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Abstract

The state of the art for optimal data-gathering in wireless sensor networks is to use additive increase algorithms
to achieve fair rate allocation while implicity trying to maximize network utilization. For the quantification of the
problem we present a receiver capacity model to capture the interference existing in a wireless network. We also
provide empirical evidence to motivate the applicability of this model to a real CSMA based wireless network.
Using this model, we explicitly formulate the problem of maximizing the network utilization subject to a max-min
fair rate allocation constraint in the form of two coupled linear programs. We first show how the max-min rate
can be computed efficiently for a given network. We then adopt a dual-based approach to maximize the network
utilization. The analysis of the dual shows the sub-optimality of previously proposed additive increase algorithms
with respect to bandwidth efficiency. Although in theory a dual-based sub-gradient search algorithm can take a long
time to converge, we find empirically that setting all shadow prices to an equal and small constant value, results in
near-optimal solutions within one iteration (within 2% of the optimum in 99.65% of the cases). This results in a
fast heuristic distributed algorithm that has a nice intuitive explanation — rates are allocated sequentially after rank
ordering flows based on the number of downstream receivers whose bandwidth they consume. We also investigate
the near optimal performance of this heuristic by comparing the rank ordering of the source rates obtained from
the heuristic to the solutions obtained by solving the linear program.

I. INTRODUCTION

The applications envisioned for sensor networks are primarily data gathering applications. For such
applications a common scenario would be multiple sensors sensing the environment and sending data
over a shortest path tree to a central base station. Since the primary mode of communication for these
devices is the wireless channel and the current standards (802.15.4) propose rates to the order of kilo
bits per second (∼ 250 kbps), bandwidth is a highly constrained resource in these networks. Also energy
efficiency is a primary concern in these networks and communication cost is known to be the highest in
terms of energy consumption. Hence it is imperative to maximize bandwidth utilization in these networks.

One of the primary objectives of a data gathering application is to present an accurate view of the
sensed environment. This objective can be achieved only if we are able to obtain a fair amount of data
from each of the sensors that are part of the network. This leads to the requirement of fair rate allocation
amongst all sources in the network. Hence rate allocation amongst sources need not only be efficient
(maximize utilization), but also fair( [11], [12], [13]).

Additive increase-based mechanisms for rate control are popular in the context of wired networks. This
is because they are optimal for lexicographic fairness [1], as well as for other notions of fairness such as
proportional fairness [2]. The popularity of additive increase algorithms in wireline networks have also
led to their adaptation to rate allocation in wireless sensor networks [9], [11].

The main difference between wireless networks and wireline networks is that flows in a wireless network
not only consume bandwidth usefully on the links they are active on but also wastefully on links that they
interfere with. Moreover, there is heterogeneity in the amount of interference (i.e., bandwidth wastage)
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that each flow may cause. This fundamental difference between wired and wireless networks demands a
fresh look at the problem of fair and efficient rate control algorithms for wireless networks in general and
wireless sensor networks specifically.

In wireless settings, a fair rate allocation may treat equally flows that cause high interference as well
as flows that cause less interference. On the contrary, a rate allocation that favors flows causing less
interference may be able to provide higher network utilization (as measured by the total sum of the flow
rates). Hence, there can be a fundamental tension between fairness and efficiency in wireless networks [3].
Consequently, the additive increase approaches that provide lexicographic fairness even in the context of
wireless networks, are not well suited from the perspective of bandwidth efficiency. In this work, to address
both fairness and efficiency goals, instead of looking at lexicographic fairness, we define the objective
as maximizing the network utilization while ensuring that the rate allocations satisfy a slightly weaker
notion of max-min fairness.

We model the problem as follows: There are n sources in the network that are trying to send data
to a single sink over a given tree. Every source has a shortest path through one or more intermediate
nodes to the sink. Every receiver in the network has limited bandwidth. The objective of the problem is
to maximize the sum of the source rates subject to a constraint of max-min fair rate allocation. We define
a rate allocation to be max-min fair if the minimum rate allocated to any flow is the maximum over all
possible rate allocations.

One of the challenges of presenting a quantification to the above problem is to capture the effects of
interference which is so unique to wireless networks. We achieve this by adding new links to the existing
routing tree to represent interference between any two nodes. Further, instead of using a link-capacitated
view where each link has a finite capacity we assume a node-capacitated view where each node has a
finite capacity to receive data. This approach is critical to modeling wireless networks since a wireless
network, unlike a wire line network, is composed of broadcast domains associated with each receiver
instead of point to point links.

In order to motivate the applicability of the receiver capacity model in a real system, based on a CSMA
based MAC, we also present empirical results on the Tmote Sky platforms where we measure the capacity
region of the broadcast domain of a receiver. The empirical results for the two sender case and the receiver
capacity values for the multiple sender (> 2) case suggests that the receiver capacity of the broadcast
domain can be approximated by a linear relationship of the sender rates belonging to the specific broadcast
domain. This observation corroborates the applicability of our receiver capacity model.

