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Abstract—Distributed topology control mechanisms for
3-dimensional settings are of considerable interest for
automated network configuration in diverse applications
including structural monitoring networks and underwater
networks. The 3-D CBTC technique proposed by Bahram-
giri et al. [7] has a complexity of O(d3 log d), where d
represents the average number of neighbors per node. We
present two efficient alternatives. The first is a heuristic
based on 2-D orthographic projections that provides ex-
cellent performance in practice, but is theoretically not
guaranteed to produce a connected network. The second
is a more rigorous approach based on spherical Delaunay
triangulation (SDT). Both have significantly better running
times that scale as O(d log d). Our simulation results
indicate that network topologies generated based on the
SDT algorithm have substantially lower average node
degree and average transmission power level compared
to the original network for random deployments.

I. INTRODUCTION

Multihop wireless networks deployed in 3-
dimensional space have potentially diverse applications
in structural health monitoring [1], underwater sensor
networks [2] etc. Unlike wired networks, where
each node has a fixed number of neighbors, a multihop
wireless network consists of (possibly mobile) nodes that
can change its neighbor-set based on transmission power
levels, and thus, in turn, cause changes in the network
topology. A fundamental criterion for such networks
to efficiently process and route data is the preservation
of network connectivity, either on a continuous basis
or intermittently among clusters of nodes. However, it
is undesirable for nodes to transmit at their maximum
power level to preserve connectivity. This is because
firstly, it increases the possibility of interference with
neighboring transmissions, and secondly, relaying
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through intermediate nodes via multiple hops may
consume less energy than transmitting at higher power.
Therefore, topology control techniques that minimize the
transmission power play an important role in optimizing
throughput and prolonging lifetime. In this paper, we
address the problem of efficient topology control by
adjusting transmission power levels of individual nodes
in 3-D wireless sensor networks. This problem falls
under the broader class of problems that guarantee
a global network property by satisfying certain local
constraints. In our case, this global property is network
connectivity, and the local constraints, as we will see,
are the existence of certain number of neighbors within
each node’s communication range.

Although the problem of efficient topology control
has been addressed well in literature for the 2-D case,
its extension to 3-D brings several challenges [5] that
have not been adequately addressed in the past. For
instance, there is a natural ordering of nodes in 2-D
in terms of directions (angles), based on which many
topology control algorithms e.g, CBTC (Cone-Based
Topology Control) have been developed; however, in
3-D no such ordering is possible. We only have the
notion of solid angles in 3-D, which does not lend itself
to any particular ordering of nodes. Secondly, uniform
random deployment of nodes requires very high average
node degrees for a network to be connected in 3-D,
compared to its 2-D counterpart. Therefore, reduction
in time complexity of algorithms that are a function of
average node degree would be very useful in 3-D.

In this study, we present two efficient, and distributed
algorithms that guarantee network connectivity in 3-
D with much lower time complexity as compared to
existing approaches [3], [4], [6], [7]. Our first approach
is based on orthographic projections in 2-D that is
simple to implement and runs in O(d log d) time, where
d represents the average node degree. This approach
borrows the 2-D CBTC technique [4] and performs
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very well in practice, although theoretically, it does not
guarantee a connected network. Our second approach
is based on a computational geometry construct, called
spherical Delaunay triangulation [5], [11] that also runs
in O(d log d) time but is always guaranteed to produce
a connected network.

The rest of the paper is organized as follows. Section
II presents related works on topology control techniques.
In Section III, we describe preliminaries and our solution
approach. Section IV discusses the multi-dimensional
scaling technique in 3-D that we use as a primitive.
We present our heuristic based approach based on 2-D
orthographic projections in Section V, and the more rig-
orous spherical Delaunay triangulation based approach
in section VI. Section VII presents detailed simulation
results and we conclude the paper in Section VIII.

