use 2 gigabytes of data per month, including 10 hours of
video and 15 hours of audio. [2] Though most of the videos in
the social media are prerecorded nowadays, in the future, the
demands for live video capturing and streaming will become
higher and higher. As a result, future wireless networks will
need to be optimized for the delivery of mobile data services,
especially for video camera based applications, which include
significant uplink traffic.

The massive growth of wireless mobile traffic has led to an
accelerating pace of research and development in the wireless
area. New technologies are proposed and developed to provide
faster data rates, higher spectrum efficiency, and larger system
capacity. With technologies such as orthogonal frequency-
division multiplexing (OFDM) [16], multiple-input-multiple-
output (MIMO) [17], a high-rate data stream can be split into
a number of lower rate streams and transmitted simultaneously
over a number of subcarriers or a number of antennas. This
greatly boosts the cellular radio link speed. With 4G (LTE
and WiMax) systems, the peak rate can be 100 Mb/s to 1 Gb/s
[3]. However, the fast rate of the technology growth still barely
keeps pace with the fast growing demands from mobile traffic,
especially for the video traffic [4]. To solve the bandwidth
thirst problem, another trend is to increase the number of base
stations (BSs) with smaller cells such as pico and femto cells.
It is predicted that by 2015, there will be perhaps 50 million
BSs, and some even predict that in the near future, say 10-15
years, there will be more BSs than mobile devices [5], [6],
and one mobile device may connect to multiple BSs and use
multiple links to transmit data simultaneously.

In the future, it will be harder and harder for a single
operator to always provide high quality service to all its
customers. Compared to the system capacity in the case where
each mobile device must be connected to a single BS from the
operator with which it has a contract, system capacity almost
grows quadruply when a mobile device is allowed to connect
to any nearby BSs even they are from different operators [7].
Exploring strategies of splitting data across multiple service
providers attract researchers’ attention and related ideas can
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also be found in recent literature [8]–[12].
In our opinion, the currently prevailing situation that a

mobile device typically contracts with a single operator may
change. This is also supported by industry trend of switch-
ing from contract model to prepaid model [13], [14]. It is
anticipated that in the near future, the concept of service
brokers will evolve and act as a third party in between the
operators and the users. These service brokers will allow
the end users more freedom to move from long-term single
operator agreements to more opportunistic service models
[10]. Allowing a mobile device to connect with multiple BSs
from one or multiple operators is not only technically feasible,
but also economically provides a win-win strategy for both
cellular users and operators when the networks are close
to being saturated since the cellular users will have better
services, while the bandwidth burden is amortized among
multiple operators.

Motivated by these trends, in this technical report, we
consider a futuristic scenario in which a mobile device is able
to split its data stream and connect to one or multiple BSs
from different operators. Operators send bids indicating their
channels’ quality to the mobile device, and the mobile device
selects one or multiple channels and allocates power and data
rate based on its traffic, the number of its available antennas,
and the bids received from the operators. If the channels are
selected and used by a mobile device, that mobile device pays
the corresponding operators based on a predefined payment
contract. We assume that there are some monitoring software
installed at the mobile device and BSs. The mobile device side
software monitors the bids received from multiple operators
and how the mobile device splits data stream. The BS side
software monitors the bids sent and the amount of successfully
received data. The bill is generated periodically (i.e., monthly)
based on the predefined payment contract and the monitoring
records.

In this technical report, we call such a mobile device as
the transmitter and different operators as carriers who own
different channels. We study in this technical report a simple
yet fundamental rate allocation problem in which a transmitter
does not know the state of the channels, and the corresponding
carriers are self-interested.

We consider a problem that there is one transmitter who is
able to transmit data simultaneously over at most K parallel
channels, as shown in Fig. 1. The channels from the transmitter
to each carrier are independent stochastic channels with two
states: high or low. A channel in state high allows the transmit-
ter sending data with a high data rate (sending aggressively),
while a channel in state low only allows the transmitter sending
data with a low data rate (sending conservatively). We further
assume that the probability that a channel in state high is p,
the value of p are different among different channels. When
the conservative data rate is used, no matter what channel
state is, the transmission is always successful. However, when
the aggressive data rate is used, with probability (1− p), the
transmission will fail, and we assume all the data are lost. The
transmitter rewards the carriers for successful transmissions
(i.e., gives some positive credits to the carrier), and penalize
them for failure (i.e., negative credits). As noted before, credits

are converted to financial payments over a longer time period,
such as monthly billing.

Figure 1: Illustration of Problem

We model the problem as an auction, in which the trans-
mitter is an auctioneer, and the carriers are the bidders. The
objective of the transmitter is to efficiently use the channels
to meet its traffic requirement. When the traffic is heavy, this
is equivalent to maximizing the total data rate over multiple
channels under a power constraint. The objective of the carriers
is to maximize the expected payment from the transmitter. The
main focus of this technical report is to design the payment
mechanism in such a way that the carriers will reveal their
channel qualities truthfully, and as result, the transmitter is
able to efficiently use its power and maximize the throughput.