Using the receiver capacity model we formulate the above problem as two coupled linear programs
— the first problem identifies the max-min rate allocation, while the second maximizes the sum-rate
subject to the constraint determined by the solution of the first problem. We prove that the optimal
solution to the first problem is the minimum of ratios of available bandwidths to upstream demands.
This characterization allows for the efficient solution of the first problem via a tree-based aggregation
and dissemination. We analyze the second problem using Lagrange duality. The analysis of the dual
also presents us with an intuitive proof of the sub-optimality of additive increase mechanisms to achieve
our objective of maximizing utilization while achieving a max-min fair rate allocation. Although solving
the dual problem using sub-gradient search techniques can potentially result in slow convergence, we
find empirically that initializing all shadow prices to a an equal, constant value of 1

N+1
provides near-

optimal results within one iteration. This gives a fast near-optimal distributed heuristic (which provides
solutions within 2% of the optimum in 99.65% of the cases) that has an intuitive explanation — flows
from sources are scheduled sequentially after rank ordering them on the number of downstream receivers
whose bandwidth they consume (either directly or via interference).

The near optimal performance of the heuristic was quite surprising. On further investigating the results,
obtained from the heuristic, and comparing the results with the optimal solution the following hypothesis
was formulated; As long as the heuristic is able to generate a rank ordering of the sources ‘similar’ to the
rank ordering of the optimal, the solutions obtained by the heuristic would be very close to the optimal.
Further the structure of the problem itself lends to a solution where a majority of the sources are actually
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allocated the max-min rate in the final solution. Thus the rank ordering is limited to a small subset of
sources, which helps the heuristic achieve a rank ordering similar to the optimal solution.

This paper is organized as follows: In section II we present our receiver bandwidth capacity model that
will be essential in modeling the interference constraints in our optimization problem. In section III we
empirically motivate our receiver capacity model in terms of its applicability to a real CSMA based wireless
network. In section IV, using the bandwidth capacity model we formulate the problem of maximizing
network utilization while allocating a max-min fair rate as two coupled linear programs. In section V we
present a lemma that helps us calculate the max-min rate in a tree. In section VI we present an example to
motivate our claim that additive increase algorithms while providing a max-min fair rate allocation but do
not maximize network utilization. In section VII we take a dual based approach to design a near optimal
heuristic for our problem. We also use the dual to present an intuitive proof for the sub-optimality of the
additive increase algorithms. In section VIII we present simulation results to highlight the performance
of our algorithm. In section IX we investigate the near optimal performance shown by our 1-step shadow
pricing algorithm. In section X we present the related work pertinent to this problem. Finally in section XI
we present our conclusions and the future for this work.

II. MODELING RECEIVER BANDWIDTH CONSUMPTION IN WIRELESS NETWORKS

In this section we present a model that captures the bandwidth consumption at a receiver in a tree T
rooted at the sink. The essence of the model is that it captures the interference observed by a receiver.
This model is identical to the one proposed by us in [9] and is similar to the one used by Rangwala et
al. [11] to capture the effects of interference. We define a communication graph G as a set of nodes V
and a set of communication links E. To keep the analysis tractable we assume that the all communications
links are perfect. A routing tree T ⊂ G is created over the existing communication graph by selecting
edges that would give the shortest hop count from a node to the root chosen randomly from the set of
nodes V. The assumption is that the tree T once selected remains fixed for the entire life time of flows
existing in the network.

Every receiver in the network is considered to have a constant finite receiver capacity B (this receiver
capacity could be different for different nodes in the network). Due to the broadcast nature of wireless
links, any flow from a child i to its parent j on the tree T consumes bandwidth on all receivers that are
neighbors of i on the graph G (we assume here that the neighbor set captures all interfering nodes, and
therefore refer to the edges in E that are not part of T as noise edges). It is this feature that makes the
problem of rate allocation in a wireless network very different from that observed on a wired network.

We illustrate our model, which we refer to as the “Receiver Capacity Model” for the remainder of
this work, with an example. Figure 1 shows a 6 node topology. The solid lines indicate a parent child
relationship in the tree. The dashed line represent noise links. For each source, any rate consumed by the
source on the link with its parent would result in consumption of an equal rate on the noise links. Thus
when node 2 sends its data to node 1, node 2 not only consumes capacity at node 1 but also at node 3,
since the same flow exists over link 2 → 1 and noise link 2 → 3.

The radios are assumed to be half duplex. The half duplex nature of the radio forces flows to be received
at a particular rate in a particular slot and then forwarded at the same rate in the next available slot. This
results in flows, originating from the child, consuming twice the allocated rate at the parent.

Based on our model the constraint on the rates at node 3 would be as follows:

r
(2)
noise + r

(3)
noise + r(6)

src ≤ B(3) (1)

where B(3) is the receiver capacity of node 3 and r
(6)
src is the source rate of node 6. r

(2)
noise and r

(3)
noise are

the output rates at node 2 and node 3 respectively and are given by:

r
(2)
noise = r(2)

src + r(4)
src + r(5)

src

and
r
(3)
noise = r(3)

src + r(6)
src
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Fig. 1. A 6 node topology: An illustrative example of the receiver capacity model

The half duplex assumption for the radios forces the term r
(6)
src to appear twice in equation 1. Once

independently to account for the consumption of bandwidth during reception at node 3 and once as part
of the term r

(3)
noise to account for the forwarding of the flow originating at node 6.