II. RELATED WORKS

There are several works in the literature on topology
and power control techniques that aim to minimize
resource consumption and increase network lifetime.
However, in most cases, the existing algorithms are
applicable only in 2-D networks and are not readily
extensible in 3-D. Moreover, they are based on several
assumptions, such as, the availability of location infor-
mation of all the nodes, and/or directional information
of the signal sources using possibly directional antennas.
Most notable among these is the improved version of
the CBTC algorithm [3] proposed by Li et al. which
guarantees global network connectivity using only local
information. In 2-D, the CBTC results says that if every
node adjusts its power level, such that there exists at least
one neighbor in every sector of angle θ = 5π/6 around
it, then network connectivity can be guaranteed so long
as the communication graph formed by all the nodes
transmitting at their maximum power level is connected.
Henceforth, we will refer to this communication graph as
the maximum power graph GRmax (MPG). The original
version of the CBTC algorithm [4] proposed the θ value
to be equal to 2π/3. In the improved version, several
optimizations have also been proposed, such as, the
shrink-back operation on boundary nodes, removal of
asymmetric links and redundant edges to further cut
down the number of links. However, it should be noted
that there is a tradeoff between cutting down the number
of links and network performance. Fewer number of
links implies lesser interference, but higher congestion
and lower robustness as there are fewer redundant paths
between pairs of nodes.

Bahramgiri et al. [7] extended the original CBTC re-
sult of θ ≤ 2π/3 constraint for k-connectivity and proved
that if every node adjusts its power level, such that, it can
reach at least one node in every θ = 2π/3k angle around
it, then the graph will remain k-connected as long as the
MPG was k-connected. They also proposed an extension
to their algorithm in 3-D by using the notion of 3-D
cones instead of angles. However, they assume that the
directions of the signal sources are also ordered in 3-D,
which is not valid because there is no notion of angles
in 3-D. Moreover, the computational complexity of the
proposed algorithm is very high, O(d3 log d), compared
to its 2-D CBTC counterpart that runs in O(d log d) time.

The algorithms proposed by D’souza et al. [6] also use
the local geometric θ constraints to guarantee network
connectivity in 2-D. The novelty of their approach is
that they do not assume a binary disc communication
model and connectivity of the MPG. If the boundary
nodes satisfy certain connectivity criteria, their proposed
algorithm can still guarantee network connectivity in the
presence of arbitrary wireless foot prints. In particular, if
the boundary nodes can communicate with neighboring
nodes, and all the interior nodes satisfy θ ≤ π constraint,
then the network is at least one connected under arbitrary
wireless communication model. However, if the condi-
tion on the boundary nodes is relaxed to θ ≤ 3π/2,
then network connectivity can still be achieved with
the interior nodes satisfying θ ≤ π constraint under a
weak-monotonic model of wireless footprints. In [9],
Wattenhofer et al. described a practical topology control
algorithm that is simple and local. Their technique does
not assume location information, neither does it require
the network to be a Euclidean graph.

Our work builds on the spherical Delaunay triangula-
tion (SDT) based technique first introduced by Sameera
et al. [5] for identifying largest empty cones. As noted
in that paper, “this algorithm can be used as a primitive
for extending several topology control algorithms that
use directional information”. We extend their approach
to find the surface area of the largest spherical cap
generated from triangulation and bound that value under
a certain threshold, such that there is no empty 3-
D cones of apex angle 2π/3 around any node. Then
it follows from the results in [7] that the network is
guaranteed to be at least one connected. We check for
additional constraints on the boundary nodes so that,
unlike in CBTC, they do not end up transmitting at
maximum power levels. We also propose an orthographic
projection based heuristic that uses the CBTC technique
and produces connected networks most of the times in



practice. Both our algorithms have time complexities
O(d log d). Finally, we do not assume directional infor-
mation, instead we use multi-dimensional scaling in 3-D
to get relative neighbor locations for each node.

III. PRELIMINARIES AND SOLUTION APPROACH

In this Section, we describe preliminaries and our
solution approach. Given a set of nodes S =
{u1, u2, ..., uN} distributed in 3-D, we associate a three
tuple (xi, yi, zi) ∈ �3, as the location of node ui. We
denote the spherical ball with center at ui and radius
Ri as B(ui, Ri). Given any three non-collinear points
pi, pj , and pk on the surface of a sphere, we define a
spherical cap as the smaller (in terms of volume) portion
of the sphere that is cut off by a plane passing through
these three points. Note that, a plane can be uniquely
determined by a set of three non-collinear points in 3-D.
We denote such a spherical cap as Cap(pi, pj , pk). The
height of the cap is denoted by h and the radius of its
base is denoted by r (Figure 1).