A. Our Results

• We propose a payment mechanism using a convex piece-
wise linear function of channel probabilities, and prove that
bidding truthfully is always a preferable action for a carrier.
•We prove that the throughput obtained by the transmitter

approaches the maximum possible throughput with perfect
information about the channel statistics as the number of bits
per bid increases.
• Since bidding truthfully is always preferable, comparing

with many existing literatures on competitive rate allocation,
which typically runs multiple iterations to converge, our pro-
posed mechanism is one-shot and does not require iterative
convergence.
• The system overhead is little since the bids communi-

cation requires a few control message exchanges and happens
only at the beginning of an auction cycle, and the computation
of the payment is light.
• Our proposed mechanism is win-win for both customers

and operators since the customers have better service (and/or
lower payment) and the operators may potentially obtain larger
revenues due to more customers and more efficient use of the
channels. This claim is supported by simulations based on a
dataset of real BS locations over a 2km× 2km area in London.

The technical report is organized as follows: section III
talks about the related work; section IV introduces how the
system works; section V introduces the power-rate model
and investigates the optimal strategies for a transmitter under
perfect information about the channel statistics; section VI
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discusses a payment mechanism design which ensures the
truthfulness; section VII addresses implementation issues; sec-
tion VIII conducts simulations and evaluates the performance;
and section IX concludes the technical report.

III. RELATED WORK

Wireless network technologies are continuously evolving to
meet the increasing demands for data rate and high quality of
services. Thanks to the development of technologies such as
software-defined radio technique [15], Orthogonal Frequency
Division Multiplexing (OFDM) [16], and Multiple-Input and
Multiple-Output (MIMO) [17], a transmitter has the ability to
learn and change the transmission parameters according to the
radio environment and dynamically allocate rate and power.

One well-known technique of dynamic rate and power
allocation and scheduling across multiple carriers is to use
water-filling, which provides the maximum throughput under
a power constraint [18]. A number of works are based on the
idea of water-filling. Bingham proposes a finite granularity
multicarrier loading algorithm which assigns bits successively
to the subcarrier until the target rate is reached in [19].
Chow et al. improve the water-filling computation complexity
by iteratively adjust the system performance margin until
convergence [20]. Yu and Cioffi solve a simple two-band
channel partition and power allocation problem using a water-
filling algorithm in [21]. Kim et al. propose a joint subcarrier
and power allocation algorithm in [22] and optimal power
is calculated by water-filling fashion. Our work also uses
the water-filling mechanism, as the transmitter does water-
filling across channels. However, prior works assume truthful
feedback regarding the channel states. In our problem setting,
with autonomous selfish carriers, truthfulness is no longer a
trivial thing. To ensure truthfulness of carriers is one of the
main goals of this paper.

In communication networks, economic theories turn out to
be powerful tools to deal with problems where interacting
decision makers have conflicting objectives. In a competitive
environment where the resources are shared, a user’s utility
is typically affected by other users actions. Most traditional
auctions are about single unit auction, where there is only one
winner. In such auctions, mechanisms such as second price
auction yields truthful bidding. However, in spectrum markets,
single unit auctions are generally fail to address the issues
such as bidding for multiple units or multiple winners in one
auction.

Pricing and auction mechanisms in dynamic spectrum ac-
cess are studied in [23]–[25], where the primary users of
the spectrum are the channel sellers and the secondary users
are the channel buyers. In [23], Niyato and Hossain propose
an equilibrium pricing scheme where the QoS performance
degradation of the primary users was considered as the cost
in offering the spectrum access to the secondary users. The
authors analyze the problem as a Bertrand game and obtain the
Nash equilibrium which provides the optimal pricing. In [24],
Ghosh and Sarkar model the problem as a competitive game
where the primary needs to select the price of its channel with
the knowledge of its own channel state but not its competitors.

Secondary users select the channels based on the states and the
prices. The authors prove that there exists a unique symmetric
Nash equilibrium strategy in this game setting. In [25], Gao
et al. study the spectrum auction with multiple auctioneers
and multiple bidders, and propose a mechanism in which
auctioneer systematically raises the trading price and bidders
subsequently choose one auctioneer for bidding. The authors
analytically show that the proposed algorithm converges to the
equilibrium with maximum spectrum utilization of the whole
system. Our problem is also about using auction mechanisms
to find the optimal. However, different from previous studies,
in which the bids are about price and dynamically changed,
in our mechanism, the pricing mechanism is predefined, thus,
the bids are about their channel state parameters, rather than
price. The price is dynamic with respect to different bids and
performance. This is one major difference of our work from
prior work on pricing and auction mechanism in dynamic spec-
trum access. Moreover, in previous studies, it typically takes
some iterative learning process for the algorithm to converge
to the Nash equilibrium or the optimal. However, since our
mechanism ensures the truthful biddings from the carriers,
there is no iterative learning algorithm whose convergence is
affected.

