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Abstract. We present a comparative mathematical analysis of two im-
portant distinct approaches to hybrid push-pull querying in wireless sen-
sor networks: structured hash-based data-centric storage (DCS) and the
unstructured comb-needle (CN) rendezvous mechanism. Our analysis
yields several interesting insights. For ALL-type queries pertaining to
information about all events corresponding to a given attribute, we ex-
amine the conditions under which the two approaches outperform each
other in terms of the average query and event rates. For the case of ANY-
type queries where it is sufficient to obtain information from any one of
the desired events for a given attribute, we propose and analyze a modi-
fied sequential comb-needle technique (SCN) to compare with DCS. We
find that DCS generally performs better than CN/SCN for high query
rates and low event rates, while CN/SCN perform better for high event
rates. Surprisingly, for the cases of ALL-type aggregated queries and
ANY-type queries, we find that there exist “magic number” event rate
thresholds, independent of network size or query probability, which dic-
tate the choice of querying protocol. While our analysis is based on a
single-sink square-grid deployment, we believe the insights can be gen-
eralized to random deployments.

1 Introduction

The primary function of a sensor network is to enable information gathering. The
simplest strategy is to have all sensors provide a continuous stream of all the data
that they gather to a sink node. However, for many classes of applications where
only a small subset of the collected information is likely to be useful to end-users,
this simple approach can become very inefficient. Researchers have therefore
advocated the use of data-centric techniques which allow for efficient in-network
storage and retrieval of named data using queries [1]. A number of data-centric
querying and routing techniques have been proposed and examined in recent
years: directed diffusion [2], TAG/TinyDB [3], rumor routing [4], hash-based
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data centric storage [5], hybrid push-pull [8], comb-needles [9], ACQUIRE [10],
and TTL-based expanding search [11, 12].

With the presence of an increasing number of choices of data-centric stor-
age and querying techniques, it becomes of crucial importance to understand
and quantify their performance (both in absolute terms and with respect to
each other) with respect to key application, network, and environmental param-
eters. In particular, carefully developed mathematical models can provide deep
practical design insights on protocol selection as well as protocol parameter op-
timization for different sensor network deployments.

There are several interesting prior studies on analytical modelling of query
strategies [5], [6], [7], [8], [9], [10], [12]. The energy costs of data centric storage
are compared with the two extremes of external storage and local storage in [5]. A
hybrid push-pull query processing strategy is proposed and analyzed in [8]. Push
and pull alternatives of directed diffusion are also analyzed in [7]. Shakkotai [6]
has presented a comparison of the asymptotic performance of three random walk-
based query strategies, showing that a push-pull rendezvous-based sticky search
has the best success probability over time. The optimal parameter setting for the
comb-needles approach is analyzed in [9]. The optimal replication level for queries
disseminated using expanding ring searches is analyzed in [12]. A common thread
through much of this literature on the analysis of query techniques is the argu-
ment that tunable hybrid push-pull strategies offer significant advantages. Our
work builds on and complements these existing studies, as we aim to compare two
distinct and important approaches to hybrid push-pull querying.

Following the nomenclature used to classify peer-to-peer networks, we can
distinguish between two main categories of hybrid push-pull query strategies:
structured and unstructured. The structured approach is exemplified by ge-
ographic hash table-based data centric storage technique [5]. The data from
sources is placed at a location using the same hash that the sink uses to retrieve
it. This significantly simplifies the query since the sink effectively “knows” ex-
actly where to look for the stored information. The unstructured approach to
push-pull querying is exemplified by the comb-needle approach [9]. In this ap-
proach, the absence of a hash implies that the sink does not have prior knowledge
of the location of the information. In that case, the queries are disseminated in
the form of a comb with horizontal teeth, while the sources send event notifi-
cations independently in the form of limited vertical needles in either direction.
The inter-teeth spacing and needle size are chosen and optimized to ensure that
sources and sinks can rendezvous with each other efficiently. To the best of our
knowledge, these two distinct and important approaches to hybrid push-pull
querying — the structured DCS and the unstructured comb-needle technique —
have never been compared to each other. This is our objective in this paper.

