
Mobile Networks and Applications 11, 341–350, 2006
C© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s11036-006-5187-8

Decentralized Utility-based Sensor Network Design

NARAYANAN SADAGOPAN *

Department of Computer Science, University of Southern California, 941 W. 37th Place, Los Angeles, CA 90089-0781, USA

MITALI SINGH
Department of Computer Science, University of Southern California, 3740 McClintock Ave, EEB 226, Los Angeles, CA 90089-0781, USA

BHASKAR KRISHNAMACHARI
Dept. of Electrical Engineering - Systems, University of Southern California, 3740 McClintock Avenue, EEB 342, Los Angeles, CA 90089, USA

Published online: 28 April 2006

Abstract. Wireless sensor networks consist of energy-constrained sensor nodes operating unattended in highly dynamic environments.
In this paper, we advocate a systematic decentralized approach towards the design of such networks based on utility functions. A local
utility function is defined for each sensor node in the network. While each sensor node “selfishly” optimizes its own utility, the network as
a “whole” converges to a desired global objective. For the purpose of demonstrating our approach, we consider the following two separate
case studies for data gathering in sensor networks: (a) construction of a load balanced tree and (b) construction of an energy balanced tree.
Our work suggests a significant departure from the existing view of sensor networks as consisting of cooperative nodes, i.e. “selfish”sensor
nodes is a useful paradigm for designing efficient distributed algorithms for these networks.

1. Introduction

Wireless sensor networks provide us with an attractive option
of being able to “instrument” the physical world. These net-
works are envisioned to support a wide range of applications
including wild life tracking, microclimate monitoring, target
tracking, and structural health monitoring. Several real world
deployments of these networks are described in [2]. One of
the first deployments was at the Great Duck Island, about 50
miles off the coast of Maine. This network was used for mi-
croclimate monitoring. The initial deployment consisted of
50 sensor nodes, which was later increased to 100 nodes [3].
Future deployments are envisioned to have a few hundreds
of these nodes. Due to the monitoring activities, these net-
works collect and store large quantities of data. Data stored
by these networks can be extracted in different ways such
as one-shot querying [16], en masse data gathering [17] and
continuous data gathering [10]. The severe energy constraints
of the sensor nodes engender the need for designing efficient
(or optimal) data extraction algorithms based on mathemati-
cal modeling and optimization techniques. The optimization
criteria depend on the specific application and the mode of
data gathering. For example, an en masse data gathering ap-
plication might be interested in maximizing the total data
collected (without caring about the remaining life of the net-
work), while a continuous data gathering application may
want to ensure the longevity of the network. Moreover, the

*Corresponding author.

autonomous mode of operation and the highly dynamic de-
ployment environments of these networks motivate the need
for designing robust, online, distributed optimization algo-
rithms.

In this study, we apply techniques from Mechanism De-
sign and Game Theory to facilitate the design of decen-
tralized algorithms for optimizing data gathering in sensor
networks. Informally, we investigate the following problem:
Given a global objective function, can suitable local util-
ity functions be designed such that each sensor node while
“selfishly” optimizing its own local utility function leads
to optimizing the desired global objective. In this paper,
we design efficient algorithms for continuous data gath-
ering in sensor networks. Specifically, we consider con-
tinuous data gathering applications that construct a span-
ning tree rooted at the data sink in the network [10]. The
desirable characteristics of this tree depend on the na-
ture of the query being answered. Consider two specific
examples:

1. “Report the maximum temperate in the network for the
next 30 minutes at the rate of 1 reading every 30 seconds”.
In this case, each node just needs to send a single unit of
data, which is the maximum temperature in its sub tree.
We call such an aggregation as “perfect” aggregation.

2. “Report the temperature from all the nodes for the next 30
minutes at the rate of 1 reading every 30 seconds”. In this
case, each node needs to send the temperature of all the
nodes in its sub tree and there is no aggregation.



342 SADAGOPAN, SINGH AND KRISHNAMACHARI

We assume that the energy dissipation at a sensor node is
proportional to the number of data units received and trans-
mitted by it. The end user is interested in ensuring a fair
utilization of the energy resources in the network such that
no sensor node suffers an early energy depletion. Consider a
data gathering tree used to execute a query of the first type.
Each sensor node (other than the root) transmits one unit of
data. The number of data units received by a sensor node is
proportional to the number of its children. For such a query,
it is useful to construct a load balanced tree, where the load
(number of children attached to a parent) is balanced at each
level of the tree. Alternatively, consider a sensor node execut-
ing a query of the second type. The number of units received
and transmitted by it is proportional to the size of its subtree.
In such a scenario, it is of interest to construct an energy
balanced tree in the network that ensures that the energy dis-
sipation in routing data is uniform among all the nodes in the
network.

For the purpose of demonstrating our approach, we focus
on the construction of continuous data gathering trees that are
optimized for the global objectives described above: load bal-
ance and energy balance. For each of these objectives, we de-
sign a local utility function for each sensor node, such that the
desired objective is attained while the sensor nodes selfishly
optimize their local utility functions. We propose an efficient,
distributed heuristic DistributedParentBid for constructing a
load balanced tree in the network. The performance of Dis-
tributedParentBid is evaluated by comparing against an op-
timal centralized algorithm over several scenarios involving
random deployment of sensor nodes in the network. Our sim-
ulation results show that the heuristic produces the desired
load balanced tree for around 90% of the simulation scenarios.
We also show that an energy balanced tree can be built over
the network, provided each sensor node routes its data along
the shortest path (using an edge length metric that is weighed
inversely to the current energy of the sensor node) to the sink.
This can be achieved in a simple manner by using a distributed
distance vector algorithm with the appropriate edge length
metric.