Our work is in the category of mechanism design, and the
main idea here is to provide incentive schemes such that the
self interested entities will play a game in the favor of the
mechanism designer. This idea has something in common
with the mechanism design using the intervention frame-
work. Schaar et al. have several interesting studies on non-
cooperative resource sharing among self-interested users based
on the idea of intervention [31]–[33]. To provide incentive
schemes for the self-interested users to cooperate and improve
the system performance, Schaar et al. propose to use an
intervention device which is able to monitor the actions of
users and affect the resource usage. An intervention manager
strategically chooses an intervention device to maximize the
system performance such as the sum of the utility of all users.
Our proposed mechanism design is also using intervention
framework to manipulate the users actions. However, different
from these works, in which an optimal intervention device
is selected among a set of intervention devices, and the
algorithms to find the optimal or a good enough intervention
device typically requires several iterations to converge, we
have only a fixed intervention device/rule, which is predefined
in the contract.

Our work uses the payment to control the carrier’s behav-
ior, which consequently affects the resource allocation. The
payment is dynamic based on the quality of service rather
than byte-counting. This idea has some similarity with the
Smart Data Pricing (SDP), which uses price as a way to
manage and control congestion [26]. SDP charges the end-
user based on the quality of experience (QoE). It tries to
match the cost of delivering application-specific desired QoE
requirements of the user to the operator’s congestion cost
at the time of delivery. End user can control and manage
the physical layer resources using some application layer
software, either manually or automatedly. For example, since
different applications may have different bandwidth and delay
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requirement, end users can specify different QoE require-
ments for different applications, and SDP software adjusts the
physical layer resource allocation and media selection (i.e.,
WiFi offloading versus 3G). Since different QoE’s are charged
differently, this provides an incentive for end users to adjust
their behavior to mitigate the network congestion [27]–[30].
Though our work also uses price to manage the interested
party’s behavior, different from SDP, which manipulates end
users’ (mobile users) behavior, our work is to manipulate the
operators. Another major difference is that our work does not
explicitly specify different QoE requirement at the application
level.

Our work models a futuristic cellular network which a
mobile has freedom to connect to any service provider based
on its traffic requirement and quality of services provided by
different service providers. Similar ideas are also proposed in
[8]–[12], where a wireless user is able to split jobs among
multiple service/network providers, and the service providers
compete to get the jobs from the wireless users by sending
bids. In these works, either the bids dynamically converge
to the optimal [8], or the users evaluation is known [9]. In
our work, the bids are about the channel state parameter, and
they are fixed when the channel statistic parameter does not
change. Moreover, we assume the traffic requirement of the
mobile user is private information and not revealed publicly.

This work is a significant extension of our previous work
[34]. In [34], we consider a simple single transmitter two carri-
ers problem, and in each time slot, both carriers send a binary
bid to the transmitter and the transmitter either allocates full
power to the higher bidder or splits power equally and allocate
half to each carrier. The transmitter gives a reward proportional
to the amount of data transmitted for a successful transmission
and gives a penalty for an unsuccessful transmission. We have
proved that there exists a penalty setting such that the total rate
obtained from the game is at least half of the optimal, and this
is the best bound for the worst case considering all possible
parameter settings. This technical report extends the single
bit bid to a multiple-bit bid. The game is redesigned from a
different point of view. The key idea of [34] is to find out
suitable penalty settings such that PoA from the transmitter’s
point of view will be bounded, while in this technical report,
the key aim is to guarantee truthfulness. A convex piecewise
linear function is proposed to ensure truthfulness of the carriers
when power is allocated. We show here that the optimal is
achieved when the length of quantization interval approaches
0 with light weight computation complexity. Moreover, this
work is more general, which the number of carrier can be
arbitrary, and power/rate allocation is more flexible based on
any given concave power-rate model, while in [34], we only
focus on two carrier, equally-split power case.

IV. SYSTEM MODEL

We consider the transmission problem of a single mobile
device which can simultaneously transmit data over multiple
channels provided by multiple operators. In this technical
report, we call such a mobile device as the transmitter and
different operators who own different channels as carriers. We

study in this technical report a simple yet fundamental rate
allocation problem in which a transmitter does not know the
states of the channels, and the corresponding carriers are self-
interested.

Figure 2: System Model

The system works as shown in Fig. 2: when the transmitter
has some data to sent, it announces an auction to request
channel resources. The nearby carriers reply to the request
with a bid indicating the quality of their respective channels.
After receiving the bids, the transmitter ranks the bids, esti-
mates the channel quality, selects a set of channels, determines
power and data rate allocation strategies, replies to the selected
channel with allocated data rate, and then transmits data.
Whenever data is successfully sent, the transmitter gives
credits to the carrier. However, we assume that there is a failure
and nothing gets sent if the transmission channel is bad but the
transmitter uses a high data rate to send data. In this case, the
carrier incurs a penalty, and returns credits to the transmitter.
The transmitter stays with the same set of channels and use
the same power and data allocation strategy until it finishes
transmitting or announces another auction. We call this one
request-reply cycle one auction cycle.

