

Accelerating Equi-Join on a CPU-FPGA

Heterogeneous Platform

Ren Chen, Viktor Prasanna

Computer Engineering Technical Report Number CENG-2015-11

Ming Hsieh Department of Electrical Engineering – Systems

University of Southern California

Los Angeles, California 90089-2562

01 2016

Accelerating Equi-Join on a CPU-FPGA
Heterogeneous Platform

Ren Chen and Viktor K. Prasanna
Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, USA 90089

Email: {renchen, prasanna}@usc.edu

Abstract—Accelerating database applications using FPGAs
has recently been an area of growing interest in both academia
and industry. Equi-join is one of the key database operations
whose performance highly depends on the performance of sorting.
However, as the data sets grow in scale, the database primitive
sorting exhibits high memory usage on FPGA. A fully pipelined
N -key merge sorter consists of logN sorting stages using O(N)
memory totally. For sorting large data sets, external memory has
to be employed to perform data buffering between the sorting
stages after exhausting FPGA memory resource. This introduces
pipeline stalls as well as several data communication iterations
between FPGA and external memory, thus causing significant
performance decline. In this paper, we speed-up equi-join using
a hybrid CPU-FPGA heterogeneous platform. To alleviate the
burden of memory usage for sorting, we propose a merge sort
based hybrid design where the first few sorting stages in the merge
sort tree are replaced with “folded” bitonic sorting networks.
These “folded” bitonic sorting networks work in parallel on the
FPGA. The partial results are then merged on the CPU to produce
the final sorted result. Based on this hybrid sorting design, we
develop two streaming join algorithms, which are tailored to
the target hybrid platform by optimizing the classic CPU-based
nested-loop join and sort-merge join algorithms. On a range of
data set sizes, our design achieves high throughput and performs
3.1x better than software-only and 1.9x better than accelerator
only implementations. Our design sustains 21.6% of the peak
bandwidth, which is 3.9x utilization obtained by the state-of-the-
art FPGA equi-join implementation.

Keywords—Database Operation, Heterogeneous Platform,
Hardware Acceleration, CPU-FPGA, Sorting, Join, Selection

I. INTRODUCTION
To meet the demand for analysis of ever-increasing data set

brought by the Big Data trend, accelerating database operations
in memory with high-performance is of vital importance [1],
[2]. With potential for breakthrough performance, FPGAs have
recently become an attractive option to accelerate database
applications [1], [2], [3], [4], [5]. State-of-the-art FPGAs offer
high operating frequency, massive parallelsim, unprecedented
logic density and a host of other features [6]. Several recent
work for accelerating in-memory database operations have
been proposed on FPGA platforms [3], [4], [7], [8]. Their
results show that reconfigurable logic for accelerating database
applications is performance-competitive with multi-core CPUs
and GPGPUs. However, as the data set size scales up, the hard-
ware implementation of database primitives such as sorting
easily drains the FPGA memory resource. A fully pipelined N -
key merge sorter consists of logN cascaded merge sort stages
requiring a(few) data buffer(s) between each two consecutive
merge sort stages, thus consuming O(logN) independent
memory blocks with O(N) memory totally. For sorting large
data set up to the GB range, this memory requirement easily

This work has been funded by US NSF under grant CCF-1018801.
Equipment grant from Xilinx, Inc. is gratefully acknowledged.

exceeds the capability of most of the state-of-the-art single
FPGA devices [6]. Fig. 1 shows the throughput performance of
FPGA-only sorting approach in [3] with growing input size. To
process large data set, as FPGA fails to hold intermediate data
on-chip, more data loading and offloading iterations (passes)
have to be performed between FPGA and external memory.
This causes pipeline stalls as well as significant throughput
performance decline, as shown in Fig. 1.

Fig. 1: Throughput of FPGA-only sorting in prior work [3]

As accelerators continue to raise the bar for both per-
formance and energy efficiency, a recent emerging hardware
trend is to incorporate dedicated hardware such as FPGA
into high performance computing system [5], [9], [10], [11].
These emerging heterogeneous architectures promise massive
parallelism by offering continuing advances in hardware accel-
eration through FPGA technology. The customized advancing
high bandwidth and low latency interconnections also make the
communication between CPU and FPGA more efficient [9],
[10]. Most previous database operation accelerating solutions
are developed for a single computational resource [3], [7], [8],
[12], [13], [14]. In this paper, we show how to accelerate
database operations on a heterogeneous platform using both
CPU and FPGA. A key idea in this paper is to alleviate the
memory burden of sorting on FPGA by developing a hy-
brid CPU-FPGA based sorting design. Parallel bitonic sorting
network based accelerators with flexible data parallelism are
developed to exploit the massive parallelism on FPGA. Merge
sort tree based design with less computation load is employed
on the CPU. A decomposition-based task partition approach
is proposed to partition the input data set into several sub
data sets sorted by FPGA accelerators in parallel, and then the
partial results are merged on the CPU. Based on the hybrid
sorting design, we develop two streaming join algorithms by
optimizing the classic CPU-based nested loop join algorithm
and sort-merge join algorithm. Experimental results show that
our proposed join algorithms achieve significant performance
improvement compared with CPU-only and FPGA-only join
implementations for large data sets. Contributions of this work
are:

• A hybrid sorting design avoiding the repeated FPGA-
DRAM data loading and offloading iterations.

• A decomposition based task partition approach ex-
ploiting parallel FPGA accelerators and CPU.

• Streaming join algorithms on a CPU-FPGA hetero-
geneous platform delivering high throughput perfor-
mance for large data sets.

• Demonstrate significant improvement in throughput
performance of the proposed join design compared
with CPU-only design and FPGA-only design.

• Detailed system implementation achieving optimized
DRAM bandwidth utilization compared with state-of-
the-art FPGA equi-join implementation.