The rest of the paper is organized as follows: Section 2
briefly describes the related work. The formal description of
the load balanced data gathering tree construction problem
is given in Section 3. We describe and analyze our decen-
tralized algorithm for construction of a load balanced tree in
Sections 3.1, 3.2 and 3.3. Section 4 describes our second case
study, which is construction of an energy balanced data gath-
ering tree in the network. Finally, we conclude in Section 5
with some discussion on our future work.

2. Related work

Due to the autonomous mode of operation and highly dy-
namic operating conditions, it is desirable to develop robust,
distributed algorithms for several tasks of a sensor network

like target tracking, edge detection, data gathering, local-
ization, etc. [4]. Several studies have proposed distributed
algorithms for each of these tasks. Most of these algorithms
view the sensor network as a cooperative entity, operating to-
wards achieving the desired global objective. In this study, we
show that viewing sensors as “selfish” entities is also a useful
abstraction for designing distributed algorithms for these in-
herently cooperative networks. We borrow techniques from
Algorithmic Mechanism Design (AMD), which is a useful
tool for distributed decision making. AMD ensures that the
desired global objective is attained in the presence of selfish
agents, where the utility function of an agent is assumed to
be known a priori [5]. This is usually done by offering in-
centives to the agents in the form of payments. Game Theory
also deals with situations involving selfish agents. Recently,
networking research has started using game theory to model
the impact of social behavior on the Internet. Papadimitriou
gives a very good exposition of the applicability of game
theory and algorithms to the Internet [14]. Most of the game
theoretic literature study the properties of the Nash Equilib-
rium resulting from the interaction of selfish agents (whose
utility functions are known a priori), without dealing with any
particular global objective. Kannan, et al. examine the Nash
Equilibrium arising from interactions of selfish sensors in the
context of reliable data gathering in sensor networks [6]. In
this study, unlike the above approaches that assume a utility
function for an agent, we are interested in designing local
utility functions for each sensor node such that the network
as a “whole” attains the desired global objective when each
sensor node selfishly seeks to maximize its local utility. Our
utility function based approach is similar to the one adopted
by Byers and Nasser [12]. Their study is targeted to appli-
cations that assume “perfect” aggregation and do not require
the collection of data from all the sensor nodes at each round.
This is captured by a global objective function that is con-
cave in the number of nodes involved in the sensing operation
at each round. They then propose a distributed algorithm in
which each sensor node decides whether it should be involved
in the sensing operation at each round. This algorithm maxi-
mizes the total utility of the sensing operation over time. Our
study considers continuous data gathering applications that
assume no aggregation and require data to be collected from
all the sensor nodes. We propose distributed algorithms (by
designing local utility functions) such that each sensor node
decides its parent on the data gathering tree depending on the
desired properties of the tree. As mentioned in Section 1, we
are interested in two specific global objectives: load balance
and energy balance.

Several algorithms have been proposed for load bal-
ancing: distributed algorithms (in the context of selfish
users) [9], online algorithms [8] and offline centralized al-
gorithms [7]. Grosu and Chronopoulos assume a local util-
ity function (a priori) for each user and compare the re-
sulting Nash Equilibrium with the desired global optimal
solution [9]. The load balancing problem is essentially finding



DECENTRALIZED UTILITY-BASED SENSOR NETWORK DESIGN 343

Figure 1. An illustration of load balancing. (b) depicts an arbitrary parent selection strategy. Notice that level 1 is load balanced, while level 2 is not, given
the graph connectivity restrictions in (a)

an optimal semi-matching in a bipartite graph. Harvey et al.
show that this problem can be reduced to a minimum cost
maximum flow problem [7]. They propose efficient central-
ized offline algorithms for finding the optimal semi-matching.
They also show that the resulting optimal semi-matching min-
imizes all norms including the variance of the load (number
of children) i.e. the ||L2|| and the maximum load (||L∞||). In
this study, we propose DistributedParentBid, a distributed it-
erative algorithm for the load balanced data gathering tree
construction in sensor networks. The proposed algorithm
specifies a local utility function for each sensor node such
that the selfish behavior of the sensor nodes converges to a
load balanced data gathering tree. Simulations indicate that
in majority of the cases, our algorithm produces the same
load balanced tree as that built by the centralized optimal
semi-matching algorithm.

Energy efficiency has been one of main focal points for
research in ad hoc wireless networks and sensor networks.
Raghavendra et al. propose some metrics which address is-
sues of energy efficiency and node life times [15]. Their
work mainly focuses on pairs of communicating nodes. They
show that some of their optimization metrics such as maxi-
mizing network partition time, minimizing variance in node
energy levels, are NP-Complete [13]. In this paper, we pro-
pose a polynomial time algorithm for constructing an energy
balanced tree, where no sensor node suffers early energy
depletion.

3. Load balanced data gathering tree construction

Spanning trees have been widely used for gathering data from
a large multi hop network to the base station/sink node. The
following two phase process can be used for constructing a
spanning tree in a sensor network as shown in Figure 1. The
first phase involves flooding of a message from the sink node
to all the sensor nodes in the network. This is followed by the

second phase, whereby the sensor nodes organize themselves
into levels based on their distance to the sink node. The sensor
nodes at lower levels correspond to those closer to the sink
node. Each sensor node other than the sink node selects one
node from the previous level (with which it can communicate)
as its parent [11].