We undertake a mathematical analysis comparing the expected total energy
costs of both these approaches on a grid-based sensor deployment. Our modelling
of these query strategies allows us to study the impact of several key parameters
such as the size of the network, the event and query rates, the use of data aggre-
gation (using summaries), as well as the type of queries. For a fair comparison,
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we carefully select optimized versions of each strategy. In particular, we allow the
storage location to be chosen optimally for the hash based data-centric storage
scheme, and we use optimized inter-tooth spacing for the comb-needle approach.

We consider two important types of one-shot queries in this paper. We refer
to the first query type as an ALL-type query. These are global discovery-type
queries, such as ‘Give me the location of all the lions in the sensor deployed
area?’ or ‘Return the locations that have temperature ≥ 60◦ F’. In this case, the
desired information must be obtained from all nodes in the network with relevant
event information. The second type of query, which we refer to as an ANY-type
query, is a one-shot query where any event that has the information can reply
to the querier. Examples of such queries are ‘Give me any location where a lion
has been spotted in the sensor deployed area?’ or ’Give me any location where
the measured temperature is greater than 60 F’. For the ANY-type queries, the
entire network need not be necessarily covered by the combs in the comb-needle
strategy. Based on this insight, we propose and analyze a modified sequential
comb-needle querying scheme (see Section 2.3).

Our analysis yields a number of useful insights into the relative performance
of structured and unstructured approaches to hybrid push-pull querying. In all
cases, we find that the unstructured comb-needle approach outperforms the data
centric storage strategy when the number of events per epoch is large, while
the reverse is true for small number of events, particularly for higher query
rates. A particularly surprising and strong finding of our analysis is that un-
der the assumptions of our modelling (large square grid network with a single
caching-enabled querying sink located at bottom left) for the cases of aggregated
ALL-type queries as well as the ANY-type queries, there exist “magic numbers”
dictating which approach should be used for a given application scenario. In
particular, for ALL queries, we find that if the number of events per epoch is
greater than about 40 (regardless of the query rate or size of the network), the
comb-needle strategy always outperforms data centric storage. For ANY queries,
when the number of events per epoch is less than 1.56 (regardless of the query
rate or size of the network) the data centric storage strategy always outperforms
the sequential comb-needle strategy. However, if the number of events is greater
than 3.16 (regardless of the query rate or size of the network), the sequential
comb-needle strategy always outperforms data-centric storage.

Even though the topology considered in this study is a square grid (more
amenable to analysis), we believe that similar magic numbers will be obtained
in case of a random deployment. This is because the behavior of the querying
strategies considered in this study scales in a similar manner with the network
topology-related parameters and is more critically affected by the application
parameters such as average event and query rates. This remains a subject of
future investigation.

The rest of the paper is organized as follows. In Section 2, we present a
brief overview of the algorithms to be analyzed in our paper: data centric stor-
age (DCS), the basic comb-needle (CN) algorithm, and sequential comb-needle
(SCN) algorithm. We specify our modelling assumptions in Section 3. We derive



188 S. Kapadia and B. Krishnamachari

and compare the costs of data centric storage and comb-needle strategies with
and without summary aggregation for ALL-type queries in Section 4. Then we
analyze and compare data centric storage with the sequential comb-needle algo-
rithm in Section 5. Finally, we discuss our key findings, along with directions for
future work in the concluding Section 6.

2 Overview of Algorithms

2.1 Data Centric Storage (DCS)

The data centric storage query dissemination strategy uses distributed hash ta-
bles to store the event data sensed by a particular node (see Figure 1(a)). All the
events of a particular event type (i.e. event having similar attributes) are hashed to
the same node location. The data is then transported from the various event nodes
along the shortest path to the node at the chosen location. Assuming the presence
of location information, the authors propose to use GPSR to perform the routing.
Queries for an event are then directed along the shortest path to these named loca-
tion, since the query nodes also use the same hash function. The query responses
are sent on the reverse path along which the query is forwarded.