II. BACKGROUND AND RELATED WORK
A. Join

Join is one of the most fundamental database operator for
relational database management system [15]. The execution
of join operation is potentially very expensive, and yet it is
almost required in all practical queries. In join operation, cross
product of payload values needs to be generated when there
are duplicate matching keys. In this paper, we are focused on

LevelVR
ID

d10

e20

f10

10 Jim

20 Ryan

VR Level

d10

f10

e20

VS

Jim

Jim

Ryan

R S

VS

R equi-join VR=VS S

ID

10

10

20

Fig. 2: Equi-join operation

equi-join, which is a specific type of comparator-based join
using only equality comparisons in the join-predicate. Figure 2
depicts the essence of equi-join operation. Tuples in R and
S are joined to form a new tuple if the attribute value VR
in R is equivalent to the attribute value VS in S. The well
known algorithms for join include sort-merge join, nested-
loop join and hash join [15]. The sort-merge join algorithm
can be realized by the sequential execution of sorting, merge-
join, and selection operations, described as below: 1) Sorting:
given an unsorted data sequence, rearrange the data elements
so that the output sequence is in either increasing or decreasing
order. 2) Merge-join: given two sorted sequences of fixed-
width keys with associated payload values, obtain an output
sequence including all the keys that the two sequences have in
common, with the payload values. 3) Selection: given a column
of data elements stored as an array of equal data width and
bit masks of selected elements, the data output are selected
elements based on the bit masks.

Without performing the sorting, the nested-loop join al-
gorithm joins two data columns by using two nested loops
for scanning and merge-join. Block nested-loop join is an
improved version of the nested-loop algorithm reducing the
memory access cost [15]. Hash join is similar with nested-
loop but uses join attributes as hash keys in both R and S.

B. Sorting
The most time consuming part (≥ 90% in software imple-

mentation) of sort-merge join is the sorting [16]. Therefore,
the sort-merge join performance highly depends on the per-
formance of sorting. Implementing sorting using hardware or
software has been and will continue to be an active research
area [3], [7], [8]. The well known sort merge tree based

FPGA

Memory Interface

CPU

Bitonic Sorter 1

Bitonic Sorter 2

Bitonic Sorter k

...

Merge sort tree

Main memory

Memory

Interface

Other I/O device

k
 n

o
d

es

a
t

th
e

b
o
tt

o
m

Interface

Fig. 3: Hybrid Sorting Design

.
.

>

<
.or

1

0

1

0

(a)

...

(b) (c) (d)

Fig. 4: (a) Compare-and-switch (CAS) unit, (b) Data buffer,
(c) Connection network, (d) Parallel-to-serial/serial-to-parallel
MUX (PS/SP)

algorithm sorts an n-key data sequence in log n steps using
O(n log n) operations. The software implementation of merge
sort tree algorithm has been proved efficient [1]. However, at
every merge stage, for each data element it will be either kept
at current stage or spit out depending on the comparison result,
this control-intensive process prevents this algorithm being par-
allelized in hardware. Another disadvantage of sort merge tree
based hardware accelerator is that the throughput performance
highly depends on the values of the input data. Thus a high
throughput is not always sustained. Compared with sort merge
tree, bitonic sorting network can be built with much higher data
parallelism and lower control overhead, thus widely employed
in hardware implementations [7], [8]. Bitonic sorting network
is well known as a parallel comparison-based sorting network.
It can be built using (log n)(log n + 1)/2 stages of parallel
comparators, each stage contains n/2 comparators, for sorting
n-key data sequence [17]. Recent research work shows this
parallel sorting network can be employed in hardware imple-
mentation using FPGA to better utilize memory bandwidth [7].
In this paper, we propose a hybrid sorting design using bitonic
sorting network based hardware accelerators and sort merge
tree based software implementation.

III. HYBRID DESIGN FOR SORTING

Fig 3 shows the overview of our proposed merge sort based
hybrid sorting design where the first few sorting stages in
the merge sort tree are replaced with “folded” bitonic sorting
networks, each is implemented as an FPGA accelerator named
as a bitonic sorter. k such bitonic sorters work in parallel on
FPGA, the partial results from FPGA are then merged on CPU
using merge sort tree based implementation.

A. High Throughput Bitonic Sorter on FPGA
The bitonic sorter consists of four building blocks (Fig.4):

compare-and-switch (CAS) unit, data buffer, connection net-
work, and parallel-to-serial/serial-to-parallel (PS/SP) multi-
plexer. A complete design is obtained by a combination of
the basic blocks.

2

X3 X6 X9 X12

X2 X5 X8 X15

X1 X4 X11 X14

X0 X7 X10 X13

Data output in parallel

X3 X7 X11 X15

X2 X6 X10 X14

X1 X5 X9 X13

X0 X4 X8 X12

X12 X13 X14 X15

X8 X9 X10 X11

X4 X5 X6 X7

X0 X1 X2 X3

 0 1 2 3

Output Cycles
0 1 2 3 0 1 2 3

Input Cycles Memory entries

C
o

n
n

e
c
tio

n
 n

e
tw

o
r
k

C
o

n
n

e
c
tio

n
 n

e
tw

o
r
k

Fig. 5: Data permutation in the data buffers for 16-key sorting

C
A

S
 U

n
it

s

…

In
p

u
t

O
u

tp
u

t

Stage 1 Stage 2 Stage (log n)(log n+1)/2

…… …

C
o

n
n

e
ct

io
n

 n
et

w
o
r
k

C
o

n
n

e
ct

io
n

 n
et

w
o
r
k

C
A

S
 U

n
it

s

…… …

C
o

n
n

e
ct

io
n

 n
et

w
o
r
k

C
o

n
n

e
ct

io
n

 n
et

w
o
r
k

C
A

S
 U

n
it

s

…… …

C
o

n
n

e
ct

io
n

 n
et

w
o
r
k

C
o

n
n

e
ct

io
n

 n
et

w
o
r
k

Control Unit Control Unit Control Unit…

m

Fig. 6: A fully pipelined high throughput bitonic sorter

1) CAS unit: This module compares two input values and
switch the values either in ascending or descending order
depending on the control bit value. Each CAS unit is pipelined
using flip-flops. To implement an n-input “folded” bitonic
sorting network, log n(log n + 1) cascaded stages of CAS
units are required. Each stage consists of m/2 CAS units.
m is the data parallelism denoted as the number of parallel
inputs/outputs per cycle. The data permutation between adja-
cent subsequent stages of CAS units is performed through the
modules including the connection network and data buffers.

