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Abstract— We consider the problem of optimizing the
number of replicas for event information in wireless sensor
networks, when queries are disseminated using expand-
ing rings. We obtain closed-form approximations for the
expected energy costs of search, as well as replication.
Using these expressions we derive the replication strategies
that minimize the expected total energy cost consisting of
search and replication costs, both with and without storage
constraints. In both cases, we find that events should be
replicated with a frequency that is proportional to the
square root of their query rates. We validate our analysis
and optimization through a set of realistic simulations that
incorporate non-idealities including deployment boundary
effects and lossy wireless links.

I. INTRODUCTION

While the nodes in a sensor network can be operated in
a continuous data gathering mode, this approach is not
useful except for very simple applications. Continuous
data gathering from all sensors is generally very ineffi-
cient if most of the sensed information is not essential,
or if there are multiple sinks that may need to request
different subsets of the sensed information at different
times. In such contexts it is better to think of the
sensor network as a decentralized data storage system
(see [1] for an excellent survey of data-centric storage
techniques). In such a data-centric storage approach, the
sensed data can be either stored locally or at one or more
remote locations within the network. Event information
is obtained by sinks through queries that are issued on
an on-demand basis.

In this work, we focus on the case of replicated
event information stored at multiple storage points in
the network in a randomized manner. Multiple replicas
of an event (or in the case of large data items, pointers
to where the original event information is stored) can
be either placed carefully at predetermined locations or

randomly. The former approach is exemplified by hash-
based data centric storage techniques such as GHT [2],
DIM [3], etc., and can be efficient since queries can
be sent directly to the storage location. However, ran-
domized storage of replicated information is justified
in some scenarios when there is a high overhead for
maintaining shared predetermined location information
across the entire network (due to dynamics such as
changes, movements and failures of nodes in the net-
work). Randomized storage can also provide for a more
load-balanced storage over time, and, in some cases,
provide greater security by making it difficult to identify
and target nodes containing critical information.

With unstructured, randomized storage, however, the
querying nodes must resort to some form of blind search.
We focus on expanding ring queries in which there are
successive rounds of controlled floods with increasing
TTL-values to detect the nearest copy of the queried
information. While the tradeoffs we explore can be gen-
eralized to other search techniques, our motivation for
focusing on expanding ring-based queries is that these
have been relatively well studied [4], [5]. In particular,
we use the dynamic programming algorithm proposed
by Chang and Liu [5] to perform optimal expanding ring
searches.

Intuitively, the performance of a TTL-based expanding
ring search improves with additional replicas. When
there are more randomly placed replicas in a network,
the likelihood that the event being searched for is located
within a smaller number of steps, close to the sink,
becomes higher. However, this reduction in the expected
search energy cost comes at the expense of an increased
energy cost for replication. Our goal is to minimize the
total expected energy cost consisting of search and repli-
cation costs by carefully selecting the optimal number
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of replicas. We assume there can be limited storage at
each sensor node in some networks. In such scenar-
ios, the optimization must explicitly consider storage
constraints. We therefore consider both constrained and
unconstrained versions of this optimization problem.

This paper is organized as follows. We first model
the search cost of optimal TTL-based/exanding ring
search in section II. While a constructive solution to
optimal search is provided by modifying the dynamic
programming algorithm developed by Chang and Liu [5],
we find that obtaining a closed form exact expression for
the cost of the optimal search as a function of number
of replicas appears to be intractable. We therefore first
develop bounds on the optimal search cost. An upper
bound is provided by an expression we derive for the
step-by-step expanding ring search. We also derive a
lower bound using a genie argument. We show that both
bounds decrease inversely with the number of replicas,
motivating an approximation for the expected optimal
search cost.

We then present expressions for the expected replica-
tion cost for disk and square deployments in section III.
Then, we combine these expressions to provide the total
combined cost of search and replication as a function
of the number of replicas and solve for the optimal
number of replicas with and without storage constraints
in section IV.

We validate our analysis through a set of simulations in
section V. These simulations are performed using a real-
istic wireless network topology generator [9]. Although
we find that the node placement distributions and optimal
search sequences can be significantly different between
simulations and analysis, we find that the corresponding
expected search and replication costs are quite similar
and that the optimal replication number obtained through
analysis matches the simulation results quite closely.
Finally, we present concluding comments in section VI.