In general the receiver capacity constraint at a node i can be given as follows:∑
j∈C(i)

r(j)
src +

∑
j∈N(i)

∑
k∈C(j)

r(k)
src +

∑
j∈N(i)

r(j)
src ≤ B(i) (2)

Where N (i) is the set of all neighbors of i. The half duplex assumption implies that i ∈ N (i). C(i) is
the set of all nodes j that have i in its path to the sink. r

(j)
src represents the rate at which data generated

at node j is being transmitted.

III. EMPIRICAL VALIDATION OF THE RECEIVER CAPACITY MODEL

In order to ascertain the efficacy of the above model in a real system we performed an experiment
using 3 Tmote Sky’s in a 2 sender, single receiver configuration. The Tmote Sky’s have a CC2420 radio
which is compatible with the IEEE 802.15.4 MAC protocol. The Tmote Sky’s were running TinyOS-2.x
which has a default CSMA stack available for the CC2420 radio’s. By making the sender motes transmit
at different combination of source rates, we were able to plot the capacity region of the CC2420 CSMA
stack for the TinyOS-2.x platform shown in figure 2(a). The x and y axis represent the good put achieved
by each of the sources. Thus a cross in figure 2(a) represents a combination of source rates that was
achieved by each of the sources.

The receiver capacity is determined by the boundary of the capacity region (set of achievable rate
vectors) of the MAC protocol. This plot shows that the capacity region can be divided into three regions.
When s1 and s2 are comparable to each other (Region II), the capacity region is s1 + s2 ≤ 110 pkts/sec,
where 110 pkts/sec is the receiver capacity in this region. Region I/III corresponds to rate vectors (s1, s2)
where s2 > 4s1 (s1 > 4s2).

An interesting observation that can be made from figure 2(a) is that although the receiver capacity in
regions I and III is greater then the receiver capacity in region II, if we simply extend the boundary of
region II into regions I and III the loss in capacity would be small. Thus we could represent the boundary
of the capacity region by a linear combination of the source rates of sources 1 and 2.

The empirical evidence presented in figure 2(a) justifies our linear approximation of the receiver capacity
(currently for the two sender single receiver case). With the simple two sender experiments we can further
show that the receiver capacity is equal to the saturation throughput of the CSMA MAC. The saturation
throughput of the MAC, is the overall throughput seen by the receiver when the system is overloaded,
i.e. each source in the broadcast domain always has a packet to transmit. Figure 2(b) presents the load vs
throughput curves for the two sender, single receiver case. The x-axis plots the sum load on the system



5

(a) Capacity region for two senders single receiver (b) Saturation throughput for the two sender single receiver
case

Fig. 2. Receiver capacity for senders > 2

(the sum rates of the two sources) and the y-axis plots the overall throughput observed at the receiver.
As can be seen the saturation throughput coincides with the observed receiver capacity. We were able
to equate the points that correspond to the saturation throughput in figure 2(b) to the the points on the
boundary of the capacity region II in figure 2(b), validating our observation. Thus the receiver capacity
of a broadcast domain can be equated to the saturation throughput of the MAC protocol.

Although the above relation, between the receiver capacity and the saturation throughput, is inferred
from an experiment where only two senders were present, we claim that this relationship holds for n > 2
senders as well. To justify this claim we measured the saturation throughput for multiple senders (> 2),
for the TinyOS-2.x CSMA stack in figure 2. Figure 2 shows that the degradation in saturation throughput
with increasing number of senders is relatively small. For e.g. the drop in saturation throughput when 8
to 20 senders are present in a broadcast domain as compared to when only 3 senders are present is just
20%. This suggests, that at the edges of the capacity region, when one sender’s source rate is negligible
as compared to the source rate of all the other senders, the receiver capacity is not much larger than
the receiver capacity at the middle of the capacity region where the source rates are comparable (This is
similar to the comparison of region I and III with region II in the two sender case). Thus the capacity
region for a multi sender case could be approximated by a plane with boundary of the capacity region
represented by a linear combination of the source rates. Hence, the motivation to use the equivalence
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TABLE I
LIST OF VARIABLES USED IN FORMULATING PROBLEMS P1 AND P2

Rsrc: An N × 1 vector representing the rate allocated to each source i ∈ V
N: An N ×N matrix representing the presence of a noise edge nij ∈ N between two nodes i, j ∈ V
C: An N ×N matrix that gives the parent-child relationships on the data gathering tree.

cij ∈ C(i) is 0 if node i is not in node j
′s path to the sink and cij = 1 otherwise.

Rin : An N × 1 vector, representing the total input rate arriving at each node.
Rnoise: An N × 1 vector, representing to total output rate exiting from a node.

Y : A scalar, representing the minimum rate among all flows.

between the saturation throughput and the receiver capacity holds for the multi-sender case as well.

IV. PROBLEM FORMULATION

Using the receiver capacity model we can now formulate the maximization of the network capacity
utilization while maintaining max-min fairness as two coupled constrained optimization problems P1 and
P2. The variables used in our formulation are presented in table I:

The optimization problem is formulated as follows:

P1 :
max Y s.t.

