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Abstract— Medium access techniques for wireless sensor
networks raise the important question of providing periodic
energy-efficient radio sleep cycles while minimizing the end-
to-end communication delays. This study aims to minimize
the communication latency given that each sensor has a duty
cycling requirement of being awake for only 1

k
time slots on

an average. As a first step we consider the single wake-up
schedule case, where each sensor can choose exactly one of
the k slots to wake up. We formulate a novel graph-theoretical
abstraction of this problem in the general setting of a low-
traffic wireless sensor network with arbitrary communication
flows and prove that minimizing the end-to-end communication
delays is in general NP-hard. However, we are able to derive and
analyze optimal solutions for two special cases: tree topologies
and ring topologies. Several heuristics for arbitrary topologies are
proposed and evaluated by simulations. Our simulations suggest
that distributed heuristics may perform poorly because of the
global nature of the constraints involved. We also show that
by carefully choosing multiple wake-up slots for each sensor
significant delay savings can be obtained over the single wake-up
schedule case while maintaining the same duty cycling. Using this
technique, we propose algorithms that offer a desirable bound of
d+O(k) on the delay for specialized topologies like the tree and
grid and a weaker guarantee ofO((d + k) log n) for arbitrary
graphs, where d is the shortest path between2 nodes in the
underlying topology and n is the total number of nodes.
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Combinatorics, System Design

I. I NTRODUCTION

Wireless sensor networks (WSN) are expected to operate
for months if not years on small inexpensive batteries with
limited lifetimes. Therefore energy efficiency is typically the
primary goal in these networks. Previous works have identified
idle listening of the radio as a major source of energy wastage
(e.g. [1], [3], [4], [5], [6], [7], [8]). Measurements on existing
sensor device radios show that idle listening consumes nearly
the same power as receiving. In sensor network applications
where the traffic load is very light most of the time, it is
therefore desirable to turn off the radio when a node does not
participate in any data delivery.

The S-MAC medium access protocol (presented in [1],
[2]) introduced synchronized periodic duty cycling of sensor
nodes as a mechanism to reduce the idle listening energy cost.
In S-MAC each node follows a periodic active/sleep schedule,

synchronized with its neighboring nodes. During sleep periods,
the radios are completely turned off, and during active periods,
they are turned back on to transmit and receive messages.
Although the synchronized low duty cycle operation of a
sensor network is energy efficient, it has one major deficiency:
it increases the packet delivery latency. At a source node, a
sampling reading may occur during the sleep period and has to
be queued until the active period. An intermediate node may
have to wait until the receiver wakes up before it can forward
a packet received from its previous hop. This is calledsleep
latency ([1]), and if all nodes are synchronized to the same
schedule, it increases proportionally with hop length by a slope
of schedule length (active period plus sleep period).

In scenarios where minimizing sleep latency is not im-
portant (non time critical applications), [9] also presentan
excellent analysis on bounds on the delay of sending data
from a node to a sink using a completely decentralized duty
cycling scheme. They show that if each sensor turns on
and off independent of the other sensors, the delay incurred
is proportional to the distance of the node from the sink.
However the rate of this linear increase is not dependent on the
locations of the nodes, but on the node density, transmission
range and the average active and sleep durations.

The question arises whether energy-efficient duty cycling
may be maintained while reducing sleep latency. One approach
to this is the use ofadaptive listeningwhere nodes that lie one
or more steps ahead in the path of a transmission can be kept
awake for an additional length of time (present as an extension
to the basic S-MAC in [2], as well as the T-MAC protocol [3]).
This approach provides some reduction in sleep latency at the
expense of greater energy expense due to extended activation
and overhearing, but is not sufficient for long paths.

In a recent work [10], we investigated an alternate approach
to delay-efficient sleep scheduling, designed specificallyfor
wireless sensor networks where the communication pattern is
restricted to an established unidirectional data gathering tree.
In this case, we showed that the sleep latency can be essentially
eliminated by having a periodic receive-transmit-sleep cycle
with level-by-level offset schedules, in which data cascades in
step by step from the leaves of the tree towards the sink, with
nodes going to sleep as soon as they transmit their packets to
the next level, and waking up just in time to receive the next
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round of packets.
In this paper we seek to address a more general and harder

version of this problem:how should the activity of sensor
radio nodes be scheduled in arbitrary network communication
topologies, in order to minimize the sleep latency while
providing energy efficiency through periodic sleep?This is
clearly an issue of fundamental significance in the area of
wireless sensor networks, and to our knowledge has never
been investigated before. Unlike prior work in this area, which
has focused primarily on designing new sensor network MAC
protocols in an intuitive manner, we shall take an algorithmic
approach.

The rest of the paper is organized as follows: We first
discuss the problem scenario and the assumptions made in this
study (in section II). We define a graph-theoretic combinatorial
optimization problem formulation for delay efficient sleep
scheduling (in section III) for the single wake up schedule
case where each sensor chooses exactly one of thek slots
to wake up. We show (in section IV) that this problem is in
fact NP-hard in general. However, we are able to derive and
analyze optimal solutions for some special cases, namely a
ring topology and any tree topology. For arbitrary topologies,
we propose several heuristics in section V and evaluate them
using simulations in section VI. In section VII, we show that
a careful choice of multiple wake up slots for each sensor
offers significant delay savings over the single schedule case
with the same duty-cycling of1

k
. Using this technique we

propose algorithms with provable delay guarantees for grid,
tree and arbitrary topologies. Finally, we shall conclude with
a summary and discussion of this work as well as future
extensions (in section VIII).

