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Centralized minimax control
Mukul Gagrani and Ashutosh Nayyar

I. SYSTEM MODEL

Consider a centralized minimax control problem for a finite time horizon of T . The state dynamics are given as

Xt+1 = ft(Xt, Ut,Wt), (1)

where Ut ∈ Ut is the control action and Wt ∈ Wt is the input disturbance. The initial state X1 is assumed to lie in the set
X1. The controller has observations of the following form

Yt = ht(Xt, Vt), (2)

where Vt ∈ Vt is the measurement noise. We assume that all the variables take values in finite sets.
Define Q = (X1,W1:T−1, V1:T−1) to be the vector of all the uncertainity in the system. We assume that all the components

of Q are independent in the sense that Q takes value in the product set Q = X1 ×W1 × · · ·WT−1 × V1 × · · · × VT−1. The
information available to the controller at time t is Y1:t, U1:t−1. The controller maps this information to the control action at
time t as follows:

Ut = gt(Y1:t, U1:t−1). (3)

The collection g = (g1, . . . , gT ) is called the control strategy. The cost incurred by a control strategy g is given as

J(g) = max
q∈Q

c(XT ). (4)

The objective is to find the control strategy g∗ which minimizes (4).

Consider a realization y1:t, u1:t−1 of the controller’s information at time t. Define Q̂(y1:t, u1:t−1) to be the set of all vectors
q ∈ Q which are consistent with y1:t, u1:t−1 i.e. q belongs to Q̂(y1:t, u1:t−1) if and only if q ∈ Q and the vectors q, y1:t, u1:t−1

together satisfy the system and measurement equations (1), (2) for all times until t. Similarly, define Ŷt+1(y1:t, u1:t−1, ut) to
be the set of all feasible values of Yt+1 given that the realization of controller’s information at time t is y1:t, u1:t−1 and ut is
the action taken at time t. Then, [1] shows that the optimal strategy g∗ is given by the following dynamic program.

Lemma 1. Define

VT (y1:T , u1:T−1) = max
q∈Q̂(y1:T ,u1:T−1)

c(XT ), (5)

Vt(y1:t, u1:t−1) = min
ut∈Ut

max
yt+1∈Ŷt+1(y1:t,u1:t−1,ut)

Vt+1(y1:t, u1:t−1, yt+1, ut), t = 1, . . . , T − 1. (6)

The minimizing ut in (6) is the optimal action when controller’s information is y1:t, u1:t−1.

In the case of terminal cost problem, the value functions can be written as functions of the set of feasible values of the
current state Xt consistent with the current information [1]. Define the state uncertainty set Πt(y1:t, u1:t−1) as the set of all
possible values of the state Xt consistent with the information y1:t, u1:t−1. For brevity, we write Πt(y1:t, u1:t−1) as Πt when
the realization of information is clear from the context. The time evolution of the state uncertainty sets is characterized by the
following lemma.

Lemma 2. The state uncertainty set Πt+1 at time t+ 1 can be derived using Πt, yt+1 and ut i.e.

Πt+1 = Φt(Πt, yt+1, ut). (7)

Proof. Given Πt, ut we know that any feasible value of x of Xt+1 must satisfy (1) for some wt+1 ∈ Wt+1 and xt ∈ Πt. Also,
after receiving the observation yt+1 at time t+ 1 we can refine our belief on Xt+1 and construct Πt+1 as follows:

Πt+1 = {x : ht+1(x, v) = yt+1, x = ft(xt, ut, w), for somext ∈ Πt, w ∈ Wt+1, v ∈ Vt+1}. (8)

From the above equation it is straightforward to conclude that Πt+1 is a transformation of Πt, yt+1, ut and hence we can write
Πt+1 = Φt(Πt, yt+1, ut).
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Now, we can state the result which simplifies the dynamic program of [1] by specifying the value functions in terms of the
state uncertainty set Πt.

Theorem 1. The dynamic program in Lemma 1 can be simplified to the following: For each possible state uncertainty set πt,
t = T, T − 1, . . . , 1, define

VT (πT ) = max
xT∈πT

c(xT ) (9)

Vt(πt) = min
ut∈Ut

max
yt+1∈Ŷt+1(πt,ut)

[Vt+1(Φt(πt, ut, yt+1))], t = 1, . . . , T − 1, (10)

where Ŷt+1(πt, Ut) = {y : y = ht+1(ft(xt, ut, w), v) for some xt ∈ πt, w ∈ Wt+1, v ∈ Vt+1}. A minimizing ut in (10) is an
optimal action when the state uncertainty set is πt.