In this section we consider a data gathering application
that assumes “perfect” aggregation (see Section 1). The leaf
nodes of the tree transmit one unit of data to their parent.
The parent nodes (except the sink node) receive all the data
from their children, aggregate the gathered information, and
transmit one unit of data to their respective parent. One unit
of energy is dissipated at the leaf nodes, while the parent
nodes dissipate energy proportional to the number of children.
Our goal is to construct a load balanced spanning tree that
ensures fair utilization of the energy resources at all the sensor
nodes.

Due to “perfect” aggregation, a key feature of the bal-
anced data gathering construction problem is that the deci-
sions taken by sensor nodes at one level of the tree are inde-
pendent of those taken at another level. Thus, at each level,
ensuring that each sensor node selects its parent such that
none of the parents are overloaded will lead to a global tree in
which none of the sensor nodes are overloaded. Thus, as men-
tioned in Section 1, we are interested in constructing a load
balanced tree in the network that has the following property:
Given a set of candidate parent nodes, each sensor node must
select as parent, the sensor node at the previous level with the
smallest number of children. In other words, if a sensor node
discovers a candidate parent node that has fewer children than
the current parent node, the sensor node must select this node
as its new parent. As discussed earlier, the choices made by a
sensor node at one level in the tree do not affect the choices
made by the sensor nodes at the other levels. Hence, in the
remaining part of this section, we will focus on a single level
of the hierarchical structure created by the initial flood i.e. a
set of children nodes with their corresponding sets of possible
parents.



344 SADAGOPAN, SINGH AND KRISHNAMACHARI

Before formally describing the problem, we introduce
some preliminary notation:

1. M is the set of all parents at a level.

2. N is the set of children at a level.

3. Mj is the set of potential parents of sensor node j, such that
∀i ∈ N :

⋃|N |
i=1 Mi = M .

4. G = (M
⋃

N,E) is a bipartite graph such that if an edge
(i, j) ∈ E, then i ∈ M and j ∈ N or vice-versa.

5. |E| ≤ M × N .

It is useful to abstract load balancing as a bandwidth alloca-
tion problem. Assume that a parent allocates its bandwidth
(of 1 unit) equally to all its children. For example, if a par-
ent has 3 children in the optimal tree then each child gets
a bandwidth of 1

3 . In the optimal (load balanced tree), let
xi

∗ be the bandwidth allocated to a sensor node i. Consider
the optimal allocation vector x∗ = (x∗

1 , x∗
2 ,. . . x∗

N ), such that
∑N

i=1 x∗
i = |M|. Using simple arguments, it can be shown

that the optimal (load balanced) allocation vector x∗ is max-
min fair.

Thus, the global objective is to attain a max-min fair al-
location for all the children (at each level). The mechanism
design for the load balanced tree is described over the next
three sections, Section 3.1 specifies the strategy space and the
local utility function for each sensor node. The algorithm in
described in Section 3.2and analyzed in Section 3.3.

3.1. Game description

We consider an iterative game. We define an iteration as a
round in which parents announce their bandwidth guarantees
and the children decide on the parent they want to attach.
This game is played on the edges e ∈ E of the bipartite graph
mentioned in Section 3. The players in this game are the
children. For each player i such that i ∈ N, let Si

k ⊆ Mi be the
strategy space at iteration k. ui

k (p) denotes the utility of sensor
node i for choosing sensor node p as its parent in iteration k.
We define ui

k(p) = C
p

k where C
p

k is the bandwidth guaranteed
by parent p at iteration k. i.e. the parent p is committed to
provide a bandwidth of at least C

p

k to child i for all iterations
after k as long as i is a child of p.

Let

ui
k = Maxp∈Si

k
{ui

k(p)}
= Maxp∈Si

k
{Cp

k } (1)

This utility function in Eqn. 1 dictates that at each iteration,
a sensor node prefers to connect to a parent that gives it
the maximum bandwidth guarantee. i.e. each sensor node is
“selfish” about the bandwidth guarantee it receives. At every
iteration, each parent p gives equal bandwidth guarantees to
its children.

In Section 3.2, we describe the algorithm that constructs a
load balanced tree in the presence of “selfish”sensor nodes.

3.2. Algorithm for load balanced tree construction

In this section, we describe DistributedParentBid, an itera-
tive distributed algorithm for constructing a load balanced
spanning tree in the network. The algorithm assumes that
each sensor node’s decision making is governed by the utility
function described by Eqn. 1 in Section 3.1. Before describ-
ing the algorithms of the parent and child, we introduce some
notations and definitions. As described in Section 3.1, we
define one iteration to be one round of communication be-
tween the parents and the children. This round consists of the
following steps:

1. A candidate parent announces its bandwidth guarantee.

2. Each child responds to all candidate parents that offer the
best bandwidth guarantee.

3. A candidate parent chooses a subset of the responding
children informing them to attach to it.

4. Each child then chooses one of the candidate parents to
attach and informs the rest that it does not want to attach
to them.

Let

1. deg(j) be the degree of a node j in the bipartite graph G
described in Section 3.

2. P i
k be the parent of node i at iteration k.

3. Y
p

k be the number of additional children that parent p can
take during iteration k, giving a bandwidth guarantee of
C

p

k .

4. n
p

k be the number of new children that request to attach to
parent p during iteration k.

5. a
p

k be the number of new children that actually attach to
parent p during iteration k1.

6. zk
p be the number of children that leave parent p during

iteration k.

7. N
p

k be the set of children currently attached to parent p at
the end of iteration k.

8. B
p

k be the total bandwidth auctioned by a parent p at the
end of iteration k. i.e.