II. PROBLEM SCENARIO AND ASSUMPTIONS

In sensor networks with light traffic load, duty cycling
(where sensors turn off their radios when not needed) is a
very useful technique for reducing the energy consumption
due to idle listening. We usek as a parameter that captures
the duty cycling requirements of an application. To achievethe
requisite duty cycling, a sensor should be kept awake on an
average for1

k
fraction of the time slots. We initially focus on

the single wake up schedule case, where the schedule length
is k slots and each sensor is assigned one of thek slots
during which it activates its radio for reception (known as
the active slot), while it can potentially transmit at any slot if
it has a packet to be forwarded. If a node has to forward a
packet to its neighbor, it can wake up at the active reception
slot of that neighbor and transmit the packet. This conserves
energy of both the transmitting and the receiving node. Figure
1 shows a couple of slot assignments on a network and the
resulting delays on each link. Consider figure 1 (b). Assume
that node A has a packet to send to node F. A would have
received this packet in slot 0, but can only transmit to E at
slot 1. Thus the delay fromA to E is 1 (as A waits for the
complete reception of the packet at slot0). Similarly E can
only forward the packet to F in slot 2, thus incurring a delay
of 1 from E to F . In this case the end to end delivery latency
is 2. Ideally, if every pair of nodes can have a path on which

Fig. 1. Examples of slot assignment withk = 3. The dotted arrows show
the delay on each link in the corresponding direction.

all nodes have sequentially increasing slots (modulok), the
latency will only be the number of hops between them times
a single slot length (1

k
-th of the schedule length). However a

scheme such as the basic S-MAC scheme which synchronizes
all nodes to have the same cycle will have a latency as large
as the number of hops times the duration of a full period. As
mentioned in section I, DMAC can achieve the ideal case for
any source to sink communication path for a unidirectional
data gathering tree. However, this study addresses the issue
of assigning slots to minimize the maximum delay between
nodes that can communicate in an arbitrary pattern. Clearlyas
seen in figure 1, different slot assignments to the nodes in the
network could result in significantly different path delays.

Before formally defining the problem, we describe our
assumptions:

• Synchronization: None of the discussion about sleep
scheduling would be relevant if there were not some
mechanism to provide time synchronization in the sen-
sor network. However, techniques capable of providing
micro-second level synchronization have been developed
for sensor networks [13], [14], [15].

• Low Traffic: We have assumed that there is very low
traffic within the sensor network. This is reasonable
in low-data-rate sensor networks where phenomena of
interest occur rarely. Energy-efficient low-duty cycles are
only possible if this assumption is true. It also justifies
the fact that this problem formulation does not take
into account any queueing latency due to congestion, or
significant interference/collisions (though random access
schemes may be implemented to handle occasional con-
tention during the active periods, as in S-MAC). Since
interference is not a primary concern in light traffic,
we have not incorporated any local vertex/edge coloring
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constraints into our problem formulation which would
be necessary for graph-coloring based TDMA scheduled
access mechanisms such as [16].

• Packet-Length Slot: A related assumption we make is
that for such a low traffic scenario each reception slot is
of a fixed length that is sufficient only for the transfer
of a single packet. Thus a packet may travel at most one
hop in a single slot. Longer fixed slot lengths would not
be energy-efficient if traffic is low.

• Graph Abstraction: While several recent papers in
sensor networks (e.g. [17], [19], [18], [20]) have shown
that wireless links can be quite unreliable and vary
significantly in packet reception rates in each direction,
we have used a binary-link-based graph-theoretic problem
formulation in this work. This is justified because the
communication graph we are referring to is not neces-
sarily the full wireless network, but a logical topology
which can be constructed, for instance, by filtering or
blacklisting out all unreliable/unidirectional links. Others
have suggested that such blacklisting is necessary for
reliable packet delivery in any case [19].

• Arbitrary Communication Pattern: In sensor networks
where the traffic is restricted to data gathering from all
nodes to a single sink, it is not necessary to minimize
the delay diameter between any two nodes in the graph.
However, this unidirectional traffic pattern is a special
case which has been addressed previously in the DMAC
work [10]. In more sophisticated embedded wireless sen-
sor networks, which may involve complex patterns of in-
network processing, or communication between sensors
as well as actuators, other traffic patterns are possible.
We formulate the problem for the more general case in
section III-A, which as we shall show is in fact computa-
tionally harder. Although we do not treat it in depth here,
an alternative formulation that can provide some way of
weighing different application-specific traffic patterns is
also defined in section III-B.

• Fixed Number of Slots: In our formulation, we assume
that the number of slots available to the network is
fixed. This essentially defines the duration of the periodic
sleep cycle, and the duty-cycle, which are assumed to
be determineda priori by application-specific needs for
energy efficiency as well as limitations on sleep/wakeup
times of the radio hardware involved. As we shall see,
generally with a larger number of available slots, the
energy efficiency is higher but the end-to-end delay is
also longer.

• Energy Conservation:Sensor node radios incur differing
energy costs in idle listening, receiving and transmission
modes. Transmission costs are generally higher than
idle/reception costs. Technically, the minimum delay path
obtained may involve longer hops (more transmissions)
than the minimum hop-count path on the original graph.
Thus delay minimization can result in a slight increase
in the energy costs, however we believe this is a second
order effect since the bulk of the energy savings in the
network are provided by the sleep mode of the radio.

In section, III, we formally define the problem of assigning
slots to nodes to minimize the network delay.

III. PROBLEM DEFINITION

Let G = (V, E) be an arbitrary graph. Letk be the
parameter that dictates the duty cycling requirements. As
mentioned in section II, we initially focus on the single wake
up schedule case where the schedule length isk slots and
each sensor is assigned one of thesek slots. Assigning a slot
s ∈ [0 · · ·k − 1] to a nodei schedulesi to wake up (activate
its radio for receiving) only at slots. While i can transmit at
any slot, it can only receive data at the beginning of slots.
Let f : V → [0 · · ·k − 1] be a slot assignment function that
assigns a slot to every node in the graph. Clearlyf determines
the delay incurred in transmitting data from one node to the
other. For a givenf , let df (i, j) be the delay in transmitting
data fromi to j where(i, j) ∈ E:

df (i, j) =

{

k (if f(i) = f(j))
(f(j)− f(i)) mod k (otherwise)

(1)

From the definition above, it also follows that:

df (i, j) + df (j, i) =

{

k (if f(i) 6= f(j))
2k (otherwise)

(2)

Delay on a pathP under a slot assignmentf is defined as

df (P ) =
∑

(i,j)∈P

df (i, j) (3)

As seen from the above discussion, duty cycling require-
ments will lead to increased delays in the network. We
consider the following scenarios:

A. All to All Communication

In this scenario, every pair of sensors is equally likely
to communicate. Hence, it is desirable to assign slots to the
nodes such that no two nodes incur arbitrarily long delays
in communication. We characterize this network wide delay
using the following definition:

Definition 1: Delay diameter (Df ): For a given graph
G = (V, E), number of slotsk and a slot assignment
function f : V → [0 · · ·k − 1], the delay diameteris defined
as maxi,j∈V Pf (i, j), wherePf (i, j) is the delay along the
shortest delay path between nodesi and j under the given
slot assignment functionf .
In figure 1(a), thedelay diameteris 5, while in (b) it is8 (path
D-F-E-C). Thus, inall to all communication, our design goal
is given as follows:

Definition 2: Delay Efficient Sleep Scheduling (DESS):
Given a graphG = (V, E) and the number of slotsk, find an
assignment functionf : V → [0 · · ·k − 1] that minimizes the
delay diameteri.e.

f = argmin
f ′

{Df ′} (4)
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B. Weighted Communication

In this scenario, the frequency of communication between
a pair of sensors is not the same across all pairs. This may
happen in the case of a hierarchical network structure (like
clustering). Here, it would be of interest to minimize the
average delay in the network, which is defined as follows:

Definition 3: Average Delay diameter (Davg
f ): For a

given graphG = (V, E), number of slotsk, a slot assignment
function f : V → [0 · · ·k − 1] and weightsw(i, j) ≥ 0, the
average delay diameteris defined as

∑

i,j∈V wij ∗ Pf (i, j),
where Pf (i, j) is the delay along the shortest delay path
between nodesi andj under the given slot assignment function
f .
In weighted communication, our design goal is the following:

Definition 4: Average Delay Efficient Sleep Scheduling
(ADESS) Given a graphG = (V, E), the number of slotsk,
weightsw(i, j) ≥ 0, find an assignment functionf : V →
[0, · · ·k − 1] that minimizes theaverage delay diameteri.e.

f = argmin
f ′

{Davg
f ′ } (5)

Intuitively, in both DESS and ADESS, the objective is to
color a graph with the givenk colors such that the desired
global objective (minimizing thedelay diameterin the former
and the average delay diameterin the latter) is achieved.
The reader may perceive a connection to the well-known
NP-complete graph coloring problem [11], which deals with
minimizing the number of colors needed to ensure that no
two adjacent vertices are colored the same. However, a key
difference between the graph coloring problem and DESS
(or ADESS) is that the former is essentially about a local
constraint (adjacent vertices requiring distinct colors), while
the latter is inherently more global in nature: adjacent vertices
may share the same slot assignment but the maximum of
the shortest delay paths betweenall pairs of nodes must be
reduced. We will show below that both DESS and ADESS are
also NP-Complete.

IV. ANALYSIS

We first prove that the decision problem corresponding
to DESS is NP-Complete by reduction from 3- Conjunctive
Normal Form - Satisfiability (3-CNF-SAT). We also show how
this reduction can be used to show that the decision version
of ADESS is also NP-Complete. For two specific topologies
(tree and ring), we formally characterize the optimal solution
for DESS. We then show how the optimal solution for a ring
may form a basic building block for an optimal assignment
for cyclic graphs using the grid topology as an example.

A. NP-Completeness

We first define the decision problems for both DESS and
ADESS.

Definition 5: DESS(G, k, f, ∆): Given a graphG =
(V, E), number of slotsk, a positive number∆ and a slot
assignment functionf : V → [0, · · ·k − 1], is Df ≤ ∆.

Definition 6: ADESS(G, k, f, w,∆): Given a graph
G = (V, E), number of slotsk, a positive number∆, a

slot assignment functionf : V → [0, · · ·k − 1], and positive
weightswij for all i, j ∈ V , is Davg

f ≤ ∆.
We now prove the main complexity result:
Theorem1: DESS(G, k, f, ∆) is NP-Complete.
Proof: Given the slot assignment functionf , one can

compute the shortest delay path from each node to all the
other nodes in polynomial time. Moreover, there are only
a polynomial number of such nodes. The maximum delay
among all the pairwise paths should then be compared against
∆. All these steps can be done in polynomial time. Thus
DESS(G, k, f, ∆) ∈ NP .

To prove that DESS(G, k, f, ∆) is NP-Hard, we
show a polynomial time reduction from 3-CNF-SAT to
DESS(G,2,f ′,4) (which is a special case ofDESS(G, k, f, ∆)
with k = 2, ∆ = 4 and f ′ which is defined later). This
reduction is similar to the one used for showing that
constructing a minimum energy broadcasting tree in a
wireless ad hoc network is NP-Hard [12].

Consider a 3-CNF formulaF consisting of n clauses
and m literals i.e. F = c1

∧

c2

∧

· · · cn, where eachci =
xi1

∨

xi2

∨

xi3 and xij ∈ {x1, x̄1, · · ·xm, x̄m}. For non-
triviality, we assume that a clause does not contain a literal
and its complement (as such a clause is trivially satisfiable).
Given a 3-CNF formulaF , construct a graphG = (V, E) are
follows:

1) S ∈ V .
2) For each variablexi: Xi, Xi1 (representingxi), andXi2

(representinḡxi) ∈ V .
3) For each clauseci: Ci ∈ V .
4) ∀i ∈ [1, · · ·m]: (S, Xi1) and (S, Xi2) ∈ E.
5) ∀i ∈ [1, · · ·m]: (Xi, Xi1) and (Xi, Xi2) ∈ E.
6) If xi appears incj , (Xi1, Cj) ∈ E. If x̄i appears incj ,

(Xi2, Cj) ∈ E.

The diameter (number of hops) ofG is 4. Consider the
following slot assignment functionf ′:

1) f ′(S) = 1 i.e. S wakes up only at slot 1.
2) ∀i ∈ [1, · · ·m] : f ′(Xi) = 1.
3) ∀j ∈ [1, · · ·n] : f ′(Cj) = 1.
4) f ′(Xi1) = 0 iff xi is true, elsef ′(Xi1) = 1. Moreover,

f ′(Xi1) + f ′(Xi2) = 1.

Sincek = 2, df ′(i, j) = df ′(j, i) = 1 iff f ′(i) 6= f ′(j). If
f ′(i) = f ′(j), thendf ′(i, j) = df ′(j, i) = 2

This reduction can be computed in polynomial time. Figure
2 illustrates the reduction for a given formulaF . We will now
show that a formulaF is satisfiable iffDf ′ ≤ 4 in G.

If the formulaF is satisfiable, for every clauseci, at least
one literalxj is true. Thus for every nodeCi in G, there exists
a nodeXjk (k = 1 or k = 2) such thatf ′(Xjk) = 0. Thus, we
can make the following observations about the delays along
the paths from various nodes toS:

1) ∀i ∈ [1, · · ·n] : df ′(Ci → S) = df ′(S → Ci) ≤ 2 i.e.
there exists a path fromCi → S and fromS → Ci that
incurs a delay of2. Such a path isCi → Xjk → S (and
vice versa) which has an alternating0−1 slot assignment.