Rin + N×Rnoise � B
Rin = C×Rsrc

Rnoise = C×Rsrc + Rsrc

r
(i)
src ≥ Y ∀ i ∈ T

P2 :

max
∑

i∈T r
(i)
src s.t.

Rin + N×Rnoise � B
Rin = C×Rsrc

Rnoise = C×Rsrc + Rsrc

r
(i)
src ≥ Y ∗ ∀ i ∈ T

The constraints of our optimization problem come directly from our bandwidth consumption model that
we had presented in section II. The problem P1 is the max-min rate problem. The optimal solution Y ∗

to P1 gives the highest possible minimum rate achievable amongst all possible rate allocation vectors.
The problem P2 uses Y ∗ as a constraint in order to guarantee the best possible minimum rate to all its
sources and presents a rate allocation vector that will maximize the sum rate, thus maximizing utilization.
In the following section we present a lemma showing that the solution to P1 can be found by taking
the minimum of the ratios of the available bandwidths to upstream demands. The algorithm itself can be
implemented by using a tree-based aggregation and dissemination mechanism.

V. CALCULATING THE MAX-MIN SOURCE RATE ON A TREE

The max-min rate is the optimal solution to the problem P1 denoted by Y ∗. In order to calculate the
max-min rate for a given tree we define the term available bandwidth at a receiver (B(i)

available) as follows:

B
(i)
available =

B(i)

Γ(i)
(3)

Where Γ(i) is defined as:

Γ(i) =
∑

j∈C(i),i6=j

cij +
∑

j∈N(i)

∑
k∈C(j),k 6=j

cjk +
∑

j∈N(i)

nij
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Γ(i) is the sum of the total number of immediate children of node i, the total number of neighbors of
node i and the total number of children of each of node i’s neighbors.

The optimal solution of P1 could be found by observing the available bandwidth B
(i)
available at each

receiver in the network and selecting the minimum of these. The following lemma justifies our claim.
Lemma 5.1: The optimal solution Y ∗ of the primal P1 is the min(B

(i)
available) ∀ i ∈ V.

Proof: We define a node k as a bottle neck node if:

k = argmin(B
(i)
available) ∀ i ∈ V

• Case 1: Assume:
Y ∗ < min(B

(i)
available) ∀ i ∈ V

We can do a rate allocation for all sources j that are children of the bottle neck node k or the children
of the neighbor of the bottle neck node k such that r

(j)
src = B

(k)
available without violating the bandwidth

constraint on node k. Since k is the bottle neck node, rj
src will be the minimum of all rates allocated

to all sources. This implies that we have a rate allocation where

min(ri
src), ∀ i ∈ V > Y ∗

Thus we have a contradiction.
• Case 2: Assume Y ∗ > min(B

(i)
available) ∀ i ∈ V . Then for node k,∑

j∈C(k)

r(j)
src +

∑
g∈N(k)

∑
z∈C(g)

r(z)
src +

∑
j∈N(k)

r(j)
src > B(k)

Thus the bandwidth capacity constraint is violated for node k.
Hence Y ∗ = min(Bavailable(i)) ∀ i ∈ V.

Based on this lemma a simple algorithm can be developed to calculate the max-min rate on a tree. In
order to find the max-min rate every child calculates its available bandwidth (B(i)

available) and forwards it to
the parent. The parent computes the minimum of these and compares it with its own available bandwidth.
It then forwards the minimum of these two quantities to its parent. The parent thus performs an aggregation
on the available bandwidth in its sub-tree and forwards the minimum to its own parent. Since a parent
does not calculate its available bandwidth and forward the aggregated minimum available bandwidth to
its parent, till it receives information from all its children, the aggregation process proceeds sequentially.
The algorithm to calculate the max-min rate terminates at the root. The minimum available bandwidth
calculated by the root would then be the minimum of all available bandwidths and hence would quantify
the max-min rate of the tree. The root can now disseminate this information to every node in the tree by
sending it downstream over the tree.

VI. ADDITIVE INCREASE ALGORITHMS AND MAX-MIN FAIRNESS

Currently proposed solutions that achieve max-min fairness while implicitly trying to maximize network
utilization( [9], [11]) use the following additive increase mechanism. Sources in the network are allowed to
increase their rates equally by a small value ε. When a receiver in the network is constrained, it constrains
all its neighbors, its neighbors children and its own children. This process continues till the point, when
all nodes in the network are constrained. Since all nodes have equal increments and the first node to
exhaust its bandwidth would be the bottle neck node, algorithms using additive increase technique would
achieve the optimal solution to P1. Even though additive increase algorithms can achieve a solution to
P1, while consuming the network capacity, we claim that it will not necessarily achieve a solution for
P2. In this section we present insights into our claim through an example and present a more rigorous
proof in Section VII. Assume all nodes except node 1 are sources in figure 3. Let node 5 be the bottleneck
node. For this topology any increment in the rate of node 3 will consume bandwidth at node 2 and node
4. For e.g. if we increment the rate at node 3 by ε we will be consuming a bandwidth ε at receiver 2, a
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Fig. 3. An example depicting the sub-optimality of the additive increase technique for maximizing network utilization while maintaining
a max-min fair rate allocation.

bandwidth ε at receiver 4 and a bandwidth ε at receiver 1. Thus an increment ε in source rate of node 3
will result in wastage of network capacity equal to 2ε. A higher throughput could be achieved by simply
allocating all nodes the max-min rate and then giving the remaining capacity to nodes 2 and 4. It is
easy to see that this allocation would ensure that for increment ε in source rates of 2 and 4 they would
not be wasting any bandwidth. The example shows that there exist topologies where additive increase
mechanisms might be sub-optimal.