B
p

k = |Np

k |Cp

k if |Np

k | > 0 (2)

= C
p

k otherwise (3)

Definition 1. A parent p is considered to be saturated at
iteration k iff B

p

k = 1.

i.e. a parent p is saturated at iteration k iff its total auctioned
bandwidth equals the maximum bandwidth of 1. On satura-
tion at iteration k, parent p will offer a bandwidth guarantee
of C

p

k = 1
|Np

k | to each of the children attached to it.

1A child might request to be attached to several parents during iteration k,
but will ultimately choose exactly one parent that is willing to take it at the
end of iteration k.



DECENTRALIZED UTILITY-BASED SENSOR NETWORK DESIGN 345

If |Np

k | > 0, saturation implies that p cannot take any more
children at the guaranteed bandwidth of C

p

k . If |Np

k | = 0,
B

p

k = C
p

k = 1 implies that each of p’s children have a band-
width guarantee of 1 from some other parent p′. ∀ p: p ∈
M,yp

k = 0 iff p is saturated at iteration k.

DistributedParentBid consists of algorithms for Parent
and Child, which are described below:

Parent: A parent p successively increases its bandwidth
guarantees from 1

deg(p) ,
1

deg(p)−1 , 1
deg(p)−2 , so on until it gets

saturated. In a system implementation, this can be achieved
by the parent p broadcasting a message containing the band-
width guarantee so that all children within its radio range can
receive the bandwidth announcement. Each child that is not
already attached to p, will respond to p if p guarantees the
highest possible bandwidth among all its potential parents.
If p cannot guarantee the announced bandwidth to all the
children that respond, it will allow a subset of the respond-
ing children to select it as a parent and reject the rest. For
example, consider a parent p that has 5 children currently.
If p announces a bandwidth guarantee of 1

7 and 3 additional
children respond to it, p can only choose 2 out of the 3 chil-
dren. This is because on choosing 2 children, p saturates with
7 children, each getting a bandwidth of 1

7 . An unsaturated p
does not increase its bandwidth guarantee from iteration k to
k + 1 iff any of the following conditions are satisfied:

1. At least one of its current children switches to some other
parent during iteration k.

2. At least one child that is not currently attached to it during
iteration k requests to switch to it.

These conditions ensure that a parent p will increase
its bandwidth guarantee iff no additional children want to
switch to it at its current guarantee. While this is apparent
for the second condition, the first condition is for letting a
child that was rejected earlier by p to switch to it at the
same bandwidth guarantee if possible (which may happen
due to some already attached child leaving p for some other
parent).

Parent p stops issuing the bandwidth announcement mes-
sages once it is saturated.

Initially, a parent p sets C
p

k = 1
deg(p) . While p is not sat-

urated (may also happen if a child leaves a saturated parent
making B

p

k < 1), it executes the following iterative algorithm
(here, k is a global variable that keeps track of iterations pre-
viously executed by this parent):

Parent(p){
while (Bp

k < 1) {
C

p

k+1 ← C
p

k

announce} C
p

k+1 to all its children
/* Find the upper bound on the number of
children that can be taken */
y

p

k+1 ← 1
C

p

k+1
− |Np

k |.

if (np

k+1 > y
p

k+1) reject the excess children
|Np

k+1| ← |Np

k | + a
p

k+1 − z
p

k+1.

if (Bp

k+1 = 1) exit
/* If a child left or responded to the
announcement, don’t increase the bandwidth
guarantee */}
if ((zp

k+1 > 0) or (np

k+1 > 0)) ∈ {Cp

k+1 ← C
p

k }
else {Cp

k+1 ← 1
1

C
p
k

−1
}

k ← k + 1
}

}
Child: At an iteration k, the strategy space of child i,
Si

k = {p|p ∈ Mi,B
p

k < 1}. i.e. at each iteration k, each child i
will try to connect to an unsaturated parent p that provides the
best bandwidth guarantee. In a system implementation, this
can be achieved by each child sending a message in response
to the bandwidth announcement from a parent p. If there are
multiple such parents, the child will request to connect to all
of them2. If multiple parents are willing to accept it, the node
will choose one of the parents and will inform the others that
it does not wish to connect to them.

Termination: DistributedParentBid terminates at the
smallest iteration k at which all parents are saturated
i.e.

∑M
p=1 B

p

k = M .

3.3. Analysis

In this section, we show that DistributedParentBid algorithm
terminates and analyze its running time. We show that a
Nash Equilibrium exists on termination of the algorithm. We
also outline a candidate scenario where this algorithm might
not produce a load balanced tree. However, by comparing
it against a centralized algorithm for load balancing through
simulations, we show that the proposed algorithm produces
a load balanced tree for around 90% of the scenarios studied.

Let Sk = ∑M
i=1 Bi

k be the total auctioned bandwidth across
all the parents at the end of iteration k. Let k∗ be the smallest
iteration at which all parents p are saturated i.e.

∑M
p=1 B

p

k∗ =
M .

Lemma 1. The following quantities are non-decreasing
functions of k:

1. For each parent p, C
p

k .
2. For each child i, ui

k .

Proof:

1. The algorithm Parent(p) never decreases C
p

k from one
iteration to the next. Thus, C

p

k+1 ≥ C
p

k

2. By definition, ui
k = Maxp∈Si

k
{Cp

k }. If i is attached to the
same parent at iteration k and k + 1, from the first part

2The child has to respond to all such parents because a previously unsaturated
parent might have to reject some children if it gets saturated during the
current iteration.