2.2 Comb Needle (CN)

In this query dissemination strategy, the event nodes send out the sensed infor-
mation vertically up and down like a spike (needle) of a certain length (see Fig-
ure 1(b)). Let the length of the needle be denoted by s. The sink then sends out a
query that traverses the network along a comb. The separation between the teeth
of the comb is also s to ensure that at least one comb teeth hits each needle, so as to
not miss out any event nodes. The information requested is then sent back to the
sink along the shortest path. Note that this strategy is used when the average num-
ber of queries, Q, is less than or equal to the average number of events, E. When

(a) Data Centric Storage (b) Comb-Needle

Fig. 1. Illustration of the DCS and CN querying techniques
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Q > E, a reverse comb-needle strategy is used where the query nodes form a nee-
dle and the event information is forwarded along a comb. Hence, the total cost for
query dissemination in case of CN (CCN ) depends on the relationship between Q
and E. However, in our case, since the sink is fixed and located at the left-bottom
corner of the grid, we do not use the reverse comb needle scheme.

2.3 Sequential Comb-Needle (SCN)

The motivation behind introducing this query scheme is to efficiently resolve the
ANY type queries in which case the query terminates as soon as the query hits
the first event node of interest. In this way, the sequential comb needle scheme will
always do better than the comb-needle scheme since it does not pay the extra cost
incurred by the comb during query dissemination. In this scheme, similar to the
comb-needle scheme, the event nodes form needles by spreading their information
vertically to some nodes above and below them. The query originates from the sink
and traverses the network as shown in Figure 2(a). Again, the size of the needles is
denoted by s. Also, the distance between consecutive query horizontal traversals is
s. The moment the query hits a node with the desired event information, the query
path is truncated and the response is returned back to the sink.

(a) Sequential Comb-Needle (b) Optimal DCS Calculation Illustration

Fig. 2. Illustration of the SCN and the four-rectangle decomposition for calculating
d2(p) - the average distance between all nodes and a storage point located at Popt(p, p),
respectively

3 Model and Assumptions

We first present our modelling assumptions:

– We consider a
√

N ×
√

N regular grid comprising N nodes. Each node has
4 neighboring nodes adjacent to it. Hence, the distances between the nodes
are evaluated as Manhattan distances.
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– Queries only occur at the sink node located at the left-bottom corner of the
grid. This represents the interface of the sensor network to the outside world.

– We consider a time period, T , defined as an epoch. This represents the period
of time when the event information stored by the nodes will be valid.

– Our analysis aims at optimizing the total expected energy cost incurred
during each epoch. We use the total number of required unicast transmissions
as the indicator of energy costs.

– Without loss of generality, we focus the analysis on queries and events for
a single generic event attribute (i.e. event type). Events corresponding to
this attribute are assumed to occur uniformly across the sensor network.
Evaluation of complex queries comprising multiple attributes remains a topic
of future research.

– We denote by E the average number of events that occur during epoch T .
– We denote by Q the expected number of queries that occur within epoch

T . Since the event information does not change over an epoch, Q is always
between 0 and 1 and represents the probability that a query is issued during
that epoch.

– We assume the presence of a suitable MAC layer to handle collisions and
contention.

4 Analysis of ALL-Type Queries

As mentioned earlier, ALL-type queries are of the type ‘Give me all locations in
the network where a lion was seen’. We first present the comparison of the data-
centric storage and comb-needle scheme for such queries. We consider two cases:
(a) When all the event information is sent to the sink (Without aggregation,
i.e., with no summaries). (b) When only an aggregated summary of the event
information is sent to the sink (With aggregation, i.e., using summaries).