The key elements to determine the transmitter’s allocation
strategy is the bids from the carriers, and its own traffic
requirement. The objective of the transmitter is to efficiently
allocate power and data rate to meet the traffic requirement.
When the traffic is heavy, the transmitter has to maximize the
total data rate under a given power constraint to best meet
its traffic requirement. However, if the traffic is light, a few
or even a single channel can satisfy the transmitter’s traffic
requirement, in which case, the transmitter may only use a
small set of channels.

In our mechanism, each auction cycle can be considered as
a single shot game. A carrier who gets some data from the
transmitter during one auction cycle may not necessarily get
data from another auction cycle. We assume that the trans-
mitter’s total traffic is the transmitter’s private information,
and is not revealed to the carriers. Moreover, A carrier is
not able to estimate such information based on the amount
of data allocated to it (0 if its channel is not selected). In
practice, especially in a relatively stable environment, the
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transmitter may select the same/similar sets of channels in
different auction cycles.

To monitor the carriers’ performance and generate the pay-
ments, a third party (i.e., service broker) software is installed
in the transmitter side and the carrier side. The transmitter side
software monitors the bids received from multiple operators
and how the mobile device splits data stream. The carrier side
software monitors the bids sent and the successfully received
data. As noted before, credits are converted to financial pay-
ments over a longer time period, such as monthly billing.

To emulate the real system, we have the following assump-
tions:
•A1: A transmitter is able to transmit data simultaneously

over at most K parallel channels.
•A2: There are N carriers (channels) competing to get data

from the transmitter. Typically, N > K. N is a variable,
which changes with locations and time. Different areas may
have different number of carriers nearby. Even if in the same
location, a carrier may still choose not to participate in the
competition for some auction cycles depending on its available
resources.
•A3: Channel quality dynamically changes over time due to

the transmitter’s movement, environment changes, and many
other reasons. However, in one auction period, we assume that
the channel quality stays the same.
•A4: Transmitter’s traffic requirement dynamically changes.

Based on the traffic requirement and channels’ quality, the
transmitter may simultaneously be able to connect k channels,
k < K, and k is a variable. In one auction period, we assume
that k stays the same.
•A5: It is difficult for a carrier to monitor other carriers’

channels’ quality, or estimate the transmitter’s traffic require-
ment. A channel which is not selected by the transmitter may
not necessarily be due to bad channel quality, it is also possible
that the transmitter does not need that many channels. Thus,
the history helps neither in estimating other carrier’s channels,
nor in estimating the transmitter’s selections. If a carriers
gets some data from the transmitter, all it knows is that it
is selected during this auction cycle; what is the percentage of
the allocated data among the total traffic is unknown.
•A6: The carriers are risk averse, which in our context

means the carriers tend to choose actions which may give
a possibly lower, but a more quantifiable expected payoff
rather than choose actions which give unquantifiable payoffs.
Although the latter actions may sometimes give high returns,
there also exists the risk to get a lower or even negative
expected reward.

V. POWER-RATE MODEL AND OPTIMAL STRATEGY FOR A
TRANSMITTER

Before we get to describe the auction and mechanism
design, we first take a look at what the optimal power and
data allocation strategies are for a transmitter given perfect
information about multiple parallel channels.

A. Power-Rate Model
The expected data rate is a concave function of the power.

We assume that there are two sets of rate allocation strategies

depending on the channel state, shown in Fig. 3. A channel
in high state (i.e., the channel noise level is low) allows the
transmitter sending data aggressively, shown in the upper curve
fh, while a channel in low state (i.e., the channel noise level is
high) only allows the transmitter sending data conservatively,
shown in the lower curve fl. We assume that if data rate
allocated based on the curve fh, the transmission will fail
if the channel condition turns out to be in low state and
nothing gets sent (i.e., the noise level is too high so that
SNR < SNRoutage, the data got corrupted). However, if
data rate is allocated based on curve fl, the transmission will
be always successful no matter what the channel states are.
Whenever data are successfully sent, the transmitter rewards
the carrier some credits, and the carrier incurs a penalty and
returns credits to the transmitter for a failed transmission.

Figure 3: Data vs Power allocation

B. Optimal Power and Data Allocation

We assume the transmitter is able to simultaneously transmit
data over at most K channels, as shown in Fig. 1. The indices
of the carriers represent their bid rankings. For example, carrier
1 is the one who sends the highest bid.