Apart from the sub-optimality another draw back of additive increase algorithms is the estimation of
the increment ε. In real systems an accurate estimate of ε is critical to avoid oscillations [11]. Moreover
the convergence of these algorithms is O(B

ε
) where B is the maximum receiver bandwidth, which implies

a trade off between the speed of convergence and the accuracy of the solution depending on the choice
of ε.

VII. A DUAL BASED APPROACH

In order to gain insights into the dynamics of the problem we plan to adopt a dual based approach. The
shadow price interpretation of the Lagrange multipliers [10] from the dual will present us with mechanisms
to design distributed algorithms that maximize the network utilization while guaranteeing a max-min fair
rate to all sources.

A. The Lagrange Dual
We introduce Lagrange multipliers in order to relax constraints in the primal P2 to obtain the Lagrange

dual function. We will concern ourselves only with the dual of P2 and assume that the optimal max-min
rate will be calculated from the primal P1 using lemma 5.1. The Lagrange dual function of the primal
P2 is:

D(λ) = max
Rsrc�Y∗

(∑
i∈T

r(i)
src − λT × ((N× (C + 1) + C)×Rsrc −B)

)
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On expanding the matrix notation we get:

D(λ) = maxRsrc�Y∗(
∑

i∈T r
(i)
src

−
∑

i∈T λi(
∑

j∈C(i) r
(j)
src

+
∑

j∈N(i)

∑
k∈C(j) r

(k)
src

+
∑

j∈N(i) r
(j)
src −B(i)))

(4)

We can rearrange equation 4 to obtain:

D(λ) = maxRsrc�Y∗(
∑

i∈T r
(i)
src(1

−(
∑

i∈C(j) λj

+
∑

i ∈C(j)

∑
k∈N(j) λk

+
∑

i∈N(j) λj)) +
∑

i∈T λiB
(i))

(5)

Since the original problem is a linear program the dual will also be an LP given by

D : min
λ� 0,

D(λ)

Also since the solutions are feasible for both problems the duality gap would be zero [10]. Hence our
objective would be to minimize the dual instead of maximizing the primal.

Let
ζ i(R∗

src) =
∑
j∈Ci

r(j)∗
src +

∑
j∈N(i)

∑
k∈C(j)

r(k)∗
src +

∑
j∈N(i)

r(j)∗
src

From the Lagrange dual function it can be seen that the sub-gradient w.r.t λi is:

∂D

∂λi

= −(ζ i(R∗
src)−B(i)) (6)

Since the dual is a linear program, the objective of minimizing the Lagrange dual can be achieved by
tracing the graph in the direction of the negative gradient. We will use the above fact to develop our
distributed algorithm.

B. Analyzing the Dual to Design a Distributed Algorithm
The Lagrange dual function can be rewritten as:

D : min
λ�0

(
max

Rsrc�Y∗

(∑
∀ i

r(i)
srcµi

)
+
∑
∀ i

λiB
i

)
Where µi is given by:

µi = 1− (
∑

i∈C(j)

λj +
∑

i∈C(j)

∑
k∈N(j)

λk +
∑

i∈N(j)

λj) (7)

To solve the dual D we could use sub gradient techniques. Sub gradient techniques are iterative, where
at each step t we increment the shadow prices λi in the direction of the negative gradient as follows:

λi(t + 1) = [λi(t) + αt(ζ
i(R∗

src)−Bi)]+ (8)

Where R∗
src are the optimal source rates that solves:

max
Rsrc�Y∗

(
∑
∀ i

r(i)
srcµi) (9)

At every step t we are required to find the R∗
src that solves equation 9. The resulting ζ i(R∗

src) would
then be used to calculate a new value of λ using equation 8. If the µi in equation 9 are negative the
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optimal value of R∗
src = Y ∗. This would result in a decrement of λi(t), since ζ i(R∗

src) < Bi. If all µi

are positive, in order to optimize equation 9, we could set R∗
src = inf. This however would result in a

large increment in the value of λi(t) since ζ i(R∗
src) >> Bi. Thus when all µi we should choose an

R∗
src such that ζ i(R∗

src) ≤ Bi. In other words, although we could simply run the iterative algorithm
and allow λi to oscillate around the optimum value and converge over some number of iterations (which
could be potentially large), we can be more intelligent and never allow ζ i(R∗

src) to exceed to Bi. Further
given a fixed λi and a positive µi, in order to find a feasible solution for equation 9, assuming λ is fixed,
we will require to allocate all r

(i)
src at least the max-min rate Y ∗. Given that all sources are allocated at

least the max-min rate, we would require to allocate the maximum available bandwidth to the source i
having the highest µi. We would then proceed, allocating the remaining bandwidth to the source with the
second highest µi. We continue allocating bandwidths to sources till all sources have been constrained.
Thus bandwidth allocation is based on an ordering of the sources based on their coefficients µi. Also,
instead of looking at µi for each source i we could assign each source i a weight wi given by:

wi =
1∑

i∈C(j) λj +
∑

i∈C(j)

∑
k∈N(j) λk +

∑
i∈N(j) λj

(10)

The ordering, and the prioritization of rate allocation, in order to maximize equation 9, can now be
done based on the weights wi for each source i.