2) Data buffer: Each data buffer consists of a dual-port
RAM having n/m entries. Data is written into one port and
read from the other port simultaneously. Fig. 5 shows the
data buffering process for sorting 16 keys. In four cycles, 16
permuted data inputs are fed into the data buffers. In each
cycle, with alternating locations, four data outputs are read
in parallel. For different n value, the read and write addresses
are generated with different strides. In Fig. 5, X0, X4, X8, X12

are written in input cycle 0, 1, 2, 3 respectively. Then they are
output simultaneously in output cycle 0.

3) Connection network: Parallel input data are required
to be permuted before being processed by the subsequent
modules. The connection network is implemented based on
our prior work on data permutation in [18]. As shown in
Fig. 5, in input cycle 0, (X0, X1, X2, X3) are fed into the
first entry of each data buffer without permutation. In the next
cycle, another four data inputs are written into the second entry
of each data buffer with one location permuted. The parallel
output data (Xi, Xi+4, Xi+8, X(i+12)mod16, i = 0, 1, 2, 3) are
stored in different RAMs after four cycles.

4) PS/SP module: This module is used to multiplex se-
rial/parallel input data to output in parallel/serial respectively.
For example, when the number of I/Os is limited to one, but
the CAS units operate on four data inputs in parallel, thus the
PS/SP module is employed to match the data rate both before
and after the CAS units.

Fig. 6 shows a fully pipelined high throughput sorting
architecture built using the architectural building blocks intro-
duced above. In the figure, n is the input size; m determines
the number of parallel inputs/outputs. The input data sequences

“Work”

w11 wlk
…

A1 Ak

General Purpose Processors

w1k w2k
…w21

... wl1
…

…

… … … …

A1 Ak
… A1 Ak

…

… … …

r11 rk1
… r12 rk2

… r1l rkl
…

… … …

…

…

Fig. 7: Decomposition based task partition approach

can be fed into the sorter continuously in a streaming man-
ner at a fixed rate. After a specific delay, the sorted data
sequences are output at the same rate. As a bitonic sorter
has (log n)(log n + 1)/2 stages of data buffers, the latency
introduced by all the data buffers can be calculated by

T (n,m) =

logn−1∑
i=logm

(

i∑
j=logm

2j+1

m
+

2i+1

m
) (1)

which is (6(n − m) − 2 log(n/m))/m. The factor 2j+1 or
2i+1 indicates the size of a data buffer. As the total latency
introduced by all the CAS units and connection networks is
O((logm) log2 n), the entire latency of the bitonic sorter is
O(n/m) (1 ≤ m ≤ n).
B. Decomposition-based Task Partition Approach

In this section, we present a decomposition-based approach
for task-partition in our hybrid design for sorting. Assuming k
fully pipelined bitonic sorters are implemented on FPGA for
sorting, our task partition approach is described as follows:

1) Decompose: partition the N -key data set (“work”) into
N
nk groups of subtasks, each group has k subtasks. Let l denotes
N
nk . Each subtask is to sort n keys using a bitonic sorter. Each
subtask is denoted using wij (1≤i≤l, 1≤j≤k).

2) Accelerate: distribute the subtasks wij to the bitonic
sorters denoted as A1, ..., Ak. A bitonic sorter Ap (1≤p≤k)
handles l subtasks including wip (1≤i≤l). All the bitonic
sorters work on the subtasks in parallel. As each bitonic sorter
is fully pipelined, all its assigned l subtasks are processed
continuously without any stalls.

3) Merge: For bitonic sorter Ai, its data results are
represented as ri1, ..., ril, which are produced sequentially in
a streaming manner. These sorted data sequences are then
transferred from the FPGA to external memory. The rest work
to obtain a complete sorted data sequence will be handled by
the CPU based on sort merge tree algorithm.

Figure 7 shows the basic idea of the proposed task parti-
tioning approach. To sort N (divisible by n) keys using our
hybrid sorting design, each bitonic sorter sorts l = N/(nk) n-
key data sequences in a streaming manner. Theoretically, the
throughput of each bitonic sorter can be calculated as:

Th =
nl

2nl/m+ 6n/m
=

m

2 + 6/l
(2)

where 2nl/m is the number of input and output cycles, 6n/m
is the number of cycles to fill the pipeline, obtained through
approximation of Equation 1. We fix n in our hybrid sorting
design. n is chosen based on the amount of available memory
on FPGA. As a result, theoretically, as N is increased with
fixed values of n and k, Th finally approximates m/2. This
indicates that a high throughput can always be sustained
by the parallel bitonic sorters with increasing data set size.
After FPGA acceleration, the rest of the computation task

3

Algorithm 1 Streaming Sort-Merge Join Algorithm
1: procedure SSMJ
2: input: L.rij ,R.rij(1 ≤ i ≤ k, 1 ≤ j ≤ lL(lR)), keysel
3: output: L.rij ./ R.rij
4: Initialize: sL ← size of L, sR ← size of R, lL = sL/(kn) , lR =

sR/(kn), j = 0
5: while j < lL do . sorting Phase
6: if receive L.r1j , L.r2j , ..., L.rkj from FPGA then
7: then merge sort L.r1j , L.r2j , ..., L.rkj
8: L.r(:, j)← L.r1j , L.r2j , ..., L.rkj and j++
9: end if