4.1 Without Aggregation/Summaries

Cost of DCS with optimized hash location. Below, we calculate the average
cost incurred in case of the DCS strategy in terms of the number of hops needed
for query resolution in the epoch T .

There are 3 different query costs involved, Cst to store events, Cqd the query
dissemination cost and Cqr the cost for the query response. Hence, we have the
total cost in case of DCS given by,

CDCS = Cst + Cqd + Cqr (1)

Since the position of the sink is fixed and known a priori, the DCS scheme can
be optimized on the basis of the position of the hashed named location where all
the event nodes send their data. Let Popt(x, y) denote the location of the node at
that point. By symmetry, it is easy to see that Popt will lie on the diagonal of the
grid, otherwise, nodes on either side of the diagonal will have a larger distance
to Popt. Hence, they will pay more for transferring the event information to Popt
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as compared to the other nodes. Say, we have x = y = p. Let d1(p) denote the
distance from the sink to Popt, and d2(p) the average distance between any node
on the grid to the node located at point Popt.

Note that without summaries, all the event information has to be sent out in
the reply to the sink. Hence, we have,

CDCS = min
p

(d2(p) · E + d1(p) · Q + d1(p) · Q · E)(-Without summaries) (2)

We can determine the distance from the sink to Popt trivially as

d1(p) = x + y = 2p (3)

The calculation of d2(p) is more involved. We can consider the grid as be-
ing divided into 4 rectangles as shown in Figure 2(b). The size of these rect-
angles is p × p, (

√
N − p) × (

√
N − p), p × (

√
N − p) and (

√
N − p) × p.

The average distance from a node, located on a corner, to any node for a
rectangle of size X × Y is given by Equation 38 (see Appendix), Drect =
X·Y ·(X+Y −2)

2·(X·Y −1) .
For rectangle 1, the average distance between the node on its right-top corner

and the other nodes is given by p2

p+1 . Note that there are p2 − 1 nodes in this
rectangle other than the node at the right-top corner. Hence, the total distance
between any node and the node on the right-top corner is given by,

D1 =
p2

p + 1
· (p2 − 1) (4)

Similarly, total distance for rectangle 3 is given by,

D3 =
(
√

N − p)2√
N − p + 1

· (
√

N − p)2 − 1) (5)

Since rectangles 2 and 4 are of the same size, we have their total distance
given by,

D2 = D4 = 2 · p(
√

N − p)
2

·
√

N − 2
p(

√
N − p) − 1

· (p(
√

N − p) − 1) (6)

Also, note that the distance from A to Popt is 2, while the distance from B
and C to Popt is 1. Hence, we need to add an additional 2p2 and 2p(

√
N − p) to

account for the distances between all the points in rectangles 1, 2 and 4 to point
Popt.

From Equations (4), (5), and (6) we get,

d2(p) =
1

N − 1
·
[
(
√

N − p)2 · (
√

N − p − 1)

+p · (
√

N − p) · (
√

N − 2) + p2 · (p − 1) + 2 · p2 + 2 · p · (
√

N − p)
]

(7)
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Simplifying the above expression we get,

d2(p) =
1

N − 1
·
[
N ·

√
N − N − 2 · N · p + 2 ·

√
N · p2 + 2 ·

√
N · p

]
(8)

From Equation (2) we have,

CDCS = min
p

(
E

N − 1
·
[
N ·

√
N − N − 2 · N · p

+2 ·
√

N · p2 + 2 ·
√

N · p
]

+ 2 · Q · (E + 1) · p) (9)

Using
√

N + 1 =
√

N − 1 ≈
√

N and N − 1 ≈ N , for large N, and simplifying
the above equation we get,

CDCS = min
p

((
√

N − 2 · p + 2√
N

· p2) · E + 2 · Q · (E + 1) · p) (10)