To achieve the optimal D we should be running the sub-gradient algorithm for multiple iterations
(t > 1), solving the maximization problem in equation 9, until the shadow prices converge. Fortunately
through simulations we can show that by setting λi = 1

N+1
,∀ i in our specific problem, 99.65% of the

time we achieve close to 2% of the the optimal in the very first iteration. The details of the simulation
and its performance with respect to the optimal are presented in section VIII. Thus instead of running the
sub-gradient algorithm for multiple iterations, we set the shadow prices λi = 1

N+1
,∀ i and perform only

the first iteration of the sub-gradient algorithm. Our algorithm for maximizing network utilization with
max-min fair rate allocation therefore simply consists of optimizing equation 9 by setting the shadow
prices to 1. The specifics of the algorithm have been provided in section VII-D.

Setting the shadow prices λi = 1
N+1

,∀ i, presents an intuitive explanation to the algorithm. When we
set all shadow prices to an equal constant (say λi = 1

N+1
,∀ i) , the weight wi is inversely proportional to

the number of receivers node i interferes with during its data transmission to the sink. Thus the ordering
suggests that we allocate the maximum bandwidth to nodes that cause the least amount of interference.

C. Sub-Optimality of the Additive Increase Algorithms
In section VI we presented a motivating example for the sub-optimality of additive increase algorithms.

Our analysis of the dual in the previous section provides a more quantitative argument for this claim.
Primarily it suggests that the rate allocations in the network need to follow an ordering based on the
amount of interference that each source generates while transmitting data to the sink. On the contrary,
in additive increase algorithms no such ordering exists since all sources are allowed to increment by the
same amount. The lack of prioritization in rate allocation is the primary cause for the sub-optimality of
additive increase algorithms.

D. The Algorithm
We now present an algorithm for the maximization of equation 9. The algorithm ‘Maximization of

Network Utilization’ presented in figure 4 proceeds as follows; In the initialization phase all sources in
the network set their ‘CONSTRAINED’ flag to ‘FALSE’. Every node i calculates its weight wi using
equation 10 and setting the shadow price λi = 1

N+1
, ∀ i. In order to calculate the weight wi, the node i

requires information about the number of parents it has (the number of nodes between itself and the sink),
and the number of neighbors of each of its parents and the total number of its neighbors. Each of the
three quantities can be obtained by the node during the process of tree formation itself. In effect, every
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node during the tree formation process, needs to forward the total number of neighbors it possesses and
the number of hops to the sink. These two quantities can be used by the nodes to calculate the quantities
mentioned above for calculating the weight wi at the end of the tree formation.

In step 1, each node calculates its per node available bandwidth. The bottle neck bandwidth is then
the minimum of all the available bandwidths. From lemma 5.1, this bottle neck bandwidth is the max-
min rate and hence is allocated to every source in the network. An algorithm to calculate the minimum
available bandwidth on a tree using a tree-based aggregation and dissemination mechanism is presented
in section V.

In step 2, we calculate the pending bandwidth at each node in the network. To calculate its pending
bandwidth every receiver notes the total output rate from each of its children and the total output rate
from each of its neighbors. The pending bandwidth is then the difference between the bandwidth capacity
of the receiver and the sum of the output rates from all its children and its neighbors. For any receiver
if the pending bandwidth is negative or zero it constraints all its neighbors their children and its own
children. A constrained node can no longer increment its source rate.

In step 3, for every node in the network we look at the pending bandwidth at every node that is on the
path from the source to the sink, and nodes that are neighbors to these intermediate nodes, and set the
pending available bandwidth to the minimum of these. In case the pending available bandwidth is positive,
we compare its weight with every other source that is not constrained and increment its bandwidth only if
it has the maximum weight. From an implementation perspective, for this step we require that every node
has information about the maximum weight currently active in the network. This can be done by pushing
the information about the weights to the root and the root then disseminating the maximum weight to all
its children. The calculation of the minimum pending bandwidth, described above, can also be done using
a tree-based implementation. Every node starting from the root needs to gather its own pending bandwidth
and its neighbors pending bandwidth and pass on to its children the minimum of these quantities.

Once a node has incremented its bandwidth (since it was the node with the highest weight), it would
become constrained since it would have consumed the maximum available bandwidth in its path. Therefore
it would require to remove itself from the list of active sources allowing some other node to become the
source with the highest weight. It can perform this operation by informing the root and allowing the root
to disseminate this information over the tree.

In step 4, we check the constrained flag for all nodes in the network and if all nodes have been
constrained the algorithm terminates, else we repeat the algorithm from step 2.