Proof. Let πt be the state uncertainty set corresponding to the realization y1:t, u1:t−1. Using the results of [1] it is clear that
the value functions can be written as a function of πt. In the maximization problem in (5), each q ∈ Q̂(y1:T , u1:T−1) produces
an xT ∈ πT . Conversely, in the maximization problem of (9), each xT ∈ πT is produced by some q ∈ Q̂(y1:T , u1:T−1).
Therefore, (5) and (9) are equivalent.

Proceeding inductively, assume that Vt+1(y1:t+1, u1:t) = Vt+1(πt+1), where πt+1 is the state uncertainty set correspond-
ing to the realization y1:t+1, u1:t. Now, in order to show the equivalence of (6) and (10) we need to show that the sets
Ŷt+1(y1:t, u1:t−1, ut) and Ŷt+1(πt, ut) are equal. Let y ∈ Ŷt+1(y1:t, u1:t−1, ut). This implies there exists wt+1 ∈ Wt+1,
vt+1 ∈ Vt+1 and a xt consistent with y1:t, u1:t−1 which together with y satisfy (1) and (2) for time t+ 1. Also, xt consistent
with y1:t, u1:t−1 implies that xt ∈ πt. Therefore y ∈ Ŷt+1(πt, ut) and hence

Ŷt+1(y1:t, u1:t−1, ut) ⊂ Ŷt+1(πt, ut). (11)

Next consider y ∈ Ŷt+1(πt, ut). Thus there exists a xt ∈ πt, , wt+1 ∈ Wt+1 and vt+1 ∈ Vt+1 which together with y satisfy (1)
and (2) for time t+ 1. Also, xt ∈ πt implies that xt is consistent with the information y1:t, u1:t−1. Therefore, y is a feasible
value of Yt+1 given the information y1:t, u1:t−1 and the control action ut. Therefore, y ∈ Ŷt+1(y1:t, u1:t−1, ut) and hence

Ŷt+1(πt, ut) ⊂ Ŷt+1(y1:t, u1:t−1, ut). (12)

Using (12) and (11), Ŷt+1(πt, ut) = Ŷt+1(y1:t, u1:t−1, ut) which concludes the proof.

II. ALTERNATE OBSERVATION MODEL

Consider a centralized minimax problem with the model of Section I but instead of (2), the observations are given as follows

Yt = ht(Xt−1, Ut−1) (13)

The problem is to obtain the control strategy g∗ which minimizes the worst case cost (4).

Define an extended state X̃t as

X̃t =

 Xt

Xt−1

Ut−1

 (14)

The time evolution of X̃t is given as

X̃t+1 =

 Xt+1

Xt

Ut

 =

 ft(Xt, Ut,Wt)

Xt

Ut

 = f̃t(X̃t, Ut,Wt) (15)

We can write the observation equation in terms of the extended state as

Yt = ht(Xt−1, Ut−1) = h̃t(X̃t) (16)

The cost incurred by the control strategy g can be redefined as

J(g) = max
X1,{Wt}T−1

t=1

c(XT ) = max
X1,{Wt}T−1

t=1

c̃(X̃T ) (17)
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The strategy optimization problem is now an instance of the problem of Section I with X̃t as the state of the system.
Hence, we can apply the result of Theorem 1 to characterize the optimal control strategy. For a realization y1:t, u1:t−1 of the
controller’s information at time t, the state uncertainty set of the extended state X̃t is

Π̃t =

{
x̃t | ∃ x1 ∈ X1, w1:t−1 ∈

t−1∏
j=1

Wj ,

such that yk = h̃k(x̃k) 1 ≤ k ≤ t

x̃k+1 = f̃k(x̃k, uk, wk), 1 ≤ k ≤ t− 1

}
Let Πt be the set of values of the original state Xt consistent with y1:t, u1:t−1.

Define a mapping P such that

P

 Xt

Xt−1

Ut−1

 = Xt.

Lemma 3. The state uncertainty set Πt of the state Xt and Π̃t of the extended state X̃t are related as

Πt = P(Π̃t) (18)

Proof. This follows straight from the definition of X̃t, Π̃t,Πt.