II. MODELING SEARCH COST

A. Scenario, assumptions, notation

We consider a circular area with nodes deployed with
a uniform random distribution. Each node can commu-
nicate with any other node that is placed within a radio
range R, and it is assumed that the network is sufficiently
dense so that all nodes within a distance kR of the sink
can be reached in k hops. The nodes in the circular
area are all located within L hops of the sink. When
modelling the search cost we assume that the sink is
located in the center of the region (we will relax these
assumptions in the simulation study in section V.)
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Fig. 1. Circular Topology used for Analysis

We assume that there is always a copy of the infor-
mation being queried for, within the network. We also
assume that all replicated copies of this information are
placed at random uniformly within the network. The sink
issues the query in successively expanding rings accord-
ing to a search sequence (we shall describe below how
the optimal search sequence is derived using dynamic
programming). The cost of querying and replication is
modelled as being directly proportional to the number
of transmissions incurred for each.

Figure 1 illustrates a sample network for R = 1. The
sink is denoted by an ’x’ while the replicas of a particular
event that is being queried for are denoted by a star.
Say the expanding ring search is denoted by the query
sequence {5, 10}, then the query is carried out in two
steps. First all nodes within the first five hops (i.e. within
a distance 5) are searched through a controlled flood. If
the nearest copy of the replicated information is located
within this distance (as in the figure), the search stops
right at this point. Else, another flood covering the whole
network within a distance 10 is issued.

Table I summarizes the notation to be used in the
analysis.

B. Nearest replica location distribution

We first derive the distribution of the nearest copy
of an event when events are replicated randomly in
the circular deployment area. This distribution is an
important building block for the analysis as it aids in
determining the optimal search strategy when events are
replicated in the network.

The expected number of nodes within one hop of the
sink is then a = πR2ρ, where ρ is the node density. The
expected number of nodes that are exactly k hops away
is a(k2 − (k − 1)2) = a(2k − 1). The total number of



Symbol Meaning
ρ Node density
R Radio range
N Total number of nodes in the network
a Number of first hop neighbors of sink
L Maximum number of hops from the sink

n (ni) Number of replicas (for the ith event)
ui ith TTL element of search sequence u

Cf (k) Cost of controlled flooding with a TTL value of k
F (k|c) Conditional tail probability of locating

the nearest copy of the event beyond k hops, given
that it is not located within c hops of the sink

V (c) Value function for the dynamic program

TABLE I
NOTATION USED

nodes that are located within the circular region of L
hops from the sink is then given as

N =
L∑

k=1

(2k − 1)a = aL2 (1)

Say n replicas of an event are created and placed
randomly in the network (in addition to the original
copy at the source sensor). Let Xmin(n) be the random
variable representing the hop count of the nearest copy
of the event from the sink. The probability that all (n+1)
copies of the event information are located more than k
hops away from the sink is then given by the expression:

Pr{Xmin(n) > k} =
(

1 − k2

L2

)n+1

(2)

Figure 2 illustrates how this distribution varies with
the number of replicas in a typical network. As may
be intuitively expected this distribution shifts to the left
(i.e. the nearest copy is located closer to the sink) as
the number of replicas increases. This should result in a
lower search cost with increasing replication size.

A related quantity that is of use in determining the opti-
mal expanding ring strategy is the conditional probability
that the nearest copy of the event is located more than
k hops away given that it is known that it is not located
within c hops. This is expressed as follows (assuming
k ≥ c):

F (k | c) = Pr{Xmin(n) > k | Xmin(n) > c}

=
(

L2 − k2

L2 − c2

)n+1

(3)

C. Optimal expanding ring search

Any expanding ring search can be characterized as a
vector u = {u1, u2, . . . um} that describes the sequence
of successive TTL values for controlled flooding in each
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Fig. 2. Illustration of the probability mass function for the nearest
replica (L=100, a = 10 )

step. To ensure that the entire area is covered in the worst
case, um is set to L. For example, let u = {1, 5, 10} for a
network where the maximum hop count is L = 10. Then
the expanding ring search would proceed as follows: first
the nodes within 1-hop are searched for the event through
a controlled flood with TTL value of 1. If no copies of
the event are located in this first step, then all nodes
within 5 hops are searched for the event through a larger
controlled flood. If still no copies of the event are located
in the second step, then all nodes in the network (within
10 hops) are searched. If at any step at least one copy of
the event is located, the search terminates successfully
at that step.