346 SADAGOPAN, SINGH AND KRISHNAMACHARI

Figure 2. Load balancing level 2 of the tree show in figure 1 (b) using DistributedParentBid.

of this Lemma, ui
k+1 ≥ ui

k . i switches from p to p′ during

iteration k + 1 iff C
p′
k+1 > C

p

k+1 ≥ C
p

k . Hence, ui
k+1 > ui

k .
�

Lemma 2. If at least one child switches from one parent to
the other during iteration k, Sk > Sk−1.

Proof: Let N′ ⊆ N be the set of children that switch and
N − N′ be the set of children that do not switch parents. Then

Sk − Sk−1 ≥
∑

i∈N

{
ui

k − ui
k−1

}

≥
∑

i∈N

{
ui

k − ui
k−1

} +
∑

j∈N−N ′

{
u

j

k − u
j

k−1

}

From Lemma 1, we observe that ui
k ≥ ui

k−1 for all i. Specif-
ically for i ∈ N ′, ui

k > ui
k−1. Hence, if at least one child

switches parents during iteration k (N′ �= φ), then Sk > Sk−1.
�

Lemma 3. If Sk > Sk−1, δ = Sk − Sk−1 ≥ 1
(γ )(γ−1) , where

γ = Maxp∈M{deg(p)} is the maximum degree of a parent in
the graph G.

Proof: If Sk > Sk−1, two cases arise:

1. A child i switches from parent p to q during iteration k.
2. No child switches, but an unsaturated parent p increases

its bandwidth guarantee from C
p

k−1 to C
p

k .

In the first case, a child i switches from parent p to q during
iteration k iff C

q

k > C
p

k . Now, Cp

k ≥ C
p

k−1 implies ui
k > ui

k−1.
From the proof of lemma 2, we obtain that Sk−1 − Sk ≥

{ui
k −ui

k−1}. This difference is the smallest when exactly one
child i switches from a parent p that offers it a bandwidth
of 1

γ
to a parent q that offers it a bandwidth of 1

γ−1 . Hence,

the smallest difference δ = 1
(γ )(γ−1) ≤ Sk − Sk−1. Hence, in

general, if at least one node switches at iteration k, Sk > Sk−1

and difference δ = Sk −Sk−1 ≥ 1
(γ )(γ−1) . For the second case,

we have the following:

Sk − Sk−1 ≥
∑

q∈M

{
C

q

k − C
q

k−1

}

≥ {
C

p

k − C
p

k−1

}

≥ 1

γ − 1
− 1

γ

≥ δ

where p is an unsaturated parent.

Leema 4. The total auctioned bandwidth across all par-
ents (Sk) is a non-decreasing function of k. Moreover, either
Sk+1 > Sk or Sk+2 > Sk+1 = Sk .

Proof: Consider an iteration k < k∗. There exists at least
one unsaturated parent p at the endof iteration k. Two possi-
bilities arise:

1. None of the unsaturated parents increase their bandwidth
guarantee during iteration k + 1. Two sub-cases arise:

(a) At least one child switches during this iteration then
from Lemma 2, Sk+1 > Sk .

(b) No child switches during this iterationSk+1 = Sk .
Now, during iteration k + 2, all unsaturated par-
ents increase their bandwidth guarantees. Again if



DECENTRALIZED UTILITY-BASED SENSOR NETWORK DESIGN 347

a child switches parents, thenSk+2 > Sk+1. If no
child switches during iteration k + 2 then,

Sk+2 − Sk+1 ≥
∑

j∈M

{Cj

k+2 − C
j

k−1}

Since C
j

k+2 > C
j

k+1 for each unsaturated parent j,
Sk+2 > Sk+1 = Sk .

2. At least one unsaturated parent increases its bandwidth
guarantee during iteration k + 1. Then, as seen from the
proof of 1 (b), Sk+1 > Sk . �

We now prove our main result about the running time
ofDistributedParentBid

Theorem 1. The total number of iterations taken by Dis-
tributedParentBid is O(Mγ 2). At termination, a Nash Equi-
librium exists.

Proof: Initially, each parent p announces a bandwidth guar-
antee of C

p

0 = 1
deg(p) ≥ 1

γ
. Thus, S0 ≥ M

γ
. If k∗ is the smallest

iteration at which all parents are saturated, Sk∗ = M . From
Lemma 4, we see that there are at most 2 iterations when Sk

remains constant (i.e. k and k + 1). Moreover, whenever Sk

increases it increases by at least δ as seen from Lemma 3.
Thus, the total number of iterations (T) for the termination of
DistributedParentBid is given by:

T ≤ 2

{
Sk∗ − S0

δ

}

≤ 2Mγ 2

Next, we prove the existence of a Nash Equilibrium on the
termination of DistributedParentBid.