10: end while
11: j = 0
12: while j < lR do
13: if receive R.r1j , R.r2j , ..., R.rkj from FPGA then
14: merge sort R.r1j , R.r2j , ..., R.rkj
15: R.r(:, j)← R.r1j , R.r2j , ..., R.rkj and j++
16: end if
17: end while
18: merge sort L.r(:, 1), L.r(:, 2), ..., L.r(:, lL)
19: merge sort R.r(:, 1), R.r(:, 2), ..., R.r(:, lR)
20: for i = 1 to sL/T do . merge-join and select
21: for j = 1 to sR/T do
22: call MJS(L.r(:, i),R.r(:, j),keysel)
23: end for
24: end for
25: end procedure

is shifted to CPU which performs O(N log N
n) operations

using merge sort tree algorithm. In FPGA-only approach, to
complete the final log N

n sorting stages, FPGA accelerator
has to visit external memory for O(log N

n) iterations, each
iteration loading 2n keys and offloading 2n merged keys.
Without high performance memory hierarchy in CPU platform,
these repeated iterations significantly lower the throughput
performance of the FPGA-only approach. However, as N/n
increases, the CPU execution time may become the perfor-
mance bottleneck in our hybrid design, especially considering
a lower memory bandwidth utilization for CPU. To resolve this
issue, we propose two streaming join algorithms in Section IV
by optimizing the classic CPU join algorithms to overlap the
CPU and FPGA computation. Experimental results of our join
design in Section VI-C4 show that about an average of 40%
of the execution time of FPGA is overlapped with the CPU
execution time.

IV. STREAMING JOIN ALGORITHMS
We develop two streaming join algorithms: streaming sort-

merge join (SSMJ) algorithm and streaming block nested loop
join (SBNL) algorithm. Both the two algorithms are valuable
in practical: SSMJ is applicable if the client query requires two
data columns to be joined and sorted; SBNL algorithm has less
computation workload if the client query is a join-only request.

Algorithm 2 Merge-Join and Selection (MJS)
1: procedure MJS
2: input: x, y, keysel
3: output: x ./ y
4: if (x.min > y.max) ‖ (x.max < y.min) then
5: return
6: end if
7: for each item u in x do
8: for each item v in y do
9: if u.key == v.key then

10: output u ./ v if u.key ∈ keysel
11: end if
12: end for
13: end for
14: end procedure

4) Streaming Sort-Merge Join (SSMJ): We assume two
input table columns with equal size need to be joined. The
data values of the table columns are represented using vectors
L and R. Sub-vectors of L and R are first sorted by the
bitonic sorters sequentially. The partial results produced by
FPGA will then be merged by the CPU, which also performs
the merge-join and selection operations on the sorted L and
R. Algorithm 1 shows our proposed algorithm. Notations in
Section III-B are reused to illustrate our algorithm. The sorted
data sequences from FPGA are denoted as L.rij and R.rij .
The size of L(R) is denoted as sL(sR). Assumes that the
size of each L.rij or R.rij is n. The k bitonic sorters will
produce k sorted data sequences in parallel, each of size n,
after every some specific delay. Once k sorted data sequences
have been sorted, the bitonic sorters will notify CPU so that
it can starts merging the k sorted data sequences immediately.
This merge sort process will firstly be performed on L.rij
and then R.rij as L and R are sorted by the bitonic sorters
sequentially. After that, the processor needs to further merge
the sorted subvectors including L.r:,1, L.r:,1, ..., L.r:,sL/k or
R.r:,1, R.r:,1, ..., R.r:,sL/k. Until now, both L and R have
been sorted based on the key values. After that, merge-join
and selection operations shown in Algorithm 2 are performed
on the CPU. We still use L and R to represent the sorted
inputs. L(R) is divided into sL/T (sR/T) sub-vectors denoted
as L(:, i)(R(:, j)). T is empirically selected in our experiments
depending on the cache size. In each loop iteration, two sub-
vectors are fetched, each having T data elements. If the two
sub-vectors have no key value overlap, the next iteration will
be executed. Otherwise, compare the key values of the two
sub-vectors and output the join result if a key is selected.

Algorithm 3 Streaming Blocked-Nested-Loop Algorithm
1: procedure SBNL
2: input: L.rij ,R.rij(1 ≤ i ≤ k, 1 ≤ j ≤ lL(lR)), keysel
3: output: L.rij ./ R.rij
4: constants: sL ← size of L,sR ← size of R
5: while !(finished all L.rij./ all R.rij) do
6: if interrupt received then
7: for j = 1 to lL do
8: for i = 1 to k do
9: if L.rij not received then

10: continue
11: else if finished L.rij./ all R.rij then
12: continue
13: else
14: for j′ = 1 to lR do
15: for i′ = 1 to k do
16: if done L.rij./ R.ri′j′ then
17: continue
18: else
19: x← L.rij , y ← R.ri′j′
20: call MJS(x,y,keysel)
21: end if
22: end for
23: end for
24: end if
25: end for
26: end for
27: end if
28: end while
29: end procedure

5) Streaming Blocked-Nested-Loop (SBNL): In this algo-
rithm, instead of completing sorting phase on CPU after
receiving intermediate results from FPGA in SSMJ algorithm,
we perform merge-join and selection operations immediately.

4

TABLE I: Key features of the ZedBoard

CPU core Dual ARM Cortex-A9, 666 MHz
CPU cache 32 KB L1D+L1I, 512 KB L2
DRAM and bandwidth 512 MB DDR3, ∼3.2 GB/s1

FPGA logic resource 85000 logic cells, 53200 slice LUTs
FPGA on-chip RAM 560 KB (BRAM)
1 Considering a 75% of memory controller efficiency [9]