Each node ui is assumed to have a maximum power
level Pmax. In general, the transmission range of a
node is a monotonic function of its power level, i.e,
Ri = f(P ). Given a particular power level P , we denote
the set of neighbors of node ui as Ni(P ). Similar to
prior works, we also assume the connectivity of the MPG
GRmax = (V, E), where V is the set of nodes, and an
edge exists between two nodes ui and uj if they are
within their communication range. Our goal is to produce
a subgraph G = (V, Ē) ⊆ GRmax , such that, (1) it is
connected, (2) it consists of fewer number of edges, and
(3) every node transmits at a power level that is locally
minimum, i.e, even if one node transmits at a power level
lower than what G requires, and others remain the same,
then the network will cease to be connected.

Our approach in developing a topology control al-
gorithm that works in 3-D with substantially lower
computational complexity consists of two phases. In
the first phase, we use the multi-dimensional scaling
(MDS) technique to find out the relative locations of
all possible neighbors for each node, i.e, the set of
neighbors Ni(Pmax), when node ui transmits at its
maximum power level. In the second phase, we propose
two alternative strategies to solve the problem. The
first one is heuristic based and uses the well known
CBTC algorithm. The heuristic performs extremely well
in practice, although theoretically, sometimes it can
produce disconnected networks for degenerate cases, as
we will see later. The basic idea is that we reduce the
problem from 3-D into multiple similar problems on 2-D
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Fig. 1. Three non collinear points pi, pj , and pk on the surface of
a sphere uniquely determine a spherical cap. r is the radius of the
base of the cap and h is the height of the cap. �n denotes normal to
the cap.

using orthographic projections, and then solve the 2-D
problems using CBTC technique. The second alternative,
which is the more rigorous one and always guarantees
a connected network, is to solve the problem directly in
3-D by using the properties of SDT.

IV. PHASE I: MULTI-DIMENSIONAL SCALING IN 3-D

Multi-dimensional scaling [14] is a statistical method
that has been widely used to discover spatial structures
and relationships among sets of objects from their ob-
served similarity or dissimilarity data sets. The technique
basically transforms a pairwise distance matrix among
a set of objects into a set of coordinates, such that
the pairwise Euclidean distances derived from these
coordinates approximate the original distances as closely
as possible. The distance matrix, however, cannot be
analyzed directly using Eigen-decomposition because
distance matrices are not positive semi-definite. But if
it can be converted into an equivalent cross-product
matrix then eigen-decomposition is possible, which gives
a principal component analysis (PCA). MDS precisely
does that. Each object is represented as a point in a
multi-dimensional space, and the points are so arranged
that their pairwise distances have the strongest possible
relation to the similarities among the pairs of objects.
That is, two similar objects are represented by two points
that are closer to each other, and two dissimilar objects
are represented by two points that are further apart.
Finding out the appropriate dimension is also part of the
problem in MDS. However, in our case, since we know
that the space is 3-dimensional, we can get much better
approximations of the relative location maps. Note that,



the general MDS technique works in any dimension and
even in non-Euclidean space.

MDS was applied for localization in 2-D [8] to cal-
culate relative sensor locations based on their pairwise
RSSI (Received Signal Strength Intensity) values. In our
work, based on LQI (Link Quality Indicator) values, we
use MDS in 3-D as a primitive for finding out relative
location maps of all possible neighbors, Ni(Pmax), for
each node ui. Note that, this is slightly different from the
earlier approaches as a localization technique. Here, we
are interested only in relative locations of each node’s
neighbors.

V. PHASE II: 2-D ORTHOGRAPHIC PROJECTIONS

In the second phase of the algorithm, we simplify the
original 3-D problem by reducing it into multiple similar
problems on 2-D using orthographic projections, and
then solve the 2-D problems borrowing techniques from
CBTC. First, we state and prove the following lemma.