In order to determine the optimum value of p, we differentiate the above
equation with respect to p and set it to 0. This yields the minimum value for
CDCS because the above expression is convex in p. Hence, we get the optimal
value of p as,

p∗ =

√
N(

√
N − 1) · E − Q · (E + 1) · (N − 1)

2 · E · (
√

N + 1)
≈

√
N

2 · E
(E − Q · (E + 1)) (11)

In the above expression, if p∗ ≤ 0, this implies that the event nodes should
send all their information directly to the sink. This resembles the external storage
scheme. In that case, the expression for CDCS reduces to

√
N · E. Hence, the

cost for query dissemination then goes to 0. Also, the condition for which p∗ > 0
is given by Q < E

E+1 .
Putting the optimal value of p∗ obtained from Equation (11) into Equa-

tion (10), we get the total cost for the DCS scheme (without summaries) as,

CDCS =

{√
N

[
Q · (1 + E) − Q2·(1+E)2

2·E + E
2

]
if Q < E

E+1√
N · E Otherwise

(12)

Cost of CN with optimized inter-tooth spacing. The derivation for the
analysis of the comb-needle strategy is adapted from [9], however, here we use
the exact expressions in case of the grid. First, we consider the case without
summaries. As with DCS, there are 3 different costs involved, Cneedle represents
the needle costs for forwarding the event information to a subset of nodes, Ccomb

represents the query dissemination cost and Cqr represents the cost for the query
response. Below, we present expressions for each of them.

CCN = Cneedle + Ccomb + Cqr (13)

Let s be the length of the needle formed by each node that senses an event.
Then, the total needle cost is given by,

Cneedle = s · E (14)
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In the comb-needle strategy, the query is first sent out vertically upward from
the sink and then fans out horizontally (see Figure 1(b)). The distance between
consecutive horizontal fan outs is also s, also known as the teeth separation for
the comb.

Ccomb = (
√

N − 1) · (1 + (�
√

N − 1
s

� + 1)) · Q ≈ 2 ·
√

N · Q +
N · Q

s
(15)

Note that the ceil is present because there is a horizontal fan out at (0,0) and
(
√

N −1,0). Assuming, that each node where the comb tooth intersects with the
needle, replies along the shortest path to the sink (see Appendix 6), we have the
total query response cost given by,

Cqr =
N√

N + 1
· E · Q ≈

√
N · E · Q (16)

Hence, the total cost for the comb needle strategy is given by,

CCN = s · E + 2 ·
√

N · Q +
N · Q

s
+

√
N · E · Q (17)

Now we find the value of s that minimizes this total query cost. On solving

we get, s∗ =
√

N ·
√

Q
E

Hence, the total cost with the comb needle scheme without summaries is given
by,

CCN =
√

N · (2 · Q + 2 ·
√

Q · E + E · Q) (18)

Comparison of DCS and CN. Figure 3(a) and 3(b) compare the normalized
expected cost of querying (which is calculated as the total expected cost divided
by the square-root of the number of nodes) with the DCS and CN strategies
with respect to the two key parameters E and Q. Note that from Equations (12)
and (18), we can see that the total expected cost of querying is proportional
to

√
N for both DCS and CN. We observe that CN outperforms DCS as the

average number of events per epoch increases, while DCS outperforms CN when
the per-epoch query probability increases.

Figure 4 shows the regions in the E-Q plane where DCS and CN outperform
each other. This is generated by obtaining the zero-contour of the surface rep-
resenting the difference in cost between DCS and SCN as a function of E and
Q. We note that the equal-cost curve grows slowly with respect to E1. In par-
ticular, here, there is no threshold event rate beyond which CN is always better
regardless of the query rate — we shall see later that this is not always the case.