The channels from the transmitter to each carrier are
independent stochastic channels with two states: high or
low. We assume that the channel states are independent and
identically distributed (i.i.d.) Bernoulli random variables. Let
pi (i = 1, 2, ..., N) be the probability that channel i is in state
high during this auction cycle.

The transmitter’s maximum power is Pmax, and in each
auction cycle, a transmitter ranks the carriers’ bids, and selects
k (≤ K) best of them, and allocates power P1,P2,...Pk to their
corresponding channels.

k∑
i=1

Pi ≤ Pmax

As we know, if the transmitter has the perfect information
about the channels’ statistics, it can allocates power and data
in an optimized way. As an example, let us assume that the
transmitter is able to simultaneously transmit data over at most
2 channels, and the best two channels’ probabilities in high
state are p1 and p2, and such information is known by the
transmitter. We further assume that the total power used by
the transmitter is 1, and let P denote the portion of power
allocated to carrier 1; the power allocated to carrier 2 is 1−P .
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Depending on the traffic τ , we can always scale up/down the
total power.

The transmitter can select allocation strategies from the
following: both channels’ allocated data rates are based on
the curve fh; channel 1’s data rate allocation is based on the
curve fh, while channel 2 data rate allocation is based on fl;
both channels’ allocated data rates are based on the curve fl.

Let Vopt(P ) denote the maximum expected data rate given
that power allocated to carrier 1 is P , and let Vopt denote the
maximum expected data rate of optimal strategy.

Vopt(P ) = max{fl(P ) + fl(1− P ), p1fh(P ) + fl(1− P ),
p1fh(P ) + p2fh(1− P )}.

Vopt = max
P∈[0,1]

{Vopt(P )}.

Let πopt denote the allocation strategy which obtains Vopt.
As an example, we assume that fh = 10log(1+100P ), fl =

10log(1 + 2P ), the optimal expected data rate Vopt is as Fig.
4 shown; the optimal power-rate curve selection is as Fig. 5
shown; and the optimal power allocated to channel 1 is as Fig.
6 shown.

Figure 4: Optimal power and data allocation

VI. A INCENTIVE MECHANISM DESIGN WHICH ENSURES
TRUTHFULNESS

As discussed before, to optimally allocate power and data,
the key is to know the channel statistic parameters. However,
only the receivers (carriers) are able to accurately estimate
such parameters. How to ensure truthful bidding is the main
focus in this section. We present below the details of our
proposed incentive mechanism which guarantees truthfulness.

As introduced before, after the transmitter announces an
auction, the nearby carriers will respond to the auction with a
bid. We assume that the number of bits per bid is l; and the

Figure 5: Optimal Power-Rate Curve Selection

Figure 6: Optimal Power Allocated to Channel 1

whole probability interval then are divided into n = 2l smaller
intervals, denoted by [0, α1], [α1, α2]...[αn−1, αn]. 1

Each small interval [αi, αi+1] is assigned a different reward
and penalty value. The carriers’ bids are based on these values
and their true channel statistics.

We design the rewards and penalties based on a convex
function

f(p) = Rx(1 + β)p−1 (β > 0; p ∈ [0, 1]),

where Rx is the allocated data rate. Given (αi, f(αi))
and(αi+1, f(αi+1)), a straight line is determined. We assume
that the slope of this line is ki, and the intercept on the y axis
is li, then we have

1These αis are predefined in the contract, they can be evenly or unevenly
distributed between [0, 1] depending on system requirements or conditions.
For example, in an area in which there are usually many good channels
available, the system designer may make α1 a little larger, i.e., 0.5, and then
divide [α1, 1] in a finer manner. How to optimally select αis is out of the
scope of this technical report’s discussions.
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{
kiαi + li = f(αi) = Rx(1 + β)αi−1

kiαi+1 + li = f(αi+1) = Rx(1 + β)αi+1−1

Solving the linear equations, we getki = Rx[(1+β)
αi+1−1−(1+β)αi−1]
αi+1−αi

li = Rx[αi+1(1+β)
αi−1−αi(1+β)αi+1−1]
αi+1−αi

Since f(p) = Rx(1+β)
p−1 is a convex function with respect

to p, the slope of the line keeps increasing when the index i
increases. The set of these line segments compose a convex
piecewise linear function, as shown in Fig. 7.

If a carrier bid is i, the rewards are given as follows:

R =


Rx if Rx is allocated based on fl
ki + li ifRx is allocated based on fhand succeed
li ifRx is allocated based on fhand fail

If the channel probability is p, and Rx is allocated based on
fh, the expected reward for bidding i is kip+ li.

For allocating data rate based on curve fh case, the set
of all the expected rewards for bidding truthfully compose a
convex piecewise linear function, shown in Fig. 7. The lines
in different colors represent the expected payoffs for different
probability intervals.

Figure 7: Payoff vs Probabilities

Theorem 1. If the expected payoff of truthful bidding is
a convex piecewise linear function with respect to channel
probability p, the carriers will bid truthfully.