LEMMA 1: Consider the projections of the locations
of a node ui and its set of neighbors Ni(P ) for some
power level P (P ≤ Pmax) on each of the three
orthogonal planes xy, yz, and zx, as illustrated in Figure
2. If there is an empty sector of angle θ around u’s
projection on any of the planes, then there exists an
infinite number of empty 3-D cones of angle θ around
u’s location in the 3-D.

Proof: We show the proof by construction. In Figure
2 there exists an empty sector of angle θ around the
projected location u′

i of node ui on the xy plane for
some communication range R = f(P ). Consider the two
intersection points p′ and q′ of the circle and the sector.
If we raise the plane of the triangle �u′

ip
′q′ vertically

upwards and parallel to the xy plane, it will sweep
a triangular shaped volume bounded by three vertical
planes Π1, Π2, and Π3. From solid geometry, we know
that a plane in 3-D can be uniquely determined by two
non-overlapping lines. Here, the three planes Π1, Π2, and
Π3 are uniquely determined by the three pairs of lines
L1, L2; L1, L3; and L2, L3, respectively. By construction
it is trivial to note that the 3-D cones of apex angle θ
contained within the region formed by the intersection
of this triangular shaped volume and the spherical ball
B(ui, R) are all empty.

The lemma implies that if there exists an empty sector
of angle θ = 2π/3 on any of the three orthogonal
projection planes, then there will exist an infinite number
of empty 3-D cones with apex angle 2π/3 around node
ui, which in turn will imply, by the results in [4], that
the communication graph formed by the nodes in 3-D
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Fig. 2. An empty sector of angle θ around ui’s projected location
on the xy plane implies the existence an infinite number of empty
3-D cones of apex angle θ around ui’s location.

will not be connected if ui chooses to transmit at this
power level. Next, we describe the algorithm.
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Fig. 3. Projected locations on xy and xz planes of node ui and its
neighbors Ni(P

max) when ui transmits at maximum power P max.

Each node ui starts off by transmitting a “Hello” mes-
sage at its minimum transmission power level. Neigh-
boring nodes that hear the “Hello” message will ac-
knowledge back with a “Reply” message. Node ui then
projects the locations of those neighbors from which
it heard the “Reply” message on to the xy, yz, and
zx planes, as illustrated in Figure 3. Then for each
of the three planes ui checks whether there is any



empty sector of angle θ = 2π/3 around it using the
CBTC technique. If all the three planes satisfy the θ
constraint, it stops and chooses the current power level.
Otherwise, it increments its power to the next level, sends
a “Hello” message and repeats the above process until
there is no empty sector of angle 2π/3 around it on
all the three projection planes, or until the maximum
power is reached. The minimum power that is required
to guarantee the θ = 2π/3 constraint on all the three
planes is chosen as the transmission power for that
node. As in CBTC, we assume the existence of the
following functions: (1) increment(P ) that takes the
current power level and increases it to the next level, (2)
diri(v) that takes the projected locations on a plane of
a node’s neighbors and sorts them with respect to some
reference direction, and (3) gapθ(Di) that takes input as
a set of directions and checks if there is an empty sector
of angle θ around the projected location of ui. Note that,
we do not need special antennas to find out the directions
of the neighbors because MDS in Phase I already yields
the relative location maps of the neighbors. Formally, the
steps are described in Figure 4.

1: Ni(P )← φ
2: P ← Pmin

3: Di ← φ: directions of projected neighbors
4: while (P ≤ Pmax and gapθ(Di)) do
5: Broadcast “Hello” message at power P and gather

“Reply” messages from neighbors;
6: Ni(P )← Ni(P ) ∪ {v | node v replied};
7: Project locations of Ni(P ) and itself on xy, yz,

and zx planes;
8: for (each of the 3 orthographic planes) do
9: Di ← Di ∪ {diri(v)}

10: if (gapθ(Di)) then
11: P ← increment(P );
12: break;
13: end if
14: end for
15: end while

Fig. 4. Second phase of algorithm based on orthographic projections
and CBTC.