2) ∀j ∈ [1, · · ·m] : df ′(Xj → S) = df ′(S → Xj) ≤ 2. i.e.
it is possible to reachS from everyXj by incurring a
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Fig. 2. Reduction from 3-CNF-SAT toDESS(G,2, f ′, 4). Here, F =
(x1

∨

x̄2

∨

x̄3)
∧

(x̄1

∨

x2

∨

x3)
∧

(x1

∨

x2

∨

x3). The satisfying as-
signment isx1 = 0, x2 = 0 andx3 = 1.

delay of2. This is because for eachXj , there exists an
Xjk such thatf ′(Xjk = 0) (sincef ′(Xj1) + f ′(Xj2) =
1). A possible path fromXj to S is Xj → Xjk → S.

3) ∀j ∈ [1, · · ·m] : max{df ′(Xj1, S), df ′(Xj2, S)} = 2.
This is because exactly one off ′(Xj1) or f ′(Xj2) will
be 1 andf ′(S) = 1.

Thus, for any given pair of nodesa andb, the maximum delay
incurred on a path froma → S → b is at most 4. Hence,
Df ′ ≤ 4 (which is also the hop diameter ofG).

If the formula F is not satisfiable, there exists at least
one clauseci such that none of its literals are true. Thus,
df ′(Ci, Xjk) = df ′(Xjk, Ci) = 2, for all (Ci, Xjk) ∈ E
(sincef ′(Ci) = f ′(Xjk) = 1). Now, let yl be a literal that
appears inci. Consider a path fromCi to the nodeXlp (where
Xlp is the node that represents the complement ofyl. For
example, ifyl = xz , then p = 2. If yl = x̄z , then p = 1).
Every path fromCi will reach a vertexXjk (such that the
corresponding variablexjk appears inci) for whichf ′(Xjk) =
1. This first hop will incur a delay of2. From Xjk, one can
either go toS (f ′(S) = 1) or a Cj (f ′(Cj) = 1) or Xj

(f ′(Xj) = 1). This hop also incurs a delay of2. At least one
more edge has to be traversed to reach nodeXlp, which has
a delay of at least1. Thus, there exists2 nodesCi and Xlp

such that the shortest delay path between them has a delay of
at least5. Thus,Df ′ > 4.

HenceDESS(G, k, f, ∆) is NP-Hard.
As a corollary, we state the following:
Corollary 1: ADESS(G, k, f, w,∆) is NP-Complete.
Proof: If the weightswij are uniform for all pairsi and

j, then the same reduction as above can be used to show the
NP-Completeness ofADESS(G, k, f, w,∆).

For the rest of the paper, we will focus only on DESS.
Although it seems unlikely that efficient algorithms will exist
for DESS (or ADESS) on arbitrary graphs, in section IV-B
we show how DESS can be efficiently solved for two specific
topologies (tree and ring).

B. Optimal Assignment on Specific Topologies

In this section, we formally characterize the optimal as-
signment functionf (that minimizes thedelay diameterDf

) for 2 specific topologies: tree and ring. Using results from
simulated annealing on a grid, we also show how an optimal

assignment for a ring might form a basic building block of a
good assignment on cyclic graphs.

1) Optimal Assignment on a Tree:
Theorem2: Consider a treeT = (V, E). Let the number

of slots bek. Let the diameter ofT (in hops) beh (from
nodea to b, say). Then for every slot assignmentf : V →
[0, · · ·k − 1], Df ≥

hk
2 .

Proof: Consider a path between two nodesp to q having
x hops. SinceT is a tree, this is the only path betweenp and
q. Consider an arbitrary slot assignment functionf : V →
[0, · · ·k − 1]. Now,

df (p→ q) =

x
∑

j=1

df (ij , ij+1)

df (q → p) =

x
∑

j=1

(k − df (ij , ij+1))

Thus,

df (p→ q) + df (q → p) = kx.

max {df (p→ q), df (q → p)} ≥
kx

2
(6)

This is true for each pair of nodes includinga and b. Thus,
for every slot assignment functionf , Df ≥

hk
2 , whereh is

the diameter ofT .
Based on theorem 2, the following assignment function

f will minimize the delay diameterof the treeT = (V, E)
whose hop diameter ish (from a to b): Just use2 slot values,
0 and ⌈k

2 ⌉. Let df (a) = 0. Adjacent vertices are assigned
different slots (similar to a chess board pattern). In this case
∀i, j : (i, j) ∈ E : max {df (i, j) = df (j, i)} = ⌈k

2 ⌉. Hence
max {df (a→ b), df (b→ a)} = ⌈hk

2 ⌉, which tightly matches
the lower bound on thedelay diameterof T . Thus, an optimal
slot assignment for a tree balances the delay in each direction
along a path as shown in figure 1(a).

2) Optimal Assignment on a Ring:We first show the
optimal assignment for the case where the number of nodesn
on a ring is a multiple of the number of slotsk i.e. n = mk.
We then present a lower bound for the case when the number
of nodes is not an exact multiple.

Theorem3: Considern = mk nodes0, 1, · · ·mk − 1
arranged on a ring in the clockwise direction. The optimal
slot assignment functionf is specified as follows:f(0) = 0.
∀i : 1 ≤ i ≤ mk − 1 : f(i) = (f(i− 1) + 1) mod k.

Proof: We will refer to such anf as the sequential slot
assignment as it assigns a sequentially increasing slot (modulo
k) to the nodes around the ring (see figure 6 (a)). We prove
theorem 3 by contradiction. Fork = 2, it is easy to show that
assigning2 adjacent nodes the same slot incurs a delay of2
in both directions on that link, while a sequential assignment
will yield a delay of1 in either direction. Hence, we focus on
the case wherek ≥ 3. For a sequential slot assignmentf , it
is easy to show that thedelay diameteris given by:

Df = m(k − 1) (7)

Assume that there exists a slot assignment functionf ′, such
that Df ′ < Df . In the rest of the proof, we will focus on the
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delay in the ring due tof ′.
Consider a block ofm links on the ring from node0 to nodem
as shown in figure 3. Since we assumed thatDf ′ < m(k−1),
the shortest delay path from node0 to nodem (and vice versa)
must lie completely within the block. The alternative path has
m(k − 1) links each incurring a delay of at least1 (If this
alternative path is the shortest delay path, it contradictsour
assumption thatDf ′ < m(k−1)). This is true for every block
of m links on the ring. Figure 4 shows the shortest delay path
for nodes within each ofk such blocks.
∀i : i ∈ [1, k], ∀j : j ∈ [1, 2], let di1 be the delay in blocki
from node(i− 1)m to im, while di2 be the delay in blocki
from nodeim to (i−1)m as shown in the figure 4. We claim
that dmin = mini,j{dij} < 2m. This can again be proved by
contradiction as follows:
Consider a path from node0 to node k−1

2 m. There are two
possibilities as shown in figure 4:

1) 0 → m → 2m · · · → k−1
2 m. The delay along this path

is at leastk−1
2 dmin.