Proof: If the transmitter uses the lower curve fl to allocate
power and data to a channel, no matter what the carrier bids,
the allocation is the same, so is the expected payoff.

If the transmitter uses the upper curve fh to allocate power
and data, assume that a carrier’s channel probability p and
p ∈ [αi, αi+1], with probability p, it can successfully receive
the data, and with probability (1−p), it will fail. Let ui denote

the payoff that it bids i, the expected payoff for bidding i is
E[ui] = kip+ li, demonstrated by line Li in Fig. 7.

A truthful bidding for this carrier is i. However, we assume
that it bids m instead.

If m > i, the reward and penalty assignment will be based
on line Lm. The expected reward for this carrier will be kmp+
lm.

From Fig. 7, considering the line segments in the range of
[αi, αi+1], we can easily see that the expected payoff of Li
is greater than Lm. Thus, overbidding gives a lower expected
reward, and a rational carrier should not overbid.

Similarly, we can prove that carrier i will not underbid.
For a channel which is selected, the above analysis shows

that for the corresponding carrier, it has no incentive to lie
about its channel quality.

For a channel which is not selected, overbidding may
increase the possibility to be selected. However, under the
assumption 4~6, overbidding may still not be a good idea
for the following reasons. First, since the traffic from the
transmitter is unknown, a very good channel may not be
selected (The transmitter may not need that many channels).
Second, without the knowledge of other channels, a channel
who overbids may still not be selected, especially when there
are many good channels participating the auction in that
auction cycle. Thirdly, if a channel overbids and is selected,
as a carrier, it does not know whether this is because of
overbidding. It is still possible that it will be selected even
without overbidding, in which case, overbidding yields less
expected reward. Fourthly, in a real system, there are typically
multiple transmitters requesting resources, a channel which is
not selected by one transmitter may be selected by another,
and a channel which is bad to one transmitter may turn out to
be good to another transmitter. Thus, as a risk averse carrier,
bidding truthfully is always a more preferable action.

We define the data rate efficiency, denoted by η, as the ratio
of the total data rate obtained from the auction to the rate
obtained by the transmitter under perfect information about
the channel statistics.

Theorem 2. For fixed rates setting, when the granularity of
the probability range approaches 0, the data rate efficiency
from the transmitter’s point of view approaches 1.

Proof: Refer to Fig. 4 and 5, if a grid covers no boundary
of two regions, the power and data allocation is already
optimal. However, if a grid covers the boundary of two regions,
the optimal strategy is undetermined. For the latter case,
assume the optimal data rate is Vopt, however, the transmitter
chooses a suboptimal action which gives an expected data rate
Vsubopt.

Since the expected data rate function is continuous as Fig. 4
shown, and the expected data rate at the boundary is equal for
both allocation strategies, there exists a grid length ε which
makes Vopt−Vsubopt < δ. When ε→ 0, δ → 0, η =

Vsubopt
Vopt

=
Vopt−δ
Vopt

→ 1.
Remark: The key part of this incentive mechanism design is

the convexity of the function. In general, any convex piecewise
linear function can guarantee truthfulness.
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Taking the limit of the probability range parameters, the
payoff design curve becomes a smooth convex function, shown
in Fig. 8. The reward design will be based on the slope and
intersection of the tangent line.

Figure 8: Expected payoff vs probabilities

VII. IMPLEMENTATION

In this section, we discuss some implementation issues.
The following implementation is meant to be an illustrative
example, it may not necessarily be the best or the unique
design.

In this implementation, there is a middle man (i.e., third
party software) between the transmitter and the carriers. Ini-
tially, the middle man designs the payment contract, and end-
parties: the transmitter and the carriers, agree with the contract.
In this example, the following items are predefined in the
contract:
•The convex function which the payment functions rely on,

for example

f(p) = Rx(1 + β)p−1 (β>0; p ∈ [0, 1]);

(the value of β is also predefined in the contract) .
• The probability interval boundaries (α0, α1, α2,...αn).
With the above information, the expected reward for a

carrier is purely determined by its channel probability p and
the allocated data Rx.

Once the two parties agree on the contract, they install the
third party software: the transmitter side software monitors
the bids received from multiple operators and how the mobile
device splits data stream; the carrier side software monitors the
bids sent and the successfully received data rate. Periodically, a
transmitter announces an auction. The carriers response to the
auction by sending a bid, indicating their channel quality. Then
the transmitter selects a set of channels, determines power and
data rate allocation strategies, replies to the selected carriers
with the data rate it will use and then starts transmitting. A dy-
namic reward is determined based on the successfully received
data rate. The reward can be positive or negative depending on
the performance. For successful transmissions, the carriers win
some credits; for unsuccessful transmissions, the carriers lose
some credits (return credits back). The transmitter stays with
the selected channels until next auction period. The auction
period length, for example, can be as long as the coherence

time. Similar to current cellular network, a monthly bill is
generated based on the overall performance (i.e, the credits
are converted to a financial payment over a month). Different
from current cellular network payment model, in our model,
the price is always dynamic depending on the channel quality
and traffic requirement 2.