The novelty of the heuristic described above is that the
algorithm runs in O(d log d) time and does not assume
directional information. However, it should be noted that
the network topologies thus generated with transmission
power levels as dictated by the algorithm are not always
guaranteed to be connected. This can be intuitively seen
by the following argument. Consider a particular node

ui located at the origin and its set of neighbors that
lies above the xy plane for a given power level, and
project those neighbors on the three orthographic planes.
Next, consider a particular 3-D cone of angle θ < π/2
around node ui contained within the first quadrant (i.e.,
positive x, y, z) and project the cone on the three planes
as well. This will form three sectors of angle θ around
ui’s projected locations on the three planes. Now, let
there be a particular neighbor that lies just outside and
above the surface of the 3-D cone at such a position,
which when projected on the three planes, falls within
the respective sectors formed by the cone’s projection
on two of the planes (say, xy and xz). Note that, unless
a neighbor lies inside the cone, its projection will not
fall inside all the three projected sectors. Now with
little thought we can convince ourselves that there could
be another node(s) that does not lie within the cone
but falls within the projected cone’s sector on the third
plane (yz). Therefore, we observe that even though the
projected sectors are not empty, that is, they satisfy the
θ constraint on all the three planes, the 3-D cone can
be empty. This implies that if we base our conclusion
of network connectivity by satisfying θ constraint on
the three planes, it might be incorrect at times for
such degenerate cases. Here we restrained θ < π/2 to
illustrate one particular instance; however, the augument
holds true for θ = 2π/3 as well.

VI. PHASE II: SPHERICAL DELAUNAY

TRIANGULATION

The second approach in Phase II of our algorithm is
based on the properties of spherical Delaunay triangula-
tion. In computational geometry, Delaunay triangulation
is the dual of Voronoi diagrams [12], which, for a set of
N points tessellate the 2-D (3-D) region into a set of N
convex polygons (polyhedra), such that any point lying
within a polygon (polyhedron) is closest to the point ∈ N
that is inside the polygon (polyhedron). This is known as
the nearest neighborhood property of Voronoi diagrams.
Likewise, Delaunay triangulation follows the dual of the
nearest neighborhood property, called the empty circle
property as defined below.

DEFINITION 1: DELAUNAY EMPTY CIRCLE PROP-
ERTY: If N points lie on a plane in the general position,
i.e., no four points are co-circular (affinely independent),
then the circumcircle around each of the Delaunay trian-
gles is empty, i.e., it does not contain any of the N points
in its interior. The empty circle property generalizes
in 3-D in the form of empty spheres for Delaunay
tetrahedrization.
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Fig. 5. Spherical Delaunay triangulation illustrating empty circle
property: the spherical cap Cap(a, b, c) is empty in its interior.

When the Delaunay triangulation is carried out on
points that lie on the surface of a sphere, it produces
spherical triangles, and the empty circle property still
holds. That is, for any three points a, b, and c that
form the vertices of a spherical triangle, the spherical
cap Cap(a, b, c) is empty. This is illustrated in Figure 5.
We use this empty spherical cap property as a primitive
in our algorithm.

Consider node ui and its set of neighbors Ni(P ) for
some power level P . We project the locations of those
neighbors on the surface of a spherical ball centered at ui

and radius R, (R = f(P )). This construction basically
means drawing radial lines connecting ui and each of the
neighbors until they intersect with the spherical surface.
Then, if we construct a spherical Delaunay triangulation
with the projected points, we can state the following
lemma.

LEMMA 2: The 3-D cones that are formed with ui as
the apex and the spherical caps generated from Delaunay
triangulation (or more rigorously, the base-circles of the
spherical caps) as their bases are empty.

Proof: This can be easily seen from the construction
in Figure 6. Consider a particular 3-D cone that has its
base as the spherical cap formed by the vertices of a
spherical triangle p, q, and r. Assume that the cone is
not empty. This means that there is some point that lies
inside the cone, whose projection, by construction, on the
spherical surface will fall in the interior of Cap(p, q, r).
But this is a contradiction, because according to the
Delaunay empty cap property this cap is empty. Hence,
the cone is empty.