We will assume that each transmission (and the cor-
responding receptions) incurs a unit cost. The cost of
the controlled flooding incurred in the ith search step is
given as:

Cf (ui) = (1 + a(ui − 1)2) (4)

For a given search sequence vector u, assuming there
are (n + 1) total copies of the event in the network, the
expected search cost is then

Csearch,u =
m∑

i=1

Cf (ui) · Pr{Xmin(n) > ui−1} (5)

where Pr{Xmin > u0} is defined to be 1 (since the
search sequence starts with u1, and it is guaranteed that
there is at least one copy of the event being queried
somewhere in the network).

To minimize this search cost, the optimal TTL se-
quence must be obtained. Chang and Liu [5] have
developed a dynamic programming solution to solve
this problem. This dynamic program uses the following
recursive property.



Let the value function V (n) be the minimum expected
cost-to-go (over all choices of TTL values), given that
the most recently used TTL value k did not locate the
object. Then

V (L) = 0
V (c) = min

c+1≤k≤L
{Cf (k) + F (k|c) · V (k)}

In the case of multiple replicas, we use the tail distrib-
ution F (k|c) we obtained in equation (3). The optimal
search sequence u is obtained by recursively calculating
the value function, and then tracking back through the
choices made at each step to determine the optimal TTL
value for each stage. This search sequence can then be
used in equation (5) to determine the expected cost of
the optimal strategy. However, this algorithmic approach
does not yield a tractable closed form expression for
this cost as a function of the number of replicas. We
therefore first try to derive lower and upper bounds on
the cost, before developing an approximate expression
for the optimal cost based on the bounds.

D. Genie-assisted lower bound on optimal search cost

We first obtain a genie-assisted lower bound for the
optimal cost. Imagine, before each query, we had a
genie or oracle that gave the exact distance from the
sink (in number of hops) to the nearest located copy of
the event. Let us denote this exact distance by xmin.
Knowing xmin before the query is issued, the best
possible search strategy for the sink to apply is to set
the first TTL value of the search sequence to this value,
i.e. set u1 = xmin. Such a genie-assisted strategy is
guaranteed to find the information in one step, with a
cost of Cf (xmin). Consider any other expanding ring
sequence u′; if xmin > u′, the expected cost of that
strategy must be higher than that of the Genie-assisted
strategy because the nodes in the first ring will have to
be covered twice or more in the search; if xmin < u′,
then also the expected search cost will be higher because
a greater number of nodes will have to be searched in the
first ring. Hence the genie-assisted strategy is guaranteed
to provide a lower bound to any expanding ring strategy.

The expected cost of the genie technique Cs,lower can

be derived as follows 1:

Cs,lower

= E [Cf (Xmin)]

= E
[(

1 + a (Xmin − 1)2
)]

=
(
1 + a

(
E

[
X2

min

] − 2E [Xmin] + 1
))

(6)

Now,

P {Xmin ≤ k} = Fmin(k) = 1 −
(

1 − k2

L2

)n+1

The pdf for Xmin is then derived as

fmin(k) =
dFmin(k)

dk
=

2(n + 1)
L2

k

(
1 − k2

L2

)n

Now we can obtain the necessary expectations as
follows:

E [Xmin] =
∫ L

0

kfmin(k)dk

=
2(n + 1)

L2

∫ L

0

k2

(
1 − k2

L2

)n

dk

=
L(n + 1)

√
π

2
· Γ(n + 1)
Γ

(
n + 5

2

) (7)

E
[
X2

min

]
=

∫ L

0

k2fmin(k)dk

=
2(n + 1)

L2

∫ L

0

k3

(
1 − k2

L2

)n

dk

=
2(n + 1)

L2

L4

2n2 + 6n + 4

=
L2

n + 2
(8)

Substituting equations (7) and (8) into equation (6),
we get that

Cs,lower =(
1 + a

(
L2

n + 2
−√

πL(n + 1)
Γ(n + 1)
Γ

(
n + 5

2

) + 1

))

Proposition 1: The search cost of the optimal expand-
ing ring strategy is lower-bounded by a function that
decreases with the number of replicas n as 1

n+2 .

Proof: Note that the Gamma function Γ(k) is a monoton-
ically increasing function for k ≥ 2 that has the property

1We have used a continuous probability domain approximation
to obtain closed-form expressions here. We have verified through
numerical simulations that the obtained expression for the lower bound
matches the bound from the discrete version of the problem very
closely.



that Γ(k) = (k − 1)! for any integer k ≥ 2. Then,

Cs,optimal > Cs,lower

>

(
1 + a

(
L2

n + 2
−√

πL(n + 1)
Γ(n + 1)
Γ(n + 2)

+ 1
))

=
(

1 + a

(
L2

n + 2
−√

πL
(n + 1)n!
(n + 1)!