Here are pseudo code of the transmitter side software and
the carrier side software: Algorithm 1, and Algorithm 2.

Algorithm 1 Pseudo Code of the Transmitter Side Software

while There are some data to be sent do
Announce an Auction: The transmitter broadcasts

an auction notification, requesting channel resources from
nearby carriers.

Power and Rate Allocation: After receiving bids from
nearby carriers, the transmitter ranks the bids, b1 > b2 >
... > bn, converted the bids to probability values, p̂1 >
p̂2 > ... > p̂n (i.e. it randomly picks up a probablity value
corresponding to each bid, for example, it randomly picks
up a probability value in [αi, αi+1) if the received bid is i),
selects a set of channels, and allocates power and data rate
optimally based on p̂i to best serve the traffic requirement
τ under the total power constrain Pmax, let (Pi, Ri) denote
the power and data rate allocated to the ith highest bid
channel.

Reply Bids: The transmitter replies to the selected
carriers with the data rate Rx and whether it is an aggressive
rate or conservative rate.

Transmitting: Transmit data Ri using power Pi.
end while

Algorithm 2 Pseudo Code of the Carrier Side Software

Initialization:
• The convex function f(p);
• The probability interval boundaries: α0, α1, α2, ...αn.
while Listening to the auction notifications do

if An auction notification is received, and it decides to
participate in the auction then.

Reply the Auction: The carrier replies to the trans-
mitter’s auction with a bid, for example, i.

Receiving Data from the Transmitter: Calculate
the credits based on the performance and the bids using the
proposed auction model.

end if
end while
Generating Monthly Bill: A monthly bill is generated
based on accumulated credits.

The duration of the auction cycle can be made dynamic,
and it could depend on various issues such as overhead, pro-
tocol/standard constraints on signaling and control frequency,
and also performance. For example, in a stable environment,
we can use coherence time as the time length of the auction
cycle. However, in a highly varying environment, we can use

2Note that several other researchers have previously proposed and explored
various dynamic pricing schemes for cellular networks [39]–[42] .
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the rate adaptation mechanism in cellular networks such as
using different coding or modulation mechanisms3 and we can
make the auction cycle longer to tradeoff overhead reduction
for performance reduction, and the bids are about the average
channel quality.

Regarding to the overhead introduced by this system, it is
small. First, the communication of the bids are small control
messages, and takes very little time to exchange. Such a
communication only happens at the beginning of the auction
cycle. In a stable environment, after a short time to establish
the channel selection, the transmission can last for a while.
In a highly dynamic environment, it is possible that the
channel changes to a different state after or even during the
small control messages exchange. However, in such a rapidly
changing environment, it would certainly be very challenging
to have an optimal solution. The auction cycle duration can
be optimized but this is outside of the scope of this study.
Second, since the system is about a multi-carriers scenario,
it requires a good design and deployment of control signaling
channels for efficient data transmission control and the overall
system performance, we adapt the approaches proposed in
carrier aggregation [35]. For example, in LTE/LET-Advanced
systems, with a minor modification of the contritol structure
in LTE systems, each carrier can have its own coded control
channel [35], [36].

VIII. SIMULATIONS

In this section we first present the convergence of data rate
efficiency for the worst case setting, then we use a data set
of real BS locations over an 2km× 2km area in London to
conduct two sets of simulations: the single operator contract
model (SOCM) and our proposed auction model (AM). The
transmission in this simulation is time slotted: at each slot,
the transmission will fail with the corresponding probability.
In practice, we can also use mt

mr
to approximate p, where mt

is the amount of data allocated and mr is the amount of data
received. For bidding i, the expected payment will be kip +
li = ki

mt
mr

+ li.

A. Worst Case Data Rate Efficiency

We consider the two carriers model; each carrier knows its
channel parameter. To show the effectiveness of the multiple-
bit bids, we use a simplified power-rate allocation model, in
which either the full power is allocated to a single channel, or
equally split between two channels. We use the possible data
rate of LTE network and select R0 = 50, R1 = 3500, R2 =
6144 in the unit of Kb/slot as our rate parameters [38]. R0

is a conservative rate given half of the power is allocated to
the channel; R1 is an aggressive rate given half of the power,
and R2 is a very aggressive rate given the full power. We
consider the whole probabilities range is divided into [0, R0

R1
],

3In current cellular network, a mobile device typically uses one channel
at a time, while our work supports transmitting over multiple channels
simultaneously.

Table I: Worst Case Data Rate Efficiency

Bits 1 2 3 4 5 6 7 8
Worst η 0.58 0.60 0.62 0.67 0.75 0.84 0.94 0.96

and small equally-divided intervals 4of [R0

R1
, 1]. We select the

worst data rate efficiency η among all possible probabilities
setting with increased number of bits per bid. The result is
shown in Table I. We can see that the worst case data rate
efficiency η converges to 1 with increased number of bits per
bid.