2) 0→ mk −m · · · → k−1
2 m. The delay along this path is

at leastk+1
2 dmin

Thus, if dmin ≥ 2m, it contradicts the assumption that
Df ′ < m(k − 1). Moreover, since each block hasm links,
each incurring a delay of at least1,

m ≤ dmin < 2m

Let dmin = m+x, wherex ∈ [0, m). Consider the block that
has the lowest delaydmin. Without loss of generality, label
the starting and ending node in this block asmk −m and0
as shown in the figure 5. Consider a path from node0 to node
mk−m−x. There are two possibilities as shown in figure 5:

1) 0→ mk−m→ · · · → mk−m−x. Delay along this path
is at leastmk− dmin +x = m(k− 1), which contradicts
our assumption aboutDf ′ < m(k − 1).

2) 0→ m→ 2m · · · → mk−m− x. Delay along this path
is given by:

D ≥
k−2
∑

i=1

di + (m− x)

≥ (k − 2)(m + x) + m− x

≥ m(k − 1) + x(k − 3)

≥ m(k − 1)(for k ≥ 3) (8)

This again contradicts our assumption thatDf ′ < m(k−
1).

Thus, for the ring withn = mk nodes, the sequential
assignment minimizes thedelay diameter.

For the case whenn = mk+ t, for 0 < t < k, the optimal
solution is slightly more involved.

Theorem4: For a ring withn nodes wheren = mk + t,
for 0 < t < k, the following is a lower bound on the delay
diameter:

Df ≥ (m + 1)k − ⌊
(m + 1)k − y

x
⌋ (9)

wheren = mk + t = (m + 1)x + y.

Fig. 3. Shortest delay path for a single block ofm links.

Fig. 4. Shortest delay path fork blocks ofm links each.

The proof is described in appendix X. A slot assignment
that achieves this lower bound is illustrated by the figure 6
(b).

In section V, we describe some centralized and distributed
heuristics for slot assignment on general topologies.

V. HEURISTIC APPROACHES

From the theoretical analysis, we know that DESS is NP-
hard, hence it is unlikely that there exist polynomial time
algorithms for solving it. We instead propose several heuris-
tic solutions in this section and evaluate their performance
through simulations in section VI.

A. Centralized Algorithm

Initially, all nodes are assigned the same slot and the
delay diameterD of the network is computed. By either
deterministic or random order, each sensor node calculatesthe

Fig. 5. Paths from node0 to nodemk − m − x
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Fig. 6. (a) The sequential slot assignmentf obtained for a ring withn = 8
nodes andk = 4 slots (n = mk). Here Df = 6. (b). A slot assignment
f obtained for a ring withn = 8 nodes withk = 6 using the optimal
construction for(n = mk + t). Here Df = 9 which matches the lower
bound in equation 9.

delay diameterof the network for all possible slot assignments
for itself while keeping other nodes’ slots unchanged. If
the minimum of thedelay diameters of all possible slot
assignmentsdmin is smaller than the previousdelay diameter
(dmin < d), the node changes its slot to the one that gives
the minimumdelay diameterand updatesd ← dmin. If the
delay diameteris unchanged, it chooses the new slot or keeps
the current slot with equal probability. Otherwise it keepsits
current slot unchanged. After all nodes finish this operation,
the iteration can be repeated again. The number of iterations
depends on limitations on the algorithm duration (which in
turn depends upon the size of the network). The pseudo code
for the centralized algorithm is shown below.

Algorithm Centralized
1. Assign slot 0 to all nodes in G
2. d = D(G) //delay diameterof G
3. for i ←1 to n //number of iterations
4. for each nodes in the network
5. for k1 ←0 to k − 1 //total slots
6. ok ←slot(s)
7. slot(s) ←k1

8. md ←D(G)
9. if dmin < d
10. then d ←dmin

11. minslot ←k1

12. if dmin == d
13. then minslot ←k1 with 50%

probability
14. minslot ←ok with 50%

probability
15. slot(s) ←minslot

B. Localized Algorithms

The centralized algorithm assumes complete knowledge of
the network topology and slot assignment. In this section we
consider some localized algorithms in which a sensor node
only knows the information stored at its neighbors.

We propose two different localized algorithms.

• Local-Neighbor: A node knows only the slot assignments
of its neighbors. It chooses a slot which minimizes
the maximum of its delays to and from its immediate
neighbors. This can be repeated for a certain number of
iterations.

• Local-DV: Its working is similar to Distance Vector
routing techniques. Each node maintains two Distance
Vector tables: a forward tableFDV which stores its
shortest delaysto all other nodes and a backward table
BDV which stores its shortest delaysfrom all other
nodes. These two tables can be calculated using the basic
Bellman-Ford technique. A sensor node also knows the
DV tables of its direct neighbors. A sensor node calcu-
lates the DV tables for all possible new slot assignments
for itself. Let the maximum value of entries in the sets
of the two DV tables over all possible slot assignments
bemaxd. The node will choose the slot which gives the
minimum maxd.

The pseudo codes of Local-Neighbor and Local-DV are shown
below.
Algorithm Local-Neighbor
1. Each nodes get the slots of its direct neighborN(s)
2. mind ←MAX V ALUE
3. for k1 ←0 to k − 1 //total slots
4. slot(s) ←k1

5. fd(s, t) ←delay froms to t in N(s)
6. bd(s, t) ←delay fromt in N(s) to s
7. maxd ←max(fd, bd)
8. if maxd < mind
9. then mind ←maxd
10. minslot ←k1

11. slot(s) ←minslot

Algorithm Local-DV
1. Each nodes calculate DV tablesFDV, BDV
2. Get theFDV, BDV of its direct neighborN(s)
3. mind ←MAX V ALUE
4. for k1 ←0 to k − 1 //total slots
5. slot(s) ←k
6. updateFDV, BDV
7. maxd ←max(FDV, BDV )
8. if maxd < mind
9. then mind ←maxd
10. minslot ←k1

11. slot(s) ←minslot

C. Randomization

The simplest slot assignment is to just randomly choose
a slot for each node once. In a dense network where a node
has a large number of neighbors (where multiple paths are
available for any pair of nodes), there is a high probabilitythat
this assignment may lead to a short delay path. We call this
decentralized random slot assignment as Random-Average.
The performance of this method is evaluated by the expected
value of thedelay diameter. The randomized slot assignment
can also be done in a centralized manner. We refer to this
centralized version as the Random-Minimum strategy. Aftera
certain number of iterations of choosing random slots for all
the nodes, this strategy chooses the assignment that gives the
minimumdelay diameterand then deploys the slot assignment
in the network.