While describing the various steps of the algorithm we have presented an implementation perspective
to these steps as well. The implementation description gives an operational picture of the algorithm in
a real system. This description suggests that although the algorithm is not completely distributed (the
decision making is not completely local, it relies on information exchange with the root) it would be
more scalable than an implementation where all the computation is done centrally — maintaining the
complete topology information centrally and running an LP solver to compute the optimum. By allowing
information exchange between the root and the various nodes we have made most of the computation
distributed (the pending bandwidth and the weights are calculated locally at the nodes) and have reduced
the complexity of the computation at the root. Our asymptotic analysis of the algorithm suggests that the
over head of this information exchange is not high, giving us an acceptable polynomial bound on the
number of messages exchanged.

E. Asymptotic Bounds for the Dual based Algorithm
The asymptotic bounds on the dual based algorithm can be calculated as follows: Step 1 of the algorithm

would take O(n) transmissions to calculate the max-min rate. Step 2 of the algorithm would take O(n)
transmissions to calculate the pending bandwidth at each of the intermediate nodes. In Step 3 of the
algorithm once a source node is constrained it needs to populate this information to all nodes in the tree
in order to remove itself from the list of source nodes. In order achieve this goal a simple mechanism
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Algorithm Maximization of Network Utilization:
1. Initialization
2. contrainedi = FALSE ∀ i
3. λi = 1

N+1
∀ i

4. wi = 1P
i∈C(j) λj+

P
i∈C(j)

P
k∈N(j) λk+

P
i∈N(j) λj

∀ i, wi ∈ W

5. [Step 1] max-min Rate:
6. B

(i)
available = B(i)P

j∈C(i),i6=j
cij+

P
j∈N(i)

P
k∈C(j),k 6=j

cjk+
P

j∈N(i) nij
∀ i

7. r
(i)
src = min(B

(i)
available) ∀ i

8. [Step 2] Pending Bandwidth:
9. for ∀ i if

∑
cij 6= 0 such that j ∈ C(i), j 6= i

10. do B
(i)
pending = Bi − ζ i(Bsrc)

11. if B
(i)
pending ≤ 0 then

12. do Constrain all children, neighbors, and neighbors children.
13. Remove constrained nodes from list W.
14. [Step 3] Updating Source bandwidth:
15. for ∀ i
16. do pend bw = min(B

(j)
pending),∀ j such that i ∈ Cj or i ∈ N j or k ∈ N j, i ∈ Ck

17. if (wi == max(W) and constrainedi == FALSE) then
18. do r

(i)
src = r

(i)
src+ pend bw

19. [Step 4] Checking termination condition:
20. if (contrainedi = TRUE) ∀ i then end
21. else goto Step 2

Fig. 4. Algorithm for the maximization of network utilization

would be to propagate this information to the root which will collate this information into a new list
of sources that are capable of incrementing their bandwidth. This new list could than be propagated to
all sources in the tree. Since the total edges in a tree having n nodes are n − 1, the total number of
transmissions to accomplish Step 3 would be O(n).

The algorithm terminates when all sources are constrained. Thus Step 3 and Step 2 will be executed
O(n) times. Hence the algorithm would converge to the solution within O(n2) transmissions.

VIII. PERFORMANCE EVALUATION

In order to evaluate the performance of our algorithm we choose network sizes ranging from 6 to 70.
For each network size we choose 9 instances of trees obtained by running a shortest path algorithm on a
random deployment. For each instance of a tree we give every receiver in the tree a bandwidth uniformly
chosen between 10 and 250. We choose 20 such bandwidth distributions for each tree. Thus for each
network size we have 9 different trees, for each tree there are 20 different instances (each with a different
bandwidth distribution) giving a total of 180 instances for each network size. Since our network size
ranges from 6 to 70, we have a total of 180× 65 = 11700 different trees for our evaluation.

In order to evaluate the performance of our algorithm for each of the 11700 instances we generated an
LP for the problem P2. Using a centralized solver LP SOLVE [21] we obtained the optimal solution for
the max-min rate Y ∗ and the solution to the problem P2. We then ran our dual based algorithm and an
additive increase algorithm, described in section VI, on each of the 11700 instances to solve the problem
P2 in a distributed manner. Figure 5(a) shows the CDF of the error between the optimal solution from
a centralized solver and the solutions obtained from our dual based algorithm, and the additive increase
algorithm. For the dual based algorithm the CDF in figure 5(a) shows that for 99.65% of the instances
we are able to achieve close to 2% of the optimal throughput. Of the instances that had greater than or
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(a) CDF of the error observed between the optimal through-
put achievable and the throughput achieved using dual based
algorithm and the additive increase algorithm.

(b) Performance of the algorithm in terms of the number
of packets exchanged before achieving 10% of the optimal.

Fig. 5. Performance evaluation of the dual based algorithm and the additive increase algorithm.

(a) Average percentage error vs network size (b) Maximum percentage error vs network size

Fig. 6. Performance analysis of the dual based algorithm and the additive increase algorithm on the basis of the percentage error generated
for different network sizes.

equal to 10% error, we were close to 10% of the optimal throughput in 18 instances and close to 20%
in two of the instances. Figure 5(a) also highlights the sub-optimality of the additive increase algorithms.
It shows that in more than 15% of the runs we experienced an error greater than 20%, there were 10%
of the runs which experienced an error greater than 30% and 5% of the runs experienced an error greater
than 40%. As highlighted in section VI the sub-optimality of the additive increase algorithm is due to the
lack of prioritization of the sources during rate allocation.