4.2 With Aggregation/Summaries

Cost of DCS with optimized hash location. With summaries, all the event
information can be compressed into a single packet and sent out to the sink,
1 This can be shown rigorously in terms of the derivative of that curve, but we do not

present that analysis here due to lack of space.
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Fig. 3. Cost of CN and DCS for ALL-type queries, without summary aggregation, with
respect to E (for Q = 0.1) and Q (for E = 10)
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Fig. 4. Relative Performance of CN and DCS for ALL-type queries, without summary
aggregation, with respect to event and query rates

hence, we have,

CDCS = min
p

(d2(p) · E + d1(p) · Q + d1(p) · Q)(-With summaries) (19)

Using a similar procedure to that used earlier for the case without summaries,
since only the reply cost is different and everything else is the same, we obtain
the total cost for DCS with summaries as,

CDCS =

{√
N

[
2 · Q − 2·Q2

E + E
2

]
if Q < E

2√
N · E Otherwise

(20)

Cost of CN with optimized inter-tooth spacing. We now describe the
CN cost with summaries. The query dissemination cost, Cqd and the needle cost
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Cneedle remain the same as was the case without summaries. For the reply cost,
we note that reply from the various events can be aggregated on the way back
to the sink. To account for this aggregation we approximate the reply cost to be
the same as the cost for the comb i.e. the cost for query dissemination. This is
because the events need only send their data horizontally toward the sink, the
vertical path downward toward the sink will account for the aggregation. Hence,
now we have the total cost for CN given by,

CCN = Cneedle + Ccomb + Cqr = Cneedle + 2 · Ccomb (21)

CCN = s · E + 4 · Q · (
√

N − 1) + 2 · (
√

N − 1) · (�
√

N − 1
s

�) · Q

≈ s · E + 4 · Q ·
√

N + 2 · Ns · Q (22)

Again, we solve for the optimum s to get, s∗ =
√

N ·
√

2·Q
E

Hence, the total cost with the comb needle scheme with summaries is given
by,

CCN = 2 ·
√

2 · N · Q · E + 4 ·
√

N · Q (23)

Comparison of DCS and CN. Figures 5(a) and 5(b) compare the normalized
expected cost of storage and querying with the DCS and CN strategies with re-
spect to the two key parameters E and Q. We observe that even with summaries
CN outperforms DCS as the average number of events per epoch increases, while
DCS outperforms CN when the per-epoch query probability increases.

Figure 6 shows the regions in the E-Q plane where DCS and CN outperform
each other. We can see that (unlike in the case without summaries) there exists an
threshold Θ for the event rate beyond which CN is always better. This threshold
can be derived analytically.

First, we can prove that when Q ≥ E/2, CDCS =
√

NE is always smaller
than CCN , hence there is no solution for CDCS − CCN = 0 in this case. When
Q < E/2, then we can write the expression for the equal-costs curve as follows:

√
N

[
(2Q − 2Q2

E
+

E

2
) − (2

√
2QE + 4Q)

]
= 0 (24)

As can be seen from the figure, the threshold event rate corresponds to the
point when there is a query at every epoch. Setting Q = 1, and solving the
above expression for E, we find that the threshold Θ ≈ 39.78. An important
point to note is that this threshold is a “magic number” that is independent
of the size of the network. It tells us a surprising design lesson: for a grid-
based network where ALL-type queries are always injected from the bottom left
corner, if there are more than 40 events on average in each epoch that must
be aggregated in response to queries, then a comb-needle approach is preferable
in terms of total energy cost as compared to a hash-based data-centric storage
approach.
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Fig. 5. Cost of CN and DCS for ALL-type queries, with summary aggregation, with
respect to E (for Q = 0.1), and with respect to Q (for E = 1)
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Fig. 6. Relative Performance of CN and DCS for ALL-type queries, with summary
aggregation, with respect to event and query rates

5 Analysis of ANY-Type Queries

Recall that in case of ANY-type queries, the query need not visit every node
in the network, it should be terminated as soon as it hits a node that has the
desired information. Here, for such query types, we obtain the expressions for
the data-centric storage scheme and the modified comb and needle scheme which
we call the sequential comb-needle (SCN) scheme.