+ 1
))

=
(

1 + a

(
L2

n + 2
−√

πL + 1
))

�

E. Upper bound on optimal search cost

We now derive an upper bound on the cost of the
optimal search strategy. One simple search strategy that
is found empirically to match the performance of the
optimal strategy closely for large number of replicas n
is the step-by-step expanding ring search, in which the
search sequence is simply {1, 2, 3, 4, . . .}. The expected
cost for this strategy is given as:

Cs,upper(n)

=
L∑

k=1

Cf (k)P {Xmin > k − 1}

=
L∑

k=1

(
1 + a(k − 1)2

) (
1 − (k − 1)2

L2

)n+1

This expression can be closely approximated by a
continuous integral:

Cs,upper(n) ≈
∫ L

0

ak2

(
1 − k2

L2

)n+1

dk

=
√

πaL3

4
Γ(n + 2)

Γ(n + 3.5)

Proposition 2: The search cost of the optimal expand-
ing ring strategy is upper-bounded by a function that is
proportional to 1

n+2 .

Proof: Once again, from the properties of the Gamma
function, we get that

Cs,optimal < Cs,upper(n) <

√
πaL3

4
Γ(n + 2)
Γ(n + 3)

=
√

πaL3

4
1

n + 2

�

Figure 3 compares the upper and lower bounds for
the search cost with the numerically computed optimal
search cost.
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L (max TTL) c (Curve-fit constant)
10 1.47845
50 1.99568

100 2.07722
500 2.14608

1000 2.15476

TABLE II
BEST-FIT CONSTANT FOR SEARCH COST APPROXIMATION

F. Approximation for optimal search cost

Based on propositions 1 and 2, it is reasonable to
model the search cost of the optimal strategy as being
proportional to 1

n+2 . We thus obtain the following ap-
proximation for the search cost of the optimal expanding
ring strategy:

Csearch,optimal ≈ c · aL2 · 1
n + 2

(9)

In this approximation, c is a curve-fitted constant, that
is seen to converge to a value close to 2.15 as the size
of the deployment area increases (i.e. for large L), as
shown in table II.

Figure 4 compares the approximate search cost expres-
sion with the numerically optimal search strategy. We see
a close match, particularly when the network is large and
the number of replicas is relatively small.

III. MODELING THE REPLICATION COST

We are assuming that events are likely to be generated
at any location in the network, and that they are repli-
cated at the different locations at random. We assume
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that n replicas of the original are created and individually
placed at each location through unicast routing on the
shortest path between the random source and storage
point.

Assuming sufficient node density, the number of trans-
missions required to move data between any pair of
locations a distance d apart along the shortest path
between them is approximately d/R. Thus the expected
cost of creating any replica is given by the ratio of
expected distance between any pair of points in the area
and the radio range R. We present expressions for the
expected distance between two points, for circular and
square regions.

A. Circular area

For a circular region, there is a known geometric result
referred to as disk line picking [6], which gives the
expected distance between any two points in a unit circle
to be:

E [dcircle]

=
1
π

∫ 1

0

∫ 1

0

∫ π

0

√
r1 + r2 − 2

√
r1r2 cos θdθdr1dr2

=
128
45π

Using this result, we get the following expression for
the expected cost of creating n replicas of the event

information in a circular region of radius LR to be:

Creplication,circle(n) =
128LRn

45πR
=

128Ln

45π
(10)

B. Square area

Similarly, for a square, the expected distance in the
square of width wR is

E[dsquare]

= wR

∫
· · ·

∫ 1

0︸ ︷︷ ︸
4

√
(x1 − y1)

2 + (x2 − y2)
2
dx1· · · dy2︸ ︷︷ ︸

4

= wR
2 +

√
2 + 5 ln

(
1 +

√
2
)

15
≈ 0.521405wR

From this, we get that

Creplication,square(n) ≈ 0.52wn (11)

IV. OPTIMIZATION FORMULATION

We can formulate the problem of optimizing the num-
ber of replicas for each event as follows:

Minimize CNET (n̄)

s.t g(n̄) =
m∑

i=1

ni + m ≤ S

0 ≤ ni ≤ N − 1, ∀i

(12)

where

CNET (n̄) =
m∑

i=1

qiCsearch(ni) +
m∑

i=1

Creplication(ni)

(13)