B. Performance Evaluation

In this section, we evaluate the performance of our proposed
aucion model by comparing it with the commonly used single
operator contract model. We use the data set from Ofcom’s
Sitefinder [37], and obtain precise coordinates of BSs from
two major operators over an 2km × 2 km area in London as
shown in Fig. 9. There are 158 BSs (marked as blue) from
Operator 1 and 128 BSs from Operator 2 (marked as red). We
evaluate the mobile device’s throughput as well as the carriers’
net profit.

Figure 9: 2km × 2km view of the BS deployment by two major
cellular operators over an area in London

1) Channel and Power-Rate Model: We use the simple path
loss model with log-normal shadowing and fading to model
the channel. The received power in the unit of dB can be
obtained from the following equation:

Pr = Pt+ L− 10ηlog(
d

d0
) + ψ,

where Pt is the transmission power, L is a constant, η is the
path loss exponent, and ψ is the log-normal shadowing and
fading, ψ ∼ N(0, σ2) in the unit of dB . We set Pt = 24dB,
L = −34dB, η = 3.5, d0 = 1m, and σ = 10 in our
simulation.

4For two carrier, equally-split power scenario, R0
R1

acts as a threshold.

Take a single-bit bid as an example, when channel probability p < R0
R1

,

the dominant strategy for a carrier is to bid low, and when p > R0
R1

, the
dominant strategy is to bid high. More details can be found in reference [34].
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We assume the noise power is N = −100dB, and ignore the
interference from mobile devices in neighboring cells. We use
signal to noise ratio (SNR) to measure the receiving signal’s
quality.

SNR = Pr −N = 90− 35log(d) + ψ.

We assume SNR outage capacity SNRoutage = 10dB.
When SNR ≥ SNRoutage, we consider the channel is in state
high, otherwise, the channel is in state low. The probability
that a channel is in state high is

p = p(SNR > SNRoutage).

As to the power-rate model, We assume the total power is
1, and use the following equations:

fl = 10log(1 + 100P )

fh = 10log(1 + 2P ).

2) Single Operator Contract Model vs Auction Model:
SOCM is the commonly used model nowadays. In this model,
each transmitter contracts with a single carrier and is only
allowed to connect to a single BS from the carrier it is bound
to. Since the transmitter allocates all power to a single channel,
plug P = 1 in fl and fh, we get rates Rl = 11, and
Rh = 46 in the unit of kb/slot. When p < 11

46 , the transmitter
transmits with rate Rl, otherwise, with rate Rh. We sample 100
customers from Operator 1 and 100 customers from Operator
2 located uniformly at random in this area. The payment to the
carriers is proportional to the amount of the transmitted data.
We assume that it is 10−4 in the unit of $/kb ($10 for 1 Gb
data). Consequently, the payment is u = 10−4Rx in the unit
of $/slot. AM is our proposed model. In this evaluation, we
consider K = 2 case. We sample 200 customers placed at the
same random locations as in the single carrier contract model
and use 8-bit bids: the whole probability range are evenly
divided into 28 smaller intervals; the payment is based on
f(p) = 1.1p−1 × 10−4Rx (p ∈ [0, 1]) in the unit of $/slot.

The simulation results are shown in Table II. We can see
that our proposed model provides a win-win strategy to solve
the wireless bandwidth thirst problem. The average throughput
of a transmitter almost doubles while paying less per byte,
and the operators make more revenue due to more potential
customers and more efficient use of the spectrum by mainly
serving the nearby mobile devices.

Note that the actual contract adopted in practice may depend
on other market factors, but these examples show the overall
benefit of carrier flexibility to both users (in terms of increased
throughput and possibly reduced marginal cost) and operators
(in terms of increased profit). We believe that the gain can be
even more significant in future wireless system with greater
carrier diversity and higher traffic.

IX. CONCLUSION

We have presented and investigated a competitive rate
allocation game in which multiple selfish carriers compete
to carry data from a transmitter in exchange for a payment.

We have shown that even if the transmitter is unaware of the
stochastic parameters of the channels, it can set rewards and
penalties in such a way that the carriers’ strategic bids yield an
expected total rate that is close to the best possible expected
total rate. The payment is designed according to a convex
piecewise linear function; this design gives the incentive for
the carriers to bid truthfully. With this design, even the worst
case data rate efficiency from the transmitter’s point of view
converges to 1 for a large number of bits. Through simulations,
we have compared our proposed model with the commonly
used single carrier contract model, and have shown that our
proposed model could be beneficial to both the mobile users
as well as the operators.

Future work includes a more exact characterization of the
data rate efficiency for a given number of bits, the optimal
division of small intervals, and exploring more applications
using this framework.
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