Control Unit for

CAS

AXI HP0

Bitonic

Sorter

AXI HP1 AXI HP2 AXI HP3 GPIO

Control

Logic

HP0 HP1 HP2 HP3
GPIO

DRAM

Controller
L2 $

PS

PL

1
0
0

M
H

z

6
4
 b

its

1
0

0
M

H
z

6
4

 b
its

1
0
0

M
H

z

6
4
 b

its

1
0
0

M
H

z

6
4
 b

its

1
0

0
M

H
z

3
2

 b
its

Bitonic

Sorter

Bitonic

Sorter

Bitonic

Sorter

A
R

A
M

L
1

L
1

A
R

A
M

L
1

L
1

SSMJ
Merge sort

tree

Merge

join
Select

SBNL

Merge-join Select

Fig. 8: BLock diagram of the complete system design on Zynq
We use the same notations as in Algorithm 1. We evenly
distribute the sorting tasks to the k bitonic sorters; L and R
are sorted in parallel, each handled by k/2 bitonic sorters.
We assume L and R have equal size. Algorithm 3 shows
our proposed SBNL solution. Similarly, let the inputs of the
CPU be L.rij ,R.rij(1 ≤ i ≤ k, 1 ≤ j ≤ lL(lR)), which are
produced in a streaming manner by the FPGA accelerators.
Once k n-key data sequences have been sorted in parallel,
the bitonic sorters send an interrupt signal to the processor.
After the sorted k data sequences have been transferred to the
memory, the software checks if each L.rij has been received or
not using a table of size klL. For specific values of i and j, if
L.rij has been received, it will further check whether the join
operation has been performed between the L.rij and all R.ri′j′
using a flag, thus totally klL flag bits for all L.rij . If the flag
bit is zero, the MJS procedure introduced in Algorithm 2 will
be called using L.rij and R.ri′j′ as the input if this procedure
has not been performed on the two previously. The benefit of
using this algorithm is that, as L.rij and R.ri′j′ have been
sorted, we can check if the key value ranges of the two input
data vectors are not overlapped. If so, the merge-join phase
can be avoided thus saving time. Furthermore, the computation
for sorting using the bitonic sorters and the computation for
merge-join on the CPU can be further overlapped. As a result,
the overall computation latency can be reduced.

V. CPU-FPGA SYSTEM IMPLEMENTATION
We target the ZedBoard platform with Xilinx Zynq Z7020

as our experimental platform to implement our proposed join
design. Xilinx Zynq processor is a high performance low
power SoC architecture integrating general purpose CPU and
FPGA [9]. The key features of Zynq processor is shown in Ta-
ble I. The Zynq processor consists of two parts: programmable
logic (PL) and programmable system (PS) integrating ARM
CPU, on-chip interconnection and various peripherals [9].
A set of advanced extensible interface (AXI) interfaces are
available for the communication between PS and the PL logic.
Each AXI interface supports 32/64 bit full-duplex transaction,
such that total 8/16 bytes of data can be transferred through

AXI read and AXI write channels simultaneously. Fig 8 shows
the block diagram of our design for equi-join on Zynq.
A. Parallelization and throughput-balancing

We consider data feeding rate for throughput-balancing
purpose. The data feeding rate of a bitonic sorter is determined
by the clock frequency, data width and data parallelism. The
data feeding rate S of each bitonic sorter can be calculated as:

S = m× w × Fclock (3)
where m is the data parallelism defined in Section III-A,
w is the data width per data element, Fclock is the clock
operating frequency on FPGA. Throughput balancing can be
easily achieved once obtaining S. Assuming Fclock is 100
MHz, we attach one bitonic sorter to each of the four AXI HP
ports as shown in Fig 8, then the resulted total data feeding
rate is 3.125 GB/s. This ensures throughput balancing between
the DRAM and the bitonic sorters considering a total of 3.2
GB/s peak bandwidth achieved by the DDR3 DRAM on Zynq
if running at 1066 MHz [9]. The current DDR3 device has a
data bus width of 32-bit, and we can expect a higher bandwidth
when it is replaced with a 64-bit DDR device [19]. In this way,
more data parallelism on FPGA can be explored.
B. System control and data flow

The system starts from input phase by feeding data inputs
to the bitonic sorter continuously in a streaming manner. The
input data set is evenly partitioned to ensure the workloads of
the four bitonic sorters are balanced. The entire input data
set is read from DRAM by all bitonic sorters during the
input phase through AXI HP. Assuming data set size is N
and each bitonic sorter is capable of sorting n inputs, we
have k = 4 and each bitonic sorter handles N/4n sorting
subtasks in a streaming manner, each subtask is to sort n
inputs, as shown in Fig. 7. An AXI GP interface is enabled and
configured so that the processor can send control information
to or receive updates from the FPGA accelerators. To track the
current status of the N/4n sorting tasks assigned to a bitonic
sorter, a status bit vector of size N/4n is employed. For each
bitonic sorter, it updates its status bit vector through GP AXI
after finishing the current sorting subtask and completing the
corresponding data transfer process. The software engine on
the CPU always checks the values of the status bit vector
stored in the DRAM and starts either the merge sort tree
operation in SSMJ algorithm or the merge-join operation in
SBNL algorithm if any two new sorting subtasks have been
completed. Some other AXI related control interfaces such as
the central interconnect and memory switch are also employed
to ensure the correct system dataflow [9].
C. System implementation

We used the generated firmware by Xilinx Vivado toolset
for our target board. To avoid feedback loop between the CPU
and the FPGA, we implement the merge-join operation and
the selection operation in software, especially considering the
fact that the most time consuming part of join is sorting. We
implemented both the SSMJ and SBNL algorithms introduced
in Section IV on the platform. Detailed experimental results
of the two algorithms are presented in Section VI.

VI. EXPERIMENTAL RESULTS
A. Experimental Setup

All our designs were implemented on the Zedboard with
Xilinx Zynq SoC XC7Z020-CLG484-1 using Xilinx Vivado
14.4 [9]. To illustrate the benefit of our proposed design
approach, we report the performance of the hybrid sorting

5

1 2 3 4 5 6

20

40

60

On-chip memory consumption (Mbits)

T
hr

ou
gh

pu
t(

G
bi

ts
/s

)

Merge sort design [8]
Our design

Fig. 9: Performance comparison to merge-sort designdesign, as well as the performance of the system equi-join
design on the Zedboard. Each bitonic sorter can be optimized
to run at a maximum frequency of 180 MHz. We clocked
the bitonic sorters on the FPGA fabric at 100 MHz for the
sake of throughput balancing in our system implementation.
We use the Logic Analyzer in the Xilinx Vivado tool set to
measure the throughput and latency of our design. To illustrate
the advantage of using both the CPU and the FPGA for a single
query, we present experimental results comparing our hybrid
equi-join design with CPU only and FPGA only designs. We
also provide performance comparison with prior works.
B. FPGA Accelerator Performance