Here qi is the query rate for the ith of m events,
ni is the number of replicas of event i, and S is the
total network storage limit. For a circular region, the
expressions for Csearch(ni) and Creplication(ni) are as
obtained in equations (9) and (10), respectively. We solve
this problem using the method of Lagrange multipliers.
The Lagrangian function for this inequality-constrained
optimization problem can be expressed using a slack
variable s as follows:

L(n̄, λ) = CNET (n̄) + λ
(
g (n̄) − S + s2

)
(14)

It can be shown that the objective function is convex;
hence, the following first-order conditions are sufficient
for global minimization:

∂L

∂ni
= − qiaL2c

(ni + 2)2
+

128L

45π
+ λ = 0 (15)

∂L

∂λ
=

m∑
i=1

ni + m − S + s2 = 0 (16)



∂L

∂s
= 2λs = 0 (17)

i) When the constraint is inactive we can solve directly
from equation (15), setting λ = 0:

n∗
i =

√
45πaLc

128
· √qi − 2 (18)

ii) When the constraint is active, (i.e. s=0, λ ≥ 0), we
get from equation (15):

n∗
i =

√
acL

128
45π + λ

L

· √qi − 2 (19)

λ is a constant that can be solved by substituting the
above equation into equation (16), setting s = 0:

λ =
acL2

(∑m
i=1

√
qi

)2

(S + m)2
− 128L

45π
(20)

Substituting this back into (19), we get the following
simplified expression:

n∗
i =

√
qi∑m

i=1

√
qi

(S + m) − 2 (21)

To determine whether the constraint is inactive or
active, it is sufficient to verify whether the sum of n∗

i

obtained from equation (18) is less than S − m. If
not, then equation (21) should be used to compute the
optimal constrained n∗

i . A striking observation is that in
both cases the optimal strategy is to have the replication
number of each event to be proportional to the square
root of the query. We note that this outcome is very
similar to a result in unstructured peer-to-peer wired
networks [8], which also argues for replicating content
with a rate proportional to the square root corresponding
frequency of access. However, there are key differences
between that work and ours, including the type of search
analyzed (expanding rings in a wireless network with a
geometrically defined 2-D structure versus random walk
on an arbitrary wired network graph), and the absence
of replication cost.

Figure 5(a) shows the total cost of querying and
replication CNET as a function of the number of replicas
for different query rates for a single event. Figure 5(b)
illustrates how the total cost may vary for the case of two
events, as a function of the number of replicas for each
event. Figure 5(c) shows the contours of this function,
along with two sets of lines that represent different
storage constraints. With the first storage constraint (a
large value of S), there is sufficient storage available that
the unconstrained optimal point A can be selected as the
operating point, by allocating the corresponding optimal
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Parameter Value
Channel path loss exponent 3.0

shadowing std. deviation 3.8
PL(d0) 55.0
d0 1

Radio Modulation 3 (NCFSK)
Encoding Option 3 (Manchester)
Radio Output Power -21.0
Noise Floor -105.0
Preamble Length 2 bytes
Frame Length 50 bytes

Topology Number of nodes 1010
Physical Terrain (80, 80)
Option Uniform Deployment

TABLE III
RADIO PARAMETERS FOR SIMULATION

number of replicas for both events. However, under the
tighter storage constraint 2 (smaller S), the original
unconstrained optimal solution lies outside the feasible
operation region. Hence, point B, which minimizes the
function while maintaining storage feasibility, provides
the optimal constrained solution in this case.

V. REALISTIC SIMULATIONS

A. Methodology

We use a realistic link layer model generator for wire-
less sensor networks [9], which determines the location
of each node and the packet reception rate (PRR) of each
pair of nodes. Table III shows parameters for our wireless
sensor network topology to simulate on (corresponding
to a dense deployment of Mica 2 motes). Given the
realistic topology, our simulator performs the following
procedures at each round:

1) Randomly choosing a source node which is con-
sidered to have the original event information

2) Counting the actual replication cost for n replicas
chosen randomly

3) Randomly choosing a querier node in the given
node pool.

4) Counting the actual search cost using the optimal
search strategy.

Our numerical results are computed based on 10000
rounds for each n value.

1) Counting the actual replication cost: The replica-
tion is done not by flooding, but rather through individual
unicast transmissions from the source to the requisite
number of random replication locations. We use the ETX
(expected number of transmissions with retransmissions)
metric [10] to define the routing strategy for the unicast
transmissions. Specifically, the transmission on the edge
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from i to j costs β
PRRi,j

, where β is the cost of a
single transmission, and PRRi,j is the packet reception
rate from i to j, and a message between any pair
of nodes in the network is routed along the shortest
cost path between them. Here, we have assumed that
acknowledgement packets (which are likely to be much
shorter) are always received reliably. In the simulation
results we count the actual replication cost by counting
the actual total number of transmissions on the shortest
unicast path and multiplying it by β.