While all the above heuristics can be used for any topology,
we next propose a specialized heuristic for the grid that
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Fig. 7. Concentric ring allocation for a grid of4 × 4 nodes withk = 5.
The dotted lines illustrate the concentric rings at each level.
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Fig. 8. Thedelay diameterof the heuristic algorithms versus grid size for
the number of slots fixed atk = 15. The grid is given asX × X.

exploits the structure of the topology.

D. Concentric Ring for the Grid topology

We believe that the optimal assignment on a ring can serve
as a basis for a low latency assignment on a grid that can
be viewed as a set of concentric rings with interconnecting
bridges. The outer most ring is given a sequential assignment
going in the clock-wise direction starting at 0. For every other
ring, a slot assignment is chosen that offers the bestdelay
diameterfor that ring. An example of this assignment is shown
in figure 7

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the heuristic
algorithms on the grid topology (in section VI-A) and random
topology (in section VI-B) through high level simulations.
Since the current study focuses on comparing thedelay
diameter only across these heuristics, even the distributed
algorithms are simulated in a centralized manner (without
analyzing their overhead). We also assume that the number
of slotsk is dictated by the duty cycling requirements of the
application.

A. Grid Network

First we evaluated the six schemes on a grid topology: Cen-
tralized, Local-DV, Local-Neighbor, Random-Avg, Random-
Min and Concentric Ring. To have a fair comparison, the
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Fig. 9. Thedelay diameterof the heuristic algorithms versus the number of
slots (k) for a fixed grid size of9 × 9.

centralized and the two local schemes had the same number
of iterationI = 20 while the random algorithms ran forI × k
times.

Figure 8 shows the results for different grid sizes while the
number of slotsk is fixed at 15. By exploiting the structure of
the grid, concentric ring has the best performance compared
to all other schemes. The centralized scheme is slightly worse
than the concentric ring at small grid size but is about 2
times worse than concentric ring when grid size is large. Both
the randomized schemes perform worse than the centralized
algorithm with Random-Min doing better than Random-Avg.
Moreover the two localized algorithms also seem to perform
poorly compared to the centralized one. This is possibly
because of the fact that thedelay diameterof a network
being a global property, the local optimization schemes do
not converge to the global optimum. Overall, we find that the
centralized scheme can reduce thedelay diameterof random
schemes by about 50%, while the concentric ring can provide
a further reduction of about 50%.

Although k should be decided by the duty cycle require-
ment of applications, it is interesting to see its impact on the
delay diameter. Figure 9 shows the results for different values
of k while the grid size is fixed at9 × 9. Clearly, thedelay
diameterincreases almost linearly with the number of slotsk.
Concentric ring performs the best while local schemes perform
the worst. We further evaluated these schemes on a larger grid
with 20 × 20 nodes and values ofk up to 20. We observed
similar trends in performance.

B. Random Network

We also tested the five schemes (excluding the Concentric
Ring heuristic) on a network with randomly deployed sensor
nodes.

First we fixed the radio transmission range at 2. Figure 10
and 11 show the result with 100 nodes uniformly distributed
in a 10× 10 square and a3× 33 rectangle. In both cases, the
centralized scheme performs best, followed by Random-Min.
It is interesting to note that in the random network, Local-
Neighbor now has a smallerdelay diameterthan Random-
Avg. In the3×33 area, the Local-Neighbor performs quite well
even on comparison with the Random-Min scheme. We believe
this is not because Local-Neighbor perform better but because
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Fig. 10. Thedelay diameterof the heuristic algorithms versus the number
of slots (k) for nodes randomly deployed in a10×10 area. The transmission
range is 2.
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Fig. 11. Thedelay diameterof the heuristic algorithms versus the number
of slots (k) for nodes randomly deployed in a3× 33 area. The transmission
range is 2.

Random schemes perform worse in a random graph. In a grid,
each internal node has 4 direct neighbors. In a random graph,
however there is a probability that some nodes are bottlenecks
(nodes through which several paths go through). An improper
slot assignment for such a bridge node may hurt thedelay
diametersignificantly. In a3 × 33 long rectangle, the proba-
bility of a node being a bridge becomes higher, which is likely
the reason that the performance of Local-Neighbor is closer
to the Random-Min scheme. This intuition is also backed by
figure 13 which shows thedelay diameterobtained by the
random schemes with 50 and 100 nodes. With 100 nodes,
the density and the average degree of the network increases,
the random schemes have better performance because of the
increased number of paths between any pair of nodes (and
hence fewer bottlenecks).

Figure 12 shows the effect of the radio transmission range
R on thedelay diameter. As R increases, thedelay diameter
decreases. This is because an increase inR decreases the graph
diameter (in hops).

Thus, for the single schedule case, where each node
chooses exactly one of thek slots to wake up, we have
presented several heuristics in section V and evaluated them
through simulations in section VI. In section VII, we show that
by carefully choosing multiple wake up slots for each sensor,
we gain significant delay savings over the single schedule case
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Fig. 12. Thedelay diameterof the heuristic algorithms versus the radio
transmission range for nodes randomly deployed in a10 × 10 area. Number
of slots is fixed atk = 10.
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Fig. 13. Thedelay diameterof the Random-Min algorithm versus radio
transmission range for nodes randomly deployed in a10 × 10 area with
N = 50 andN = 100. The number of slotsk = 10.

at the same duty cycling. Using the multi-schedule technique,
we propose algorithms with provable delay guarantees.