On termination at iteration k∗, all parents are saturated i.e.
∀p,B

p

k∗ = 1. Every saturated parent p offers a bandwidth of
1

|Np

k∗ | where N
p

k∗ is the number of children currently attached

to it. Consider any child i. The current parent of i at iteration
k∗ is q = P i

k∗ . The bandwidth allocated by q to all its children
(including i) is 1

|Nq

k∗ | . Then at iteration K∗, every other poten-

tial parent q′ of i must have at least |Nq

k∗ | − 1 children. This
can be proved by contradiction. Let us assume that a parent
q′ is saturated with at most |Nq

k∗ | − 2 children each getting a
bandwidth of at least 1

|Nq

k∗ |−2
. Since the bandwidth guaranteed

by a parent is non-decreasing in the number of iterations as
shown by Lemma 1, there would have been an iteration k′ <

K∗ such that q′ would have offered a bandwidth of at least
1

|Nq

k∗ |−1
while q would have offered a bandwidth of at most

1
|Nq

k∗ | . At this iteration i would have switched and attached to

q′. But this contradicts the fact that i is attached to parent q
and not q′. Thus, every potential parent q′ of i must have at
least |Nq

k∗ | − 1 children and can offer a bandwidth of at most
1

|Nq

k∗ | to i (if i switches from q to q′), which is the bandwidth

offered by q. Hence, at termination each child is attached

to the parent that allocates the highest possible bandwidth,
implying the existence of a Nash Equilibrium. �

As mentioned in Section 2, a load balanced tree corre-
sponds to an optimal semi-matching. Our approach to prov-
ing the optimality of DistributedParentBid was based on the
work of Harvey et al. which characterizes an optimal semi-
matching using the notion of cost reducing paths (defined
below) [7].

Definition 2. Given a semi-matching S ⊆ E in G =
(V,E), a cost reducing path R is a sequence of al-
ternating matched and unmatched edges given by R =
{(v1, u1), (u1, v2),. . . (uz−1, vz)} where vi ∈ M,ui ∈ N and
(vi, ui) ∈ S for all i, such that degS(v1) − degS(vz) >

1.degS(vi) is the number of children matched to parent vi

in the semi-matching S.

Moreover, the authors of [7] also prove the following:

Theorem 2. A semi-matching is optimal iff no cost-
reducing path exists.

We now show that DistributedParentBid does not always
produce a load balanced tree as shown in Figure 3:

Notice that in Figure 3 (b), the maximum load is 4,
while in (c), it is 3. The above sub optimality occurs due
to the existence of the cost reducing path A-B-C-D-E in
the bipartite graph i.e. the path consisting of parent A –
child B – parent C – child D – parent E as shown in Fig-
ure 3 (b). The matched and the unmatched edges along this
path can be switched to obtain a better load balanced tree as
shown in Figure 3 (c). In general, the sub-optimality depends
on the number of such paths existing in the bipartite graph
after DistributedParentBid terminates. In the worst case sce-
nario, the maximum load produced by DistributedParentBid
can be a worse off by a factor of M from the optimum, where
M is the number of parents i.e. the maximum load can be
equally distributed across all the parents.

We attempted to quantify the sub-optimality (in random
scenarios) by simulations where we compared the tree re-
sulting from an implementation of DistributedParentBid and
the centralized algorithm for producing an optimally load
balanced tree described in [7]. 7 parent and 30 child nodes
were randomly deployed in an area of 500 m × 500 m. For
each value of the transmission range used (250 m and 200
m), 5000 simulations (using random seeds) were run. In 90%
of the simulation runs, DistributedParentBid produced trees
that were isomorphic to the centralized algorithm, while in
the remaining 10% of the simulations, the maximum (mini-
mum) load produced by DistributedParentBid differed by a
maximum of 1 from the centralized algorithm. These results
give us reasonable confidence that DistributedParentBid is a
good heuristic for load balancing.



348 SADAGOPAN, SINGH AND KRISHNAMACHARI

Figure 3. Sub optimality of DistributedParentBid.

4. Energy balanced data gathering tree construction

In this section, we discuss the construction of a spanning tree
in the network for a continuous data gathering application that
assumes no data aggregation. An example of such a query is
described in Section 1. We consider an arbitrary deployment
of n sensor nodes in the monitored terrain. Each sensor node
samples one unit of data from the environment, which must
be transmitted to the sink node in the network. Note that one
unit of data can be one or several bytes. In order to route all
the data, the sensor nodes form a spanning tree rooted at the
sink.

Each leaf sensor node in the tree transmits one unit of
data. The non-leaf sensor nodes in the tree route their own
data as well as the data collected by all the sensor nodes in
their subtree. Thus, each leaf sensor node dissipates one unit
of energy, and the non-leaf sensor nodes dissipate energy pro-
portional to the size of their subtree. To ensure the longevity
of the network, our goal is to construct a spanning tree such
that all the sensor nodes are fairly utilized on the average. In
this study, we define fair utilization as utilizing a sensor node
commensurate to its current energy i.e. a sensor node having
greater energy should have a larger sub tree (as permitted by
the topology).

Let T denote a spanning tree constructed over the network,
rooted at the sink node. Consider any node i in the spanning
tree. Let ei denote its current energy and S(T, i) represent the
size of its subtree. As discussed earlier, energy dissipation
at a sensor node is proportional to the size of its subtree.
After one iteration of data routing, the remaining energy of
the sensor node is given by ei − S(T , i), and the fractional
remaining energy is defined as ei−S(T ,i)

ei
3. To ensure fair uti-

lization of energy resources at the sensor nodes, our goal is to
construct an energy balanced spanning tree in the network,
which maximizes the summation of the fractional remaining

3We assume that the remaining energy is always positive. i.e. all sensor nodes
have sufficient energy to accomplish the data gathering.

energy of all the sensor nodes4. Hence, our desired global
objective function is to construct a tree T′ such that:

T ′ = arg max
T

{
n∑

i=1

(ei − S(T , i))

ei

}

Here < e1,. . . , en > represent the current energy of the
sensor nodes. Figure 4 illustrates an energy balanced tree.

We represent the network by the graph G = (V,E,B),
where the set of vertices represent the sensor nodes. An edge
(i, j) ∈ E exists between two vertices vi, vj ∈ V, provided
that the sensor node represented by vertex vj lies within the
transmission range of the sensor node represented by vertex
vi . B ∈ V denotes the sink node in the network. Theorem 3
states the key result that enables the design of a distributed
mechanism for constructing an energy balanced tree.