Cost of DCS. The cost for ANY-type queries remains the same as that ob-
tained for ALL-type queries with summaries. This is because the data centric
storage scheme stores all the information about a given event type at a named
location. Hence, the reply to the ANY-type query can be considered similar to
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just returning the summary. Hence, the cost in case of DCS can be obtained
from Equation 20.

Cost of SCN. We now derive the cost for the sequential comb-needles (SCN)
approach. To determine the cost for the query transmission we need to obtain
the average number of hops/transmissions till a node with the desired event
information is hit. Since each event node replicates the data to s other nodes,
and the separation between successive horizontal traversals along the query path
is also s, the original grid with N nodes can be transformed to a new grid with
N
s nodes. The sequential comb-needle scheme then traverses this new grid as a
chain of N

s nodes. Denote n = N
s . Let X be a random variable that determines

the number of hops till a event node is hit by the query. Note that, even in this
compressed chain, E·s

s = E is the number of event nodes. Now, we have the cdf
of X given by,

FX(k) = P (X ≤ k) = 1 − (
n − k

n
)E (25)

We can now obtain the pmf of X as,

pX(k) = P (X ≤ k) − P (X ≤ k − 1) = (1 − k − 1
n

)E − (1 − k

n
)E (26)
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Fig. 7. Cost of SCN and DCS for ANY-type queries, with summary aggregation, with
respect to E (for Q = 0.1), and with respect to Q (for E = 2)

Now the expected value of X can be obtained by using Equation 26 as follows,

E[X ] =
n−1∑
k=1

k · ((1 − k − 1
n

)E − (1 − k

n
)E) (27)

Let f(k) = (1 − k
n )E . Then we get,

E[X ] =
n−1∑
k=1

k · (f(k − 1) − f(k)) (28)
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This summation can be opened up so that the consecutive terms can be
grouped together to leave,

E[X ] =
n−1∑
k=1

f(k) − n · f(n) =
n−1∑
k=1

(1 − k

n
)E (29)

Note that f(n) = 0, hence, in the above expression by substituting j = n− k,
we get,

E[X ] =
n−1∑
j=1

(
j

n
)E =

1
nE

n−1∑
j=1

jE (30)

Approximating the summation by an integration, we get,

E[X ] ≈ 1
nE

· nE+1

E + 1
=

n

E + 1
=

N
s

E + 1
(31)

Note that E[X] just accounts for the number of horizontal steps taken by the
SCN query path. We also need to account for the vertical steps that it takes.
This can be approximated by determining the y-coordinate of the point where
SCN hits the first event node. This is given by,

E[Y ] =
N

s·(E+1)√
N

· s =
√

N

E + 1
(32)

For simplicity, we assume that the query response path is the same as that
taken by the query. Now, we can get the total cost in case of SCN as,

CSCN = Cneedle + Cqd + Cqr (33)

CSCN = s.E +
N
s

E + 1
· Q +

N
s

E + 1
· Q + 2 ·

√
N

E + 1
(34)

Solving for the value of s that minimizes CSCN we get s∗ =
√

2·N ·Q
E·(E+1) . Using

this value, we get the total cost in case of the sequential comb-needle strategy
as,

CSCN = 2 ·
√

2 · N · Q · E

E + 1
+ 2 ·

√
N

E + 1
(35)

Comparison of DCS and SCN. Figures 7(a) and 7(b) compare the normal-
ized expected cost of storage and querying with the DCS and SCN strategies
with respect to the two key parameters E and Q. We observe that SCN out-
performs DCS as the average number of events per epoch increases, while DCS
outperforms SCN when the per-epoch query probability increases.

Figure 8 shows the regions in the E-Q where DCS and SCN outperform each
other. We can see that in this case, there are two significant thresholds for the
event rate. Below a lower threshold Θlower, we find that DCS is always better
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(regardless of the query probability), and above an upper threshold Θupper , SCN
is always better (regardless of the query probability). These “magic numbers”
can be derived analytically.