VII. M ULTI -SCHEDULESOLUTIONS

In this section, we show how significant savings in terms
of delay can be obtained if we use multi-scheduling where we
allow sensors to wake up at multiple time slots. The schedule
length is increased proportionately so that each sensor remains
active for only 1

k
fraction of the time slots on an average. We

will first demonstrate simple multi-schedules for tree and grid
networks where the latency between two sensors is at most
d+O(k) whered denotes the shortest path distance (in hops)
between the sensors in the original network. This is a very
useful guarantee, since this holds not just for the diameter-pair
but for an arbitrary pair of sensors. The difference between
the shortest path and the latency of our algorithm is only an
additiveO(k), which is independent of the network size and
the distance between the communicating sensors. We obtain
weaker a guarantee for general networks.

A. Tree Networks

Suppose the sensor network forms a tree. Arbitrarily
choose a sensorr as the root of the tree, and denotel(X)
as the shortest path distance of sensorX (in hops) fromr.
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Consider the multi-schedule whereX is awake during time
slot t iff either t− l(X) or t + l(X) is divisible by2k. Thus
a sensor is only awake for at most a1

k
fraction of the time

slots. The multi-schedule length is2k.
Consider two sensorsX andY and letZ denote the least-

common-ancestor ofX and Y in the rooted tree. Then the
shortest path distanced betweenX andY is given by(l(X)−
l(Z)) + (l(Y )− l(Z)); this corresponds to going up fromX
to Z and then down fromZ to Y . Informally, each sensor is
a part of two synchronized schedules, one going up the tree
and the other going down. Hence we will call our algorithm
TREE-MULTI -SYNCH. Assume that sensorX gets a packet
at time t. To send a packet fromX to Y , the algorithm first
waits for timet1 such thatt1 + l(X) mod 2k = 0. Then, this
packet is transmitted fromX to Z, one hop in one time slot,
reachingZ at time t2. The algorithm then waits for timet3
such thatt(3) − l(Z) mod 2k = 0, and then the packet is
transmitted fromZ down toY , one hop in one time slot, till
it reachesY at time t4. The total latency for the packet is
t4 − t = (t1 − t) + (t2 − t1) + (t3 − t2) + (t4 − t3). Now,
(t4− t3) + (t2− t1) = d. Further, at least one of the numbers
t, t+1, t+2, . . . , t+2k−1 is divisible by2k. Hence,t1− t ≤
2k − 1. Similarly, t3 − t2 ≤ 2k − 1, yielding the following
theorem:

Theorem5: The total latency (and hence thedelay diam-
eter) due to the TREE-MULTI -SYNCH algorithm is less than
d + 4k.

Note that this is significantly better than the lower bound of
Ω(dk) on the latency for the single wake up schedule (obtained
in section IV-B.1), and hence multi-schedules areprovably
better than single wake up schedules for latency.

B. Grid Networks

The multi-schedule is very simple. Consider sensorX at
position (i, j). X is awake during time slott iff at least one
out of t + i, t− i, t + j, andt− j is divisible by4k. During
any interval of length4k, a sensor is awake for at most 4 time
slots. Hence, on an average, a sensor is awake for at most a
1
k

fraction of the time slots. The multi-schedule length is4k.
We will now describe the algorithm for transferring a

packet of information from sensorX at position(i, j) to sensor
Y at position(p, q). Informally, each sensor is a part of four
synchronized schedules, one for each of the directions, and
hence we will call our algorithm GRID-MULTI -SYNCH.

Without loss of generality, assumei ≤ p andj ≤ q. Sup-
pose the packet becomes available at timet at sensorX . Let
t1 ≥ t denote the first time instant such thatt1−i mod 4k = 0.
For all r, 1 ≤ r ≤ p − i − 1, the sensor(i + r, j) transmits
the packet at timet1 + r. Sincet1− i mod 4k = 0, it follows
that ((t1 +r)− (i+r)) mod 4k must also be0. Hence, sensor
(i + r, j) is awake at timet1 + r and can receive this packet
in time to transmit it during the next time slott1 + r +1. The
packet arrives at sensor(p, j) at time t2 = t1 + p− i.

Let t3 ≥ t2 denote the smallest time such thatt3 −
j mod 4k = 0. For allr, 1 ≤ r ≤ q− j − 1, sensor(p, j + r)
transmits during time slott3 + r. Using the same reasoning as
above, the packet arrives at sensor(p, q) at timet4 = t3+q−j.

Theorem6: Let d = (p− i)+ (q− j) denote the shortest
path distance betweenX andY . Then the total latency (and
hence thedelay diameter) due to the GRID-MULTI -SYNCH

algorithm is less thand + 8k.
Proof: The total latency for the packet ist4− t = (t4−

t3) + (t3 − t2) + (t2 − t1) + (t1 − t). But t4 − t3 = q− j and
t2−t1 = p−i. Hence,(t4−t3)+(t2−t1) = p−i+q−j = d.
Further, at least one of the numberst, t+1, t+2, . . . , t+4k−1
is divisible by 4k, and hencet1 − t ≤ 4k − 1. Similarly,
t3 − t2 ≤ 4k − 1. Thus, the latency of the above algorithm is
at mostd + 8k − 2.

C. General Networks

We will use a general result about decomposition of net-
works into trees. Suppose we are given an unweighted graph
G overn nodes. LetdG(u, v) denote the shortest path distance
between nodesu andv in G. Let c be a large enough constant.
The following result is implicit in the work of Bartal [21], [22]
and Fakcheroenphol, Rao, and Talwar [23]:

Theorem7: ( [21], [22], [23]) There exists a collection
S of c logn spanning trees ofG such that for all nodesu, v
in G,

min
T∈S

dT (u, v) ≤ dG(u, v) · c log n.