Theorem 3. Given the network graph G = (V,E,B), con-
struct a weighted directed graph G′ = (V,Ed, B,w) such
that

1. If (i, j ) ∈ E, then (i, j ) ∈ Ed .
2. ∀(i, j ) ∈ Ed, i �= B : w(i, j ) = 1

ei .

The energy balanced tree is the sink-rooted Shortest Path
Tree (SPT) in the weighted graph G′.

Proof: Let T ′ = (V,E′, B) represent the SPT, and T ′′ =
(V,E′′, B) be any other spanning tree for the graph G′ =
(V,Ed, B,w), rooted at B. Let P ′

i,B and P ′′
i,B denote the paths

from any vertex i to B in T′ and T′′ respectively. The weights
(length) associated with these paths is defined as follows.

– w(P ′
i,B) = ∑

(i1,i2)∈P ′
i,B

w(i1, i2).
– w(P ′′

i,B) = ∑
(i3,i4)∈P ′′

i,B
w(i3, i4)

Since, T′ is the SPT for G′, we know that

∀i ∈ V,w(P ′
i,B ) ≤ w(P ′′

i,B) (4)

4This objective is reasonable if we view the entire sensor network as a
distributed energy source.



DECENTRALIZED UTILITY-BASED SENSOR NETWORK DESIGN 349

Figure 4. An illustration of energy balancing. The number on the sensor node shows the remaining energy, while the number on the edge shows the amount
of data bytes transmitted. Each sensor node is assumed to generate one unit of data consisting of k bytes. (a) depicts the tree resulting from an arbitrary
parent selection strategy, while (b) shows the energy balanced tree. In (b), notice the distribution of load commensurate to the energy on the 2 first hop nodes
having energy of 6 and 8 units as opposed to (a).

Summing up over all the nodes in G′, we get
∑

i∈V

w(P ′
i,B) ≤

∑

i∈V

w(P ′′
i,B) (5)

∑

i∈V

∑

(i1,i2)∈P ′
i,B

w(i1, i2) ≤
∑

i∈V

∑

(i3,i4)∈P ′′
i,B

w(i3, i4) (6)

Interchanging the summations,
∑

(i1,i2)∈E′
N (T ′, (i1, i2)) ∗ w(i1, i2)

≤
∑

(i3,i4)∈E′′
N (T ′′, (i3, i4)) ∗ w(i3, i4) (7)

where for each edge (y, z) in a spanning tree T, N(T,(y,z)) is
the number of nodes in T for which (y, z) occurs on the path
to B. In the SPT T′, this path is the shortest path, while in an
arbitrary spanning tree T′′, this is not necessarily the shortest
path to B. Since, T is a tree there is no alternative path in T
for these nodes to reach B. Thus, these nodes will be in the
sub tree rooted at a node y. Hence,

N (T , (y, z)) = S(T , y)

On replacing N(T, (y, z)) by S(T, y) and w(y, z) by 1
ey in

Eqn 7, we get

∑

i∈V

S(T ′, i)
ei

≤
∑

j∈V

S(T ′′, j )

ej
(8)

Thus,

T ′ = arg max
T

{
X∑

i=1

(ei − S(T , i))

ei

}

�

From the above analysis, we conclude that the desired
energy balanced tree is the shortest path tree in the weighted
graph G′. The shortest path tree for any given graph can be
computed in polynomial time.

Theorem 3, gives us the key insight for designing local
utility functions for the sensor nodes for achieving our global
objective. If each sensor node i “selfishly” routes its data to
the sink over the shortest path using 1

ei as the edge length met-
ric, it results in the desired energy balanced data aggregation
tree. The cost function c(i, j ) = 1

ei has the nice property that
sensor nodes with lower energy will have a higher cost for
their outgoing link and hence are less likely to have a large
sub tree rooted at them. This ensures longevity of the data
gathering tree.

We describe a simple mechanism for constructing an en-
ergy balanced tree in the following section.

4.1. Mechanism design

In this section, we describe a mechanism for constructing
the energy balanced data gathering tree. Consider an iterative
game on the edges of the graph G = (V,E,B). Since we
are interested in balancing the utilization of all the nodes in
the network, this graph corresponds to the entire deployment
topology (unlike the bipartite graph used in the load balanced
tree construction in Section 3.1).

The strategy space Si
κ of each sensor node i at iteration κ

is given as follows:

Si
κ = {j | (i, j ) ∈ E} (9)

The utility function of each sensor node i is given as fol-
lows:

ui
κ = Minj∈Si

κ

{
1

ei
+ Qj

κ

}

= Minj∈Si
κ
{Qj

κ} (10)



350 SADAGOPAN, SINGH AND KRISHNAMACHARI

where Q
j
κ is the length of the shortest path from sensor node

j to the sink B at iteration κ.∀κ : Qsink
κ = 0. Thus, at each

iteration, a sensor node i chooses a node j that offers it the
shortest path (using 1

ez as the metric of edge length for any
edge (z,w) ∈ E) to B

The above mechanism can be easily implemented by a
distributed distance vector algorithm. An iteration κ corre-
sponds to an iteration of the distance vector algorithm. The
energy balanced tree construction terminates when the dis-
tance vector algorithm terminates.