First, similar to the analysis of the DCS and CN strategies with aggregated
responses for the ALL-type queries, we can prove that when Q ≥ E/2, CDCS =√

NE is always smaller than CSCN . When Q < E/2, then we can write the
expression for the equal-costs curve as follows:

√
N

[
(2Q − 2Q2

E
+

E

2
) − (2

√
2QE

E + 1
+

2
E + 1

)

]
= 0 (36)

As can be seen from the figure, the threshold event rate corresponds to the
point when there is a query every epoch. Setting Q = 0, and solving the above
expression for E, we get the lower threshold Θlower ≈ 1.56. Setting Q = 1 and
solving the above expression for E, we find that the threshold Θupper ≈ 3.16.
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Fig. 8. Relative Performance of SCN and DCS for ANY-type queries with respect to
event and query rates

6 Conclusions and Future Research Directions

We have presented a comparative analysis of two distinct and important ap-
proaches to hybrid push-pull querying in wireless sensor networks - the struc-
tured hash-based DCS, and the unstructured CN/SCN. We have examined their
performance with respect to key environment, network, and application param-
eters including the event and query rates, network size, type of query, and the
use of in-network aggregation.

We have found that the costs of DCS, CN, and SCN are all directly propor-
tional to the square-root of the number of nodes in the network. Therefore, the
relative performance of DCS versus CN/SCN is unaffected by network size. The
exact shape of the relative best performance regions for the two approaches do
change depending on the query type (ALL, ANY) and the use/non-use of sum-
mary aggregation; however, we find in all cases that the unstructured CN/SCN
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approach generally outperforms the DCS strategy when the number of events per
epoch is large, while the reverse is true for small number of events, particularly
for higher query rates. A possible explanation for this is that, relatively speak-
ing, the query cost burden is reduced in structured strategies like DCS when
compared with an unstructured strategy like CN/SCN because the use of hash-
ing provides a predetermined location to pick up information about all events.
But this comes at the expense of a higher cost burden in event notification since
all events must be transmitted to a generally non-local hash location. Thus a
hash-based push-pull scheme like DCS favors high query rates but low event
rates, compared to a path-intersection based push-pull scheme like CN/SCN. It
is possible that considering replication of event storage locations in DCS changes
this tradeoff. This can be explored in future work.

Our analysis reveals the existence of event rate thresholds for aggregate ALL-
type queries (Θ ≈ 39.78) as well for as ANY-type queries (Θlower ≈ 1.56, Θupper ≈
3.16), that dictate which protocol should be used in a given application scenario
regardless of the query probability. Moreover, we believe that these magic num-
bers will exist even in the case of a random deployment of sensor nodes. This re-
mains a promising future research direction. We are currently implementing sim-
ulations and considering extending the analysis to further study the behavior of
these strategies with a random deployment of sensor nodes.

Besides offering some concrete guidelines for practitioners, this study sug-
gests a number of other interesting directions for future work. Our analysis can
be extended to include other querying protocols enabling comparison of various
proposed schemes under a common framework. These include extensions of the
analysis taking into account different deployment topologies, different cost met-
rics (including other energy models, as well as delay), different types of queries
(for example, complex queries involving multiple attributes) and allowing mul-
tiple querying sinks. The theoretical results we present should also be validated
through experiments on a real application/test-bed.
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Appendix

Average distance between a node located at the bottom-left corner
and any other node within a X × Y rectangular grid.

This can be expressed by the following summation:

Drect =

∑X−1
i=0

∑Y −1
j=0 (i + j)

X · Y − 1
(37)

Evaluating the above expression, we get

Drect =
X · Y · (X + Y − 2)

2 · (X · Y − 1)
(38)

Note that from this by setting X = Y =
√

N , we have the distance from the
node at one corner to any point in the

√
N by

√
N square grid:

Dsquare =
N√

N + 1
(39)
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