THEOREM 1: Let each node ui construct spherical
Delaunay triangulation of its projected neighbor loca-
tions on the spherical surface for some power level Pi.
If the largest surface area Ωmax

i of the spherical cap
for node ui (except for boundary nodes, as discussed
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Fig. 6. The 3-D cone formed by the spherical cap Cap(p, q, r) as the
base and ui as the apex is empty. Black dots show the actual locations
of the neighbors, and blue dots show the projected locations on the
surface of the spherical ball. �pqr is one of the spherical Delaunay
triangles.

next) satisfy Ωmax
i ≤ (2.72)R2

i , (∀i = 1, 2, ..., N), where
Ri = f(Pi), then the network topology formed by the
nodes with transmission power levels Pi is guaranteed
to be at least one connected.

Proof: Let the 3-D cone formed with apex at
node ui and base as the spherical cap with the largest
surface area Ωmax

i has an apex angle θ. From simple
trigonometry, the surface area of the spherical cap is
2πrh, where r is the radius of the base of the cap and
h is the height of the cap, and are given by (Figure 1):

r = Ri sin
θ

2
, h = Ri

(
1− cos

θ

2

)
. (1)

Therefore,

Ωmax
i = 2πrh = 2πR2

i sin
θ

2

(
1− cos

θ

2

)
(2)

Now it is easy to verify that if Ωmax
i ≤ (2.72)R2

i , then
θ ≤ 2π/3. This implies that if the surface area of the
largest cap is not greater than (2.72)R2

i , then there will
be no empty 3-D cone of apex angle greater than 2π/3
around ui. Since this is true for all ui’s, (i = 1, ..., N), it
implies that there is no empty 3-D cone with apex angle
greater than 2π/3 around any of the nodes for power
level Pi. Hence, from the result in [7], the network is at
least one connected.

The implication of the above theorem is that if every
node adjusts its power level to have enough neighbors,
such that, none of the caps of the spherical Delaunay
triangulation has a surface area greater than the threshold
mentioned above, then the network will be at least one
connected so long as the maximum power graph is
connected.



Fig. 7. Spherical Delaunay triangulation using the Quickhull
algorithm of a set of 100 points randomly distributed on the surface
of a sphere of radius 50.

There is a subtlety with boundary nodes while check-
ing for the largest spherical cap. We define a boundary
node as one that lies outside the 3-D convex hull formed
with all the neighbors when it transmits at maximum
power. A node can identify itself as a boundary node
in Phase I of the algorithm after running MDS and
constructing a 3-D convex hull with all the neighbors
that lie within its communication range. Each node can
perform this in O(d log d) time using the Quickhuhll
algorithm [13], where d is its degree. Since a boundary
node does not have neighbors in all directions around
itself, its spherical Delaunay triangulation might form
caps that are smaller than the threshold area but still have
empty 3-D cones pointing outwards. In such cases, a
boundary node calculates the difference in surface area of
the spherical ball and the sum of the spherical triangles.
If this difference is greater than the threshold then it
further increases its power level. One advantage of this
SDT based approach compared to the CBTC technique
is that the boundary nodes do not end up with maximum
power levels. Formally, the following steps shown in
Figure 8 will be executed on each internal node ui.

Constructing a spherical Delaunay triangulation in
Step 7 of the algorithm is equivalent of finding the 3-D
convex hull for the set of projected points on the sphere.
This can be done in O(d log d) time using the Quickhull
algorithm [10], [13], where d is number of neighbors
(see Figure 7 for an illustration). Note that, the number of
spherical caps thus generated is of O(d). Hence, the time
complexity of the above algorithm is O(d log d). This is
a substantial improvement over the existing algorithms