To illustrate the benefit of using our proposed bitonic sorter,
we compare the performance of our design with the state-of-
the-art merge-sort based design. We separately implement the
bitonic sorter on a Xilinx Virtex-7 FPGA (XC7VX690T) [6]
to ensure a fair comparison with other work. Figure 9 shows
the throughput performance comparison for sorting 16K-key
32-bit data sequence. The top right triangle indicates the
throughput of our fully pipelined bitonic sorter. Other triangles
in red represent compact designs by folding the fully pipelined
bitonic sorter horizontally to save logic and memory resource,
at the expense of reduced throughput. As shown in Figure 9,
compared with the merge-sort based design, all our designs
are dominating designs: one of our designs offers superior
throughput or uses less on-chip memory or achieves both. This
indicates that our proposed bitonic sorter achieves a higher
memory efficiency compared to the merge-sort design, i.e., the
fully pipelined bitonic sorter always outperforms in throughput
performance providing the same amount of on-chip memory
resource. The fully pipelined bitonic sorter can handle 4 64-bit
values per clock cycle (250 MHz), providing a throughput of
up to 7.9 GB/s, which almost fully utilizes the peak memory
bandwidth (around 10 GB/s) of a 64-bit DDR3 DRAM [19].
As the proposed bitonic sorter has a flexible data parallelism,
theoretically a high DRAM bandwidth utilization can always
be achieved. There are two reasons why the proposed bitonic
sorter outperforms: first, the throughput of merge sort based
design depends on the values of the inputs; second, the merge
sort based design is difficult to be parallelized to sustain a high
throughput due to its inherent control complexity.
C. CPU-FPGA System Performance

In our system implementation, we employ four bitonic
sorters running in parallel with a total data parallelism of four.
All the bitonic sorters are fully pipelined by inserting registers
between cascaded sorting stages. Each bitonic sorter is able to
handle 64 KBytes data set and produces a 64-bit output result
per clock cycle. The supported problem size is chosen to be
64 KBytes based on the available on-chip memory resource on
Zynq PL. Each output is a combination of a 32-bit key and two

TABLE II: Resource Consumption of the PL section on Zynq

Modules
#

LUTs
(MB/s)

LUT
utilization

of
BRAMs

BRAM
utilization

of
Register

Register
utilization

Bitonic sorters 34686 65% 72 51.4% 18693 60%

AXI Interconnects 4048 7.6% 0 0% 4960 4.7%

AXI BRAM Controller 1756 3.3% 0 0% 1712 1.6%

Other AXI Interfaces 2119 3.9% 0 0% 2473 2.3%

BRAM for I/O buffering 0 0% 32 22.8% 0 0%

20 23 26 29 212 215
0

0.5

1

1.5

2

Input size (KBytes)

T
hr

ou
gh

pu
t

(G
B

yt
es

/s
)

CPU+FPGA
CPU only
FPGA only

Fig. 10: Throughput comparison for various input sizes
16-bit values. We measure the processing throughput which is
the number of data values in Bytes produced per second when
performing the equi-join.

1) Resource consumption: Table II summarizes the re-
source consumption of all the logic modules on the Zynq
PL. The on-chip communication interfaces including the AXI
interconnects, AXI BRAM controller, and other AXI related
control interfaces consume 14.8% LUT of the programmable
logic. The four bitonic sorters consume 65% LUT logic and
51.4% BRAM blocks. An additional 32 BRAM blocks are em-
ployed for input/output data buffering. All the communication
interfaces are implemented using Xilinx provided IP cores [9].
As these IP cores can be memory mapped in the PS address
space, the data communication between the FPGA and the
processor can be easily handled at the software level.

2) Comparing Software, Hardware and Hybrid Designs: In
this section, we compare the performance of SSMJ algorithm
based accelerator with the sort-merge join algorithm based
CPU-only and FPGA-only implementations. The SSMJ based
CPU+FPGA approach uses the same experimental setup intro-
duced in Section VI-C1. The CPU-only design runs on a single
Cortex-A9 core inside the Zynq system with caches enabled.
The FPGA-only design is implemented on the Zynq system
PL section. The percentage of matching tuples for all the
input sizes is varied from 10% to 70% and average throughput
performance is reported. We assume the keys of the 50% input
data sets have distinct values, i.e. the cardinality is 50%. In
FPGA-only design, for input sizes greater than 64 KBytes, four
fully pipelined bitonic sorters for sorting 64 KBytes data set are
first employed to rearrange the entire input data set into sorted
64 KBytes sub data sets. Then a compact bitonic sorter with
one single sorting stage by folding the fully pipelined bitonic
sorter is used to merge the sorted 64 KBytes sub data sets into a
single sorted data set. For input sizes smaller than 64 KBytes,
the compact bitonic sorter is not required. Accelerators for
merge-join operation and selection operation in the FPGA-
only design are implemented based on prior work [3]. The
modules in the FPGA-only design has a total data parallelism

6

10% tuples with matches

20 23 26 29 212 215
0.5

1

1.5

2

Input size (KBytes)

T
hr

ou
gh

pu
t(

G
B

yt
es

/s
) SSMJ

SBNL

(a)

30% tuples with matches

20 23 26 29 212 215

0.5

1

1.5

2

Input size (KBytes)

T
hr

ou
gh

pu
t(

G
B

yt
es

/s
) SSMJ

SBNL

(b)

50% tuples with matches

20 23 26 29 212 215

0.5

1

1.5

2

Input size (KBytes)

T
hr

ou
gh

pu
t(

G
B

yt
es

/s
) SSMJ

SBNL

(c)

70% tuples with matches

20 23 26 29 212 215

0.5

1

1.5

2

Input size (KBytes)