2) Counting the actual search cost: In order to find out
the search cost, we need to find out the optimal search
strategy. In order to use the optimal search strategy from
the dynamic programming methodology [5], we need to
know the distribution of number of nodes with respect to
the hop distance from the querying node. However, it is
not easy to determine the hop-distribution in the realistic
wireless topology considered in the simulations, where
the links are lossy and asymmetric. Even for a given
topology, the number of nodes of ith hop (for a single
query event) is a random variable whose expectation
is not easily obtained. Since we need to compute the
distribution for any querying node in the network, it is
particularly important to obtain an approximation that
can be calculated simply. The approach we have taken
is to look at the hop-distribution of the subgraph formed
when all links with packet reception rates below 0.5 are
blacklisted from the network. As a sanity check, we have
compared the results obtained from this process with
the average of the number of nodes at each hop from
100 simulation experiments where these are determined
probabilistically in each run according to the PRR values
at each edge. The two approaches show remarkably
similar results (see figure 6).

Let H [i] denote the set of nodes that are reachable from
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the querying node at a distance of i hops. We use the
following conditional tail distribution for the dynamic
programming,(for k ≥ c):

P{Xmin > k | Xmin > c} =

⎛
⎝

∑
i>k

|H [i]|∑
i>c

|H [i]|

⎞
⎠

n+1

Following the resulting optimal search strategy, the
simulator floods a series of queries until it finds one of
the copies of the event. Note that in our simulations,
although two queries have the same TTL value, one
query might find the event but the other might not, in the
same network. It is because the coverage of first query is
not necessarily same as that of the second one (because
of the lossy wireless links).

B. Results

In our simulations, we relax several assumptions from
the mathematical analysis, so that (1) the querier can
be any node in the network, (2) the network topology
is not necessarily circular (it is the square area for
our simulation), and (3) there might be the boundary
effect. With these relaxations, the actual optimal search
sequence of a node might be different from that of
another node when they are considered as a querier at
each time. For example, the optimal search sequence of
a corner node is {2, 8, 12, 15, 17, 19, 20}, while that of
a center node is {2, 4, 6, 7, 8, 9, 10, 11} when there are
two replicas of the queried event.

First of all, the theoretical values of our model are as
follows;

Csearch(n) =
cN

n + 2
=

1.48 × 1010
n + 2
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Fig. 8. Comparison of analytical and simulated search costs as a
function of replication size (Region 13 refers to the area of first row
and third column when the whole region is divided into 3 rows and 3
columns, and so a querier is randomly selected only in region 13 for
the simulation result of region 13.)

Creplication(n) =
128Ln

45π
=

128 × 10
45π

n

where the node density variable a ≈ 10 is obtained
from the simulation (since this depends on radio and
deployment settings), the value of L ≈ 10 is obtained
from aL2 = N = 1010, and c is obtained accordingly
from table II. Therefore, assuming the query rate is
1, the optimal number of replicas is as follows by
equation (18);

n∗
th =

√
45π

128
qaLc − 2

=

√
45π

128
× 10 × 10 × 1.48 − 2

= 10.7852 ≈ 11

The optimal number of replicas from the simulation is
found to be n∗

sim = 12 (see figure 10. Figure 8 shows the
optimal search cost of the simulation and our model, and
figure 9 shows the replication cost. As we can see from
these figures, our model meets the simulation results
very well even with relaxed assumptions. The similarity
of the results despite seeing very different hop distance
distributions in the simulations suggests that the cost of
the optimal search is quite robust to this distribution,
particularly in the presence of replicas.

VI. CONCLUSIONS

We have shown how the number of replicas of event
information can be optimized for expanding ring-based
queries in sensor networks. We have found that a square-
root-proportional replication strategy provides optimal
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performance both with and without storage constraints.
Detailed realistic simulations validate the analysis.

There are several directions in which these results can
be extended. The analysis could be extended to other
querying mechanisms, including structured storage, since
there is a similar tradeoff between search and replication
costs in many other settings. The analysis could also be
extended to consider more irregular deployment areas,
including three-dimensional deployments. We plan to
develop distributed implementations which allow for op-
timal or near-optimal replication without global knowl-
edge of the relative query rates for all events. We also
plan to investigate the scaling behavior of querying in
storage-constrained sensor networks.
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