1: Ni(P )← φ
2: P ← Pmin

3: while (P ≤ Pmax) do
4: Broadcast “Hello” message at power P and gather

“Reply” messages from neighbors;
5: Ni(P )← Ni(P ) ∪ {v | node v replied};
6: Project the locations of Ni(P ) on the surface of

the spherical ball B(ui, R);
7: Construct SDT with the projected points;
8: Find the largest spherical cap surface area, Ωmax

i ;
9: if

(
Ωmax

i > (2.72)R2
)

then
10: P ← increment(P );
11: else
12: break;
13: end if
14: end while

Fig. 8. Second phase of algorithm based on spherical Delaunay
triangulation.

that run in O(d3 log d) time. Since the average node
degree in 3-D is very high compared to that in 2-D for
a network to be connected with high probability under
random deployment of nodes, an improvement of d2

implies a much faster algorithm. For instance, when the
number of nodes is n = 1000, the critical transmission
radius for connectivity in 2-D, according to percolation
theory, is 0.07, while in 3-D it is 0.02, resulting in an
average node degree of 15 in 2-D and 34 in 3-D [5].

As we explained earlier, the orthographic projection
based approach (Section V), although works very well
in practice, does not theoretically guarantee a connected
3-D network even when the θ constraint is satisfied on all
the three planes. The degenerate cases can be identified
by combining the two approaches in the following way.
Before projecting the neighbors on the spherical surface
in Step 6 of Figure 8, each node first projects them on the
xy, yz, and zx planes. Then it increments its power level
until all the three planes satisfy θ = 2π/3 constraint, i.e.,
until the function gapθ(Di) returns false for all the three
planes. Let this power level be Pproj . Only after this,
the neighbors are projected on the surface of a sphere
of radius R = f(Pproj) and Steps 7, 8, 9 and so on
are executed. If the algorithm terminates with the node
choosing a power level that is smaller than its maximum
power level, then this is a degenrate case. This is because
had the node settled down with its maximum power level
Pmax, it would mean that either the largest spherical cap
area is greater than or just equal to the threshold value
of Ωmax = (2.72)R2. In the first case, the 3-D network



(a) Maximum power graph. (b) Final connected network topology based on SDT.

Fig. 9. Network topology before and after the SDT algorithm, n = 200, P max = 40. Note that, node degrees have drastically reduced.

will not be connected, whereas in the second case the
network finally formed is, in fact, the original maximum
power graph, which was assumed to be connected.

VII. SIMULATION RESULTS

In order to understand the efficiency of our algo-
rithms, we conducted simulations by generating random
networks in 3-D of different sizes inside a cuboid of
dimensions 100 × 100 × 100. Before running the pro-
jection based or the spherical Delaunay triangulation
based algorithm, we run MDS to get relative neighbor
locations for each node at their maximum transmission
power level.

For the SDT based algorithm, we generated random
network topologies for n = 200 nodes under differ-
ent maximum power levels. The performance of our
algorithm is measured in terms of average node degree
and average transmission power level. As an example,
we show one specific instance of the initial network
topology (the connected maximum power graph) when
Pmax = 40 in Figure 9(a). In Figure 9(b) we show
the same network after nodes have settled down with
minimal transmission power levels according to the SDT
algorithm. For the same problem instance, we plotted the
initial and final node degrees in Figure 10(a). Finally,
in Figure 10(b) we show the assigned minimal power
levels for all the nodes. Note that, node degrees have
drastically reduced. We also observe that only 7.5% of
the nodes transmit at their maximum power level, and
more than 25% of the nodes transmit at less than half the
maximum power level (i.e., below 20). Next, we describe
the general trends.

We measured the dependencies between (1) average
node degrees, and (2) average transmission power levels

with different network sizes. In Figure 11(a), which
shows the plot of average node degree with network sizes
for Pmax = 40, we observe that as the network size
(density) increases, the average node degree increases
sharply for maximum power graphs whereas increases
very slowly for network topologies formed based on the
SDT algorithm. Figure 10(c) shows the plot of average
transmission power levels with increasing network den-
sity for topologies generated based on SDT. We observe
that as the network gets denser the average transmission
power decreases. This is expected because as the density
increases, nodes can use lower power levels to form more
number of multihop paths to guarantee network connec-
tivity. Note that, in Figure 11(a) when the number of
nodes increases to 400, the average node degree reaches
≈ 15, which is in accordance with the percolation theory
of critical average node degree for network connectivity
(average node degree = 4π