T
hr

ou
gh

pu
t(

G
B

yt
es

/s
) SSMJ

SBNL

(d)
Fig. 11: Throughput performance of the SBNL-based design and the SSMJ-based design

of four, which is same as the total data parallelism of the
bitonic sorters in the system implementation of the SSMJ
algorithm. We vary the data set (a data column) size from 2
KBytes to 64 MBytes for performance evaluation. The overall
throughput (GBytes/s) for the three different design approaches
are shown in Figure 10. Our proposed hybrid design achieves
an average of 3.1x throughput improvement compared with the
CPU only approach. This is because the CPU only approach
usually achieves a low memory bandwidth utilization [20],
[16]. The proposed hybrid design is 1.9x as fast on average as
the FPGA-only approach. We can see that for input size greater
than 64 KBytes, the throughput performance of the FPGA-
only design declines significantly, and switching to the CPU
for the merge-join and selection phases in the hybrid approach
gives faster execution than FPGA-only approach. This implies
that for the FPGA-only implementation the benefits from the
massive data parallelism on FPGA is offset by the cost of
increasing data loading and offloading iterations between the
FPGA accelerator and the DRAM. We also observe that a
large portion of the CPU computation is overlapped with
the FPGA computation in our hybrid design. This in turn
justifies the efficiency of our proposed hybrid design approach.
More related results about the execution time breakdown are
presented in Section VI-C3.

3) Comparing SBNL and SSMJ: In this section, we present
experimental results when performing equi-join using the
SBNL and the SSMJ algorithms. We vary the input size from
2 KBytes to 64 MBytes to evaluate the scalability of the two
hybrid designs. As the bitonic sorters on FPGAs are fixed to
sort 64 KBytes data set, we just need to modify the software
implementations to process data sets with various sizes. As
introduced in Section IV-5, in SBNL algorithm, merge-join
operation is performed only if two sorted data sequences have
overlapped key values, thus the execution time for merge-join
also depends on the number of matching tuples. Figure 11
shows the effect of the percentage of matching tuples on the
performance of our proposed streaming join algorithms. We
vary the percentage from 10% to 70% for all the input sizes.
We set the cardinality as 50%. We notice that as there are
less tuples with matches, the SBNL algorithm improves the
overall join performance compared with the SSMJ algorithm,
especially for large data sets. This is because less number
of merge-join operations need be performed in SBNL if the
percentage of tuples with matches decreases. As shown in
Figure 11, compared with the SSMJ based approach, SBNL
based approach improves the throughput by up to 38% when
10% tuples match. For both the SSMJ and SBNL algorithms,
the throughput decreases with the input size. The reason for
this is that as the maximum problem size supported by the

0 6 10 14
0

0.5

1

1.5

Input size (2x KBytes)

E
xe

cu
tio

n
tim

e
in

pe
rc

en
ta

ge CPU computation
Overlapped time
FPGA computation
FPGA→ CPU

Fig. 12: Execution time breakdown of the SSMJ-based design
FPGA accelerator is fixed, more computations need to be
handled by the CPU with the growing data set size, thus the
overall impact of FPGA acceleration becomes less. A larger
FPGA device providing more on-chip memory resource can
further speed up the performance.

4) Hybrid Execution time breakdown: Figure 12 provides
a breakdown of the execution time for the SSMJ algorithm
for various input sizes. The FPGA→CPU time indicates the
latency overhead for switching from FPGA accelerators to the
CPU. We observe that this latency is easily hidden after CPU
execution time and FPGA execution time overlap for input
sizes beyond 64 KBytes. Data transfer overhead has been
included in both the CPU computation time and the FPGA
computation time. On the average, 40% of the execution time
of FPGA is overlapped with the CPU execution time for input
sizes greater than 64 KBytes. We observe that the execution
time of FPGA almost increases linearly with the input size.
This observation matches well with our theoretical analysis
on the throughput of the bitonic sorters in Equation 2. The
execution time of CPU increases significantly as the input
size grows beyond 64 KBytes. This is consistent with the
throughput performance declining in Figure 10. When the
input size is smaller than 64 KBytes, the execution time
of CPU accounts for 10% of the total on the average. For
the input sizes beyond 64 KBytes, the CPU computation
time shown in blue accounts for 37% of the total on the
average, and eventually becomes a performance bottleneck.
More performance improvement can be achieved by using a
faster CPU with more cache resources.
D. Comparison with prior works

The available memory bandwidth on the hardware platform
sets a hard limit on achievable throughput performance. As the
ZedBoard offers much less DRAM bandwidth than platforms
in prior work, our experimental results turns out to be compara-
tively slow with regarding to throughput. However, as indicated
by our results in Sections VI-C2 and VI-C3, the performance
of our hybrid design scales well as more bandwidth becomes

7

available. Low throughput is not an inherent problem with our
hybrid solution. We believe more powerful versions of CPU-
FPGA platforms, such as the Xilinx UltraScale+ Zynq and
Altera Stratix 10 SoCs will obtain improved performance by
implementing our proposed algorithms. To make a more fair
comparison with prior works, we use number of data values
in Bytes per second (throughput) per unit bandwidth as a
metric considering the memory-bandwidth-bound nature of the
equi-join operation. Table III shows detailed comparison with
several state-of-the-art works on reported join performance.
In [16], the authors achieve a throughput of 128 million
64-bit tuples per second (1GB/s) with 25.6 GB/s available
bandwidth on CPU platform. In [20], 4.6 GB/s of aggregate
throughput is achieved using GPU accelerator, while the peak
memory bandwidth is a total of 192.4 GB/s. In most recent
work [3], the authors propose a hardware implementation for
join on a multiple-FPGA platform achieving a throughput
of 6.45 GB/s, while with a total of 115.2 GB/s of peak
memory bandwidth, thus only 5.6% of memory bandwidth
utilization. Our implementation provides a 3.9x increase on
average over the reported bandwidth utilization of the state-
of-the-art design [3].