From Section 1, we know that time evolution of Π̃t is given as Π̃t+1 = Φ̃(Π̃t, yt+1, ut) for an appropriate transformation Φ̃

which is characterized using Lemma 2. Hence, using Theorem 1 we can write the dynamic program to compute the optimal
control strategy as follows

ṼT (π̃T ) = max
x̃T∈π̃T

c̃(x̃T ) (19)

Ṽt(π̃t) = min
ut∈Ut

max
yt+1∈Ŷt+1(π̃t,ut)

[Ṽt+1(Φ̃(π̃t, ut, yt+1))], t = 1, . . . , T − 1, (20)

where
Ŷt+1(π̃t, ut) = {y : y = h̃t+1(f̃t(x̃t, ut, wt)) for some x̃t ∈ π̃t, wt ∈ Wt}. (21)

A minimizing ut in (20) is an optimal action when the uncertainty set of the extended state is π̃t.
We will now show that the above dynamic program in terms of the uncertainty set of the extended state can be transformed

into an equivalent dynamic program in terms of the uncertainty set of the original state Xt. The next two lemmas will be
useful in the subsequent derivation of the main result.

Lemma 4. There exists a transformation Φ̆ such that P(Φ̃(π̃t, yt+1, ut)) = Φ̆(P(π̃t), yt+1, ut).

Proof. Let P(π̃t) = πt.

P(Φ̃(π̃t, yt+1, ut)) = {P(x̃)|h̃t+1(x̃) = yt+1, x̃ = f̃t(x̃t, ut, wt), x̃t ∈ π̃t, wt ∈ Wt}
= {P(x̃)|ht+1(P(x̃t), ut) = yt+1, x̃ = f̃t(x̃t, ut, wt), x̃t ∈ π̃t, wt ∈ Wt}
= {P(x̃)|ht+1(P(x̃t), ut) = yt+1, x̃ = (ft(P(x̃t), ut, wt),P(x̃t), ut), x̃t ∈ π̃t, wt ∈ Wt}
= {P(x̃)|ht+1(xt, ut) = yt+1, x̃ = (ft(xt, ut, wt), xt, ut), xt ∈ P(π̃t), wt ∈ Wt}
= {x|ht+1(xt, ut) = yt+1, x = ft(xt, ut, wt), xt ∈ πt, wt ∈ Wt}
=: Φ̆(πt, yt+1, ut).

Lemma 5. For πt = P(π̃t), define Y̆t+1(πt, ut) = {y|y = ht+1(xt, ut) for some xt ∈ πt}. Then, Ŷt+1(π̃t, ut) = Y̆t+1(πt, ut).

Proof. From (21),

Ŷt+1(π̃t, ut) = {y : y = h̃t+1(f̃t(x̃t, ut, wt)), x̃t ∈ π̃t, wt ∈ Wt}
= {y : y = ht+1(P(x̃t), ut), x̃t ∈ π̃t}
= {y : y = ht+1(xt, ut), xt ∈ πt}
= Y̆t+1(πt, ut).
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We can now write the dynamic program of (19) and (20) in terms of πt instead of π̃t.

Theorem 2. Define the functions Vt(πt) as

VT (πT ) = max
xT∈πT

c(xT ) (22)

Vt(πt) = min
ut∈Ut

max
yt+1∈Y̆t+1(πt,ut)

[Vt+1(Φ̆(πt, ut, yt+1))], t = 1, . . . , T − 1 (23)

Then,
Ṽt(π̃t) = Vt(πt), 1 ≤ t ≤ T (24)

where πt = P(π̃t). Further, a minimizing ut in (23) is an optimal action when the state uncertainty set is πt.

Proof. The proof follows by induction. For t = T ,

ṼT (π̃T ) = max
x̃T∈π̃T

c̃(x̃T )

= max
x̃T∈π̃T

c(P(x̃T )) = max
xT∈P(π̃T )

c(xT ) (25)

= max
xT∈πT

c(xT ) = VT (πT ), (26)

where (25) follows from the definition of c̃(·).
Now, let (24) be true for t+ 1. Then using the definition (20),

Ṽt(π̃t) = min
ut∈Ut

max
yt+1∈Ŷt+1(π̃t,ut)

Ṽt+1(Φ̃(π̃t, ut, yt+1))

= min
ut∈Ut

max
yt+1∈Ŷt+1(π̃t,ut)

Vt+1(P(Φ̃(π̃t, ut, yt+1))) (27)

= min
ut∈Ut

max
yt+1∈Y̆t+1(πt,ut)

Vt+1(Φ̆(πt, ut, yt+1)) = Vt(πt), (28)

where (27) follows from the induction hypothesis and (28) follows from Lemmas 4 and 5. Hence, (24) is true by induction.
It also follows that the minimizing values of ut in (20) and (23) are the same.
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