Let lT (X) denote the level (i.e. distance from the root)
of sensorX in tree T ∈ S. SensorX is alive at all times
t such that eithert − lT (X) or t + lT (X) is divisible by
(2k)(c log n) for some T ∈ S. The multi-schedule length
is now 2ck log n, and each sensor is awake for at most a
fraction 1

k
of the time slots. To send a packet of information

from X to Y , we will find the treeT ∈ S which minimizes
dT (X, Y ), and use the TREE-MULTI -SYNCH algorithm onT .
Since the multi-schedule length is2ck log n, the latency (and
hence thedelay diameter) due to this algorithm will be at most
dT (X, Y ) + 4ck log n = O((dG(X, Y ) + k) log n).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have addressed the important problem of
minimizing communication latency while providing energy-
efficient periodic sleep cycles for nodes in wireless sensor
networks. The objective is to minimize the latency given the
duty cycling requirement that each sensor has to be awake for
1
k

fraction of time slots on an average. For the single wake
up schedule case, where each sensor can wake up at exactly
one of thek slots, we have provided graph-theoretic problem
formulations for arbitrary all-to-all (DESS) as well as weighted
communication patterns (ADESS). We also proved that both
these problems are NP-hard. We then focused on the DESS
problem and derived and proved optimal solutions for two
special cases,viz. the tree and ring topologies. For arbitrary
topologies, we proposed several heuristics and evaluated them
through simulations. These simulations reveal several inter-
esting observations: that purely localized heuristics tend to
perform worse than simple randomized slot allocations, that
our centralized scheme can provide delay reductions of around
50% over randomized schemes and that specialized heuristics
(that exploit the topological structure) like the concentric ring
for the grid can provide additional gains. Further, we showed
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that by carefully choosing multiple wake up slots, one can
obtain significant savings in the latency at the same duty
cycling. Using this technique, we propose algorithms with
provable guarantees on tree, grid and arbitrary graphs. These
results obtained from an algorithmic perspective are novel
and quite different from prior work in this area which has
focused primarily on intuitive MAC protocol designs (such as
S-MAC [1], T-MAC [3], and our own work on D-MAC [10]).
In many ways we have only discovered the tip of an iceberg in
this domain. Many interesting and challenging open problems
arise that we would like to pursue in our own future work and
present to the research community:

• Techniques to compute good lower bounds on the optimal
delay diameterfor an arbitrary graph.

• Good distributed heuristics for the DESS problem.
• In-depth analysis and algorithms for the weighted com-

munication average delay problem (ADESS).
• Incorporation of local interference constraints similar to

TDMA scheduling problems to handle moderate to high
traffic scenarios.

• Implementation and validation of delay efficient sched-
ules in testbed/real-world sensor networks.
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X. A PPENDIX

Lemma1: Considern = mk + t, 0 < t < k. C1 =
∑

i df (i, i + 1) + df (n− 1, 0) = M · k, wherei ∈ [0, n− 1],
M ≥ m + 1.

Proof:
Since, there aremk + t links and the delay on each link

under any slot assignment is at least 1,M has to be at least
m + 1. Now,

df (i, j) = (Sj−Si) modk =

{

Sj − Si if Sj − Si > 0
Sj − Si + k if Sj − Si ≤ 0

So:

C1 =
∑

i

df (i, i + 1) + df (n− 1, 0)

= (S1 − S0) mod k + ... + (S0 − Sn−1) mod k

= M · k + (S1 − S0 + S2 − S1 + ... + S0 − Sn−1)

= M · k

It is easy to know thatC2 =
∑

i df (i, i− 1)+ df(0, n− 1) =
M · k, wherei ∈ [1, n], M ≥ m + 1. C1 + C2 = (mk + t)k.
Without loss of generality, letC1 ≤ C2, thenM ≤ mk+t

2 .

Lemma2: For an optimal slot assignment,M = m + 1.
Proof: It can be shown that the sequential slot assignment

which assigns a sequentially increasing slot (by one and
modulo k) has adelay diameterof (m + 1)(k − 1). We will
show that forM > m + 1, the delay diameterwill always
be larger than(m + 1)(k − 1). AssumeM = m + 2, hence
C1 = (m + 2)k. We break the ring into blocks of sizem + 2:

0→ 1→ 2 . . .m + 1→ m + 2

1→ 2→ 3 . . .m + 2→ m + 3
...

mk + t− 1→ 0→ 1 . . .m→ m + 1
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Let di be the sum of the all the link delays of the block starting
at node i.

mk+t−1
∑

i=0

di = (m + 2) · C1

= (m + 2)(m + 2)k

Let dmin be the minimum of alldis, thus:

(mk + t)dmin ≤ (m + 2)(m + 2)k

dmin ≤
(m + 2)(m + 2)k

mk + t

dmin ≤ m + 2 +
(2k − t)(m + 2)

mk + t

Consider the block that has the lowest delaydmin. Without
loss of generality, letd0 = dmin = m+2+x shown in figure
14, wherex = ⌊ (2k−t)(m+2)

mk+t
⌋. Consider the path from node

m + 2 to node0. There are two possibilities:
1) m + 2→ m + 3 · · · → mk + t− 1→ 0. The delay along

this path is(m + 2)k − d0.
2) m + 2→ m + 1 · · · → 1→ 0. The delay along this path

is also(m + 2)k − d0.
For both case, the delay D is given by:

D = (m + 2)k − d0

= (m + 2)k − (m + 2 + x)

= (m + 1)(k − 1) + k − 1− x

SinceM ≤ mk+t
2 , whenM = m + 2:

m + 2

mk + t
≤

1

2

Also because0 < t < k andk ≥ 3:

⌊
2k − t

k − 1
⌋ ≤ 2

So:

⌊
m + 2

mk + t
·
2k − t

k − 1
⌋ ≤ 1

x = ⌊
2k − t

mk + t
(m + 2)⌋ ≤ k − 1

k − 1− x ≥ 0

D ≥ (m + 1)(k − 1)

Thus we have proved that whenC1 = (m+2)k, thedelay
diameterwill be at least(m + 1)(k − 1). Similarly, it can be
proved that for anyM ≥ (m + 2), thedelay diameterwill be
no smaller than(m + 1)(k − 1).

Hence for an optimal slot assignment,C1 = (m + 1)k.
Now we will calculate the lower bound on thedelay

diameterof the ring whenn = mk + t. Similarly as the case
when n = mk, we break the ring into blocks of sizem + 1
shown in figure 15.

n = mk + t = (m + 1)x + y

(10)

where0 ≤ y < m + 1

Fig. 14. Paths from nodem + 2 to node0

Fig. 15. Shortest delay forx blocks ofm + 1 links each

For any possible such block ofm + 1 links, let dmin be
the minimum delay. Thedelay diameterof the ring is(m +
1)k − dmin. If we get the maximum value ofdmin, we then
achieve the smallest diameterD = (m + 1)k −max(dmin).

Since
∑

di = (m + 1)k, we have:

x · dmin + dy ≤ (m + 1)k

dmin ≤
(m + 1)k − dy

x
≤

(m + 1)k − y

x

max(dmin) = ⌊
(m + 1)k − y

x
⌋

Thus, the lower bound on thedelay diameterDf for any
slot assignment functionf is given by:

Df ≥ (m + 1)k − ⌊
(m + 1)k − y

x
⌋