TABLE III: Comparison with prior works

Work Platform Clock freq Throughput
(GB/s)

BW
(GB/s)

Throughput/BW
(%)

[3] Multiple Xilinx
Virtex-6 FPGAs 200 MHz 6.45 115.2 5.6%

[16] Intel Core i7
965 System 3.2 GHz 1 25.6 3.8%

[20] Nvidia GTX
580 GPU 1.5 GHz 4.6 192.4 2.3%

This work Zedboard 100 MHz 0.69 3.2 21.6%

VII. RELATED WORK
Using dedicated logic design to accelerate database opera-

tions especially on the advancing FPGA platform has become
popular recently in both academia and industry [1], [5], [3], [7].
Researchers at Microsoft developed a reconfigurable fabric to
accelerate large-scale data center services [5]. Their work pre-
sented a prototype system consisting of eight FPGAs devices
cascaded using high performance interconnects. A portion of
tasks for Microsoft Bing Search’s ranking are accelerated
using this prototype system. In [3], hardware designs to per-
form primitive database operations including selection, merge-
join and sort are presented. High throughput performance is
achieved by implementing their proposed design on an FPGA-
based system. However, the memory bandwidth utilization
of their design is relatively low. A system called glacier
which compiles queries directly to a high level hardware
description has been proposed in [2]. The team developed
a streaming median operator by utilizing sorting networks
in [13]. However, their design is targeted at much smaller data
sets and throughput performance optimization is not presented.
There are also some work focusing on accelerating sorting on
FPGAs targeting database related applications. Several existing
sorting architectures on FPGAs are implemented and evaluated
in [8]. FIFO or tree based merge sorter as well as bucket sorter
are selected as target designs for implementation. They also
discuss how to use partial run-time reconfiguration to reduce
resource consumption. In [7], a parameterized sorting architec-
ture using bitonic merge network is presented. Their key idea
is to build a recurrent architecture of bitonic sorting network
to achieve throughput area trade-offs. However, the presented

results are limited data set sizes. Other than FPGA, there
are also some techniques for high performance join operation
based on general purpose platforms [16], [14]. However, it is
not clear how to apply these techniques on a heterogeneous
CPU-FPGA platform.

VIII. CONCLUSION
In this paper, we developed streaming join algorithms

customized for CPU-FPGA platform by optimizing the classic
CPU-based nested-loop join and sort-merge join algorithms.
A hybrid sorting design is proposed to alleviate the burden
of memory usage on FPGA. As a result, our designs improve
the average sustained throughput of equi-join implementation
compared with FPGA-only and CPU-only designs, especially
for large data sets. We reported the performance and identi-
fied the effect of the percentage of matching tuples on the
throughput performance of the two streaming join algorithms.
Our implementation on the Zedboard achieves significant
improvement in DRAM bandwidth utilization compared with
the state-of-the-art designs. We believe our proposed hybrid
design is also applicable to other heterogeneous systems such
as CPU+GPU platforms and can motivate the acceleration
using heterogeneous system for many other data intensive
applications.

REFERENCES
[1] B. Sukhwani, H. Min, and et.al., “Database analytics acceleration using

fpgas,” in Proc. of PACT. ACM, 2012, pp. 411–420.
[2] R. Mueller, J. Teubner, and G. Alonso, “Streams on wires: A query

compiler for fpgas,” Proc. VLDB Endow., pp. 229–240, Aug. 2009.
[3] J. Casper and K. Olukotun, “Hardware acceleration of database opera-

tions,” in Proc. of ACM/SIGDA FPGA, 2014.
[4] V. Sklyarov, I. Skliarova, D. Mihhailov, and A. Sudnitson, “Implemen-

tation in FPGA of address-based data sorting,” in Proc. of IEEE FPL.
IEEE, 2011, pp. 405–410.

[5] A. Putnam, A. Caulfield, E. Chung, and et.al., “A reconfigurable fabric
for accelerating large-scale datacenter services,” in Proc. of ACM/IEEE
ISCA, June 2014, pp. 13–24.

[6] “XST user guide for Virtex-6, Spartan-6, and 7 series devices,” http:
//www.xilinx.com/support/documentation.

[7] R. Chen and V. Prasanna, “Energy and memory efficient mapping of
bitonic sorting on fpga,” in Proc. of ACM/SIGDA FPGA, 2015.

[8] D. Koch and J. Torresen, “FPGASort: A high performance sorting
architecture exploiting run-time reconfiguration on FPGAs for large
problem sorting,” in Proc. of ACM/SIGDA FPGA, 2011, pp. 45–54.

[9] “Xilinx Zynq-7000 All Programmable SoC Technical Reference
Manual,” http://www.xilinx.com/support/documentation/user guides/
ug585-Zynq-7000-TRM.pdf.

[10] “Intel Xeon+FPGA Platform for the Data Center,” http://www.ece.cmu.
edu/∼calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf.

[11] “The Convey HC-2 Computer,” http://www.conveycomputer.com/files/
4113/5394/7097/Convey HC-2 Architectual Overview.pdf.

[12] M. Lavasani, H. Angepat, and D. Chiou, “An fpga-based in-line
accelerator for memcached,” Computer Architecture Letters, vol. 13,
no. 2, pp. 57–60, July 2014.

[13] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on FPGAs,”
International Journal on VLDB, vol. 21, no. 1, pp. 1–23, 2012.

[14] S. Blanas and J. M. Patel, “Memory footprint matters: Efficient equi-
join algorithms for main memory data processing,” in Proceedings of
the SOCC. ACM, 2013, pp. 19:1–19:16.

[15] M. W. Blasgen and K. P. Eswaran, “Storage and access in relational
data bases,” IBM Syst. J., vol. 16, no. 4, pp. 363–377, Dec. 1977.

[16] C. Kim, T. Kaldewey, and et.al., “Sort vs. hash revisited: Fast join
implementation on modern multi-core cpus,” Proc. VLDB Endow.,
vol. 2, no. 2, pp. 1378–1389, Aug. 2009.

[17] K. E. Batcher, “Sorting networks and their applications,” in Proc. of
AFIPS. ACM, 1968, pp. 307–314.

8

[18] in Removed for blind review.
[19] “Micron DDR3 and DDR4 SDRAM,” http://www.micron.com/products/

dram/.
[20] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “Gpu join processing

revisited,” in Proc. of the International Workshop on Data Management
on New Hardware. ACM, 2012, pp. 55–62.

9

	Cover page_report_2
	report_2