3 (0.2)3(400) ≈ 13.4).
In Figure 11(b) we plot average node degrees for ran-

dom topologies of 200 nodes with increasing maximum
power levels. We observe that average node degrees al-
most remain flat in the final topology generated based on
the SDT algorithm as compared to that of the maximum
power graph. This is because of the fact that as the
maximum power varies, only the few boundary nodes get
affected, as they are more likely to transmit at or close to
the maximum power compared to the internal nodes in
order to guarantee a minimal number of neighbors. The
average transmission power level chosen by the nodes in
the final topology is observed to vary from 26 to 21 as the
maximum power increased from 30 to 70 (not plotted).
Thus, the effectiveness of the algorithm is predominant
at higher maximum power levels.

To compare the SDT based algorithm with the one
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Fig. 10. (a) Node degrees of the maximum power graph and that of the final topology for n = 200, P max = 40. (b) Final assigned
minimal transmission power levels of nodes, for n = 200, P max = 40. (c) Dependency of average transmission power with network size.
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Fig. 11. (a) Dependency of average node degree with network size. (b) Dependency of average node degree with maximum power for
n = 200; node degree remains almost flat in the final topology based on the SDT algorithm. (c) CPU execution time of the SDT based
algorithm and the one [7] based on the procedure gap − 3Dα for different random topologies with P max = 40.

described in [7] based on the procedure gap − 3Dα,
both of which check for empty 3-D cones, we simu-
lated the algorithms and measured CPU running times
using the Matlab profile tool. Our measurements show
that the respective procedures sdtcheck() (part of our
implementation) and gap−3Dα() take most percentages
(80 − 90%) of total execution times. In Figure 11(c)
we show the plot of CPU execution times of these
two functions on random network topologies of different
sizes with maximum power set to 40. We observed that
SDT performs much faster than the other one and with
increasing network size (or equivalently with increasing
average node degree) the difference between execution
times becomes more predominant.

Finally, to measure the practicality of the orthographic
projection based algorithm we generated two random
networks with n = 50, 100 nodes and Pmax = 100.
Then we ran the projection based algorithm and gener-
ated different network topologies where the θ constraint
is satisfied on one, two or all the three planes. For each

of these cases we checked the connectivity of the original
3-D graph. In Figure 12 we plot the probability of
connectivity with θ. Each point in the plot is an average
of 200 runs. We observe that when the θ constraint
is satisfied on only one plane the original 3-D graph
is actually never connected. However, when each node
guaranteed θ = 2π/3 on all the three planes, the 3-
D topology generated with that power level is found
to be connected at all times. Moreover, even when the
constraint is satisfied on only two planes, we found that
the 3-D graph is disconnected only a very small number
(< 1%) of times. This shows that the heuristic based
approach works very well in practice.

VIII. CONCLUSIONS

We presented two efficient distributed topology control
algorithms for 3-D multihop wireless networks. Our first
approach was based on the idea of 2-D orthographic
projections, by which we reduced and simplified the
original 3-D problem into a set of three similar prob-
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Fig. 12. Probability of network connectivity as the θ constraint is satisfied on 1, 2, or all 3 orthogonal planes.

lems on 2-D, and used existing techniques from CBTC
to show that network connectivity can be guaranteed
almost at all times. In the second approach we used
the properties of Delaunay triangulation on the surface
of a sphere to determine the existence of empty 3-D
cones in an efficient way and showed that the network
topology generated based on this is always connected.
Both the algorithms are computationally very efficient
and scale as O(d log d) in time, where d represents
average node degree. The d2 improvement in running
time implies a much faster algorithm especially in 3-D,
as d is typically very high in 3-D compared to that in 2-
D, and this was verified by measuring CPU execution
times on topologies with increasing node degree. To
substantiate our claims we conducted simulations on net-
work topologies in 3-D for both the SDT based algorithm
and the heuristic based approach. Doing a probabilistic
analysis of network connectivity for the orthographic
projection based approach and implementation of the
SDT algorithm on real motes are part of our future work.
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