5. Conclusions and Future Work

In this study, we advocate a utility function based ap-
proach for designing sensor networks. Unlike previous related
studies, we illustrate that treating the sensor nodes as “selfish”
(using appropriate utility functions) enables the design of dis-
tributed algorithms for optimizing the network performance
as a “whole”. This approach is illustrated by two case studies
of constructing a load balanced data gathering tree and an
energy balanced data gathering tree in a sensor network.

As part of future work, it would be interesting to extend our
mechanism of load balancing and energy balancing for more
general scenarios that account for heterogeneity in quality of
the links, more sophisticated models of data aggregation, etc.
We also plan to investigate other desired global objectives
of data collection trees for which decentralized mechanisms
using local utility functions can be designed.

Acknowledgment

We thank Prof. A. Goel (Stanford University), Prof. D. Kempe
(Cornell University) and Prof. B. Hajek (University of Illi-
nois, Urbana Champaign) for helpful discussions and sugges-
tions. This work was supported in part by NSF under grant
0325875, and by a 2003 USC Zumberge Grant.

References

[1] N. Sadagopan and B. Krishnamachari, Decentralized Utility-based
Design of Sensor Networks, WiOpt’04: Second Workshop on Mod-
eling and Optimization in Mobile, Ad Hoc and Wireless Networks,
University of Cambridge, UK (March, 2004).

[2] P. Zhang, C.M. Sadler, S. Lyon and M. Martonosi, “Hardware Design
Experiences in ZebraNet”, ACM SenSys (2004).

[3] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwar-
ing and D. Estrin, “Habitat Monitoring with Sensor Networks”,
Communications of the ACM, 47(6) (2004).

[4] D. Estrin, R. Govindan, and J. Heidemann, Scalable Coordination in
Sensor Networks, Technical Report 99-692, University of Southern
California, (Jan. 1999). (appeared in Mobicom ’99).

[5] N. Nisan and A. Ronen, Algorithmic Mechanism Design, In Proc. 31st
ACM Symposium of Theory of Computing (STOC) (1999) 129–140.

[6] R. Kannan, S. Sarangi, S.S. Iyengar and L. Ray, Sensor Centric
Quality of Routing in Sensor Networks, IEEE Infocom (2003).

[7] N.J. Harvey, R.E. Ladner, L. Lovasz and T. Tamir, Semi-Matchings
for Bipartite Graphs and Load Balancing, Workshop of Algorithms
and Data Structures (WADS), (2003).

[8] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts. On-line Machine
Scheduling with Applications to Load Balancing and Virtual Circuit
Routing, In Proc. ACM Symposium of Theory of Computing (STOC),
(1993).

[9] D. Grosu and A. Chronopoulos, A Game-Theoretic Model and Algo-
rithms for Load Balancing in Distributed Systems, International Paral-
lel and Distributed Processing Symposium (IPDPS) Workshop, (2002).

[10] C. Intanagonwiwat, R. Govindan and D. Estrin, Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks,
Mobile Computing and Networking, (2000) 56–67.

[11] C. Zhou and B. Krishnamachari, Localized Topology Generation
Mechanisms for Self-Configuring Sensor Networks, IEEE Globecom,
San Francisco (December 2003).

[12] J. Byers and G. Nasser, Utility-Based Decision-Making in Wireless
Sensor Networks, IEEE Mobihoc (2000).

[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction
To Algorithms, Second Edition, (McGraw Hill, 1998).

[14] C.H. Papadimitriou, Algorithms, Games and the Internet, ACM
Symposium of Theory of Computing (STOC) (2001).

[15] S. Singh, M. Woo, and C.S. Raghavendra, Power Aware Routing In
Mobile Adhoc Networks, Proceedings of ACM Mobicom, Dallas,
October (1998).

[16] N. Sadagopan, B. Krishnamachari and A. Helmy, Active Query
Forwarding in Sensor Networks (ACQUIRE), Elsevier journal on Ad
Hoc Networks (2003).

[17] N. Sadagopan and B. Krishnamachari, Maximizing Data Extraction
in Energy-Limited Sensor Networks, IEEE Infocom (2004).

Narayanan Sadagopan received the B.S. degree
in computer science from the Regional Engineer-
ing College, Trichy, India, in 1998, and the M.S. de-
gree in computer science from University of South-
ern California (USC), Los Angeles, in 2001. He is
currently working toward the Ph.D. degree in the
Computer Science Department, USC. His research
is focused on theoretical aspects of wireless ad hoc
and sensor networks.
E-mail: narayans@usc.edu

Mitali Singh received the BTech. degree in Com-
puter Science and Engineering from the Indian In-
stitute of Technology, New Delhi, India in 2000,
and the M.S. degree in Computer Science from the
University of Southern California, Los Angeles,
USA. She is currently working towards the Ph.D.
degree in Computer Science at the University of
Southern California. Her research interests lie in
the area of applied theory and networks. Presently,
her work is focused on high level modeling and

distributed algorithm design for wireless sensor systems.
E-mail: mitali@halcyon.usc.edu

Bhaskar Krishnamachari received the B.E.E.E.
degree from The Cooper Union for the Advance-
ment of Science and Art, New York, in 1998, and
the M.S.E.E. and Ph.D. degrees in electrical en-
gineering from Cornell University, Ithaca, NY, in
1999 and 2002, respectively. He is now an Assis-
tant Professor in the Department of Electrical En-
gineering, University of Southern California, Los
Angeles, where he also holds a joint appointment in
the Department of Computer Science. His current

research is focused on the discovery of fundamental principles and the anal-
ysis and design of protocols for next-generation wireless sensor networks.
E-mail: bkrishna@usc.edu