In figure 5(b) we plot the number of packets transmitted before the dual based algorithm converges
to a solution. Based on a regression fit, we estimate that it grows as O(n2). These bounds match the
asymptotic bounds that were obtained analytically in section VII-E.

We define the fraction of error as follows:

fraction of error =
|optimal sum rate − heuristic sum rate|

optimal sum rate

Figures 6(a) and 6(b) show the average fraction of error and maximum fraction of error observed
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while running the dual based algorithm and the additive increase algorithms across different network
sizes. For the dual based algorithm figure 6(a) reiterates the results of figure 5(a) showing that across
different network sizes the average percentage error remains very close to zero. The additive increase
algorithm however becomes progressively worse as the size of the network is increased. Although the
average error exhibited by the additive increase algorithms is not large (∼ 10−12%), the maximum error
exhibited is quite large (∼ 40 − 55%). The performance of the additive increase algorithm depends on
the placement of the bottleneck node in the topology. If the bottleneck node is very close to the root, in
most cases all sources would not be able to get more than the max-min rate even in the optimal solution.
In these scenarios the additive increase algorithm would be able to achieve the optimal. However as the
bottleneck node starts moving away from the root, the rate distribution among sources would change
with a few sources getting very high rates in the optimal solution. Under such a scenario the additive
increase algorithm seems to fail. For small networks, since the average diameter of the network is also
small, the bottleneck node would be close to the root. However for large networks since the diameter is
large, chances of the bottleneck node being farther away from the root are higher leading to an uneven
distribution of source rates. This reasoning thus throws light on the performance of the additive increase
algorithm as the network size is increased.

IX. INVESTIGATING THE EFFICACY OF 1-STEP SHADOW PRICING

Our performance analysis of the heuristic shows that even though we have assigned equal shadow prices
to all sources in the network, we are still able to achieve near optimal results.Ideally, if we had run the
sub-gradient algorithm, at every step of the algorithm each source would have achieved a new shadow
price. Hence, when the algorithm converges the optimal shadow price for sources need not be equal. This
in turn implies that the rank ordering of the sources in the optimal solution and the heuristic could be
different depending on the network topology and receiver bandwidth distributions for the specific network
topology.

The above observation encourages us to formulate a hypothesis that we would be verifying through
comparison of our results with the optimal solution. The observation suggests that the end solution is
insensitive to the actual rank ordering of the sources, as long as we are able to achieve a relative ordering
that is ‘similar’ to the optimal rank ordering we can achieve a utilization that is very close to the optimal.

The ability of the heuristic to achieve a ‘similar’ rank ordering comes from the structure of the
optimization problem. The objective of the problem is to maximize the sum rate while ensuring that
every source in the network gets at least the max-min rate. To achieve this objective, the sources with the
highest rank would be given the max-min rate (lowest source rate) and the remaining bandwidth would
be distributed amongst the remaining sources( starting with the source having the lowest rank or highest
source rate). In the optimal solution a majority of the sources belong to the lowest rank. Therefore, as
long as the rank order of the remaining sources obtained by assigning equal shadow prices are similar to
the rank order obtained in the optimal solution, the heuristic will present near optimal solutions.

In order to validate the above hypothesis, and present a credible argument for the performance of the
heuristic, we compared different metrics related to rank order of the sources obtained from the heuristic
algorithm and the optimal solutions.

Figure 7 shows the cumulative percentage bandwidth allocated to sources versus the number of sources
when arranged in sorted order. In order to present this comparison only the optimal values were used,
which in turn were obtained by solving the LP for each of the 11700 network instances. As can be
seen even if we consider 10 sources these sources account for approximately 50% of the total allocated
bandwidth. This clearly implies that in the final solutions a small percentage of sources are allocated
majority of bandwidth and the selection of these sources would determine the final solution.

In figures 8(a), 8(b), and 8(c) we dig a bit deeper and highlight the above trend on a per source basis.
The X-axis in figure 8 represents the rank allocated to each source based on the source rate allocated to
each source in the final solution. A lower rank represents a higher source rate. On the Y-axis we plot
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Fig. 7. The cumulative percentage of source bandwidth.

(a) Network Size = 10 (b) Network Size = 40 (c) Network Size = 70

Fig. 8. The distributions of the percentage of the total rate that was allocated to a source belonging to a particular rank for different network
sizes. The skewed distributions highlight that a few sources are allocated a large percentage of the available bandwidth in order to maximize
the utilization.

the average percentage of the total allocated bandwidth that was given to a single source belonging to
a particular rank. We perform this analysis for networks of different sizes ranging from 10 to 70. We
plot the values for the optimal solutions as well as the solutions obtained by running the heuristic. The
data presented strengthens our claim that the higher rank sources account for a majority of the allocated
bandwidth. Also the trend in the bandwidth distribution amongst ranks, for different network sizes, remains
the same.

Another question we would like to ask is, what is the distribution of the number of sources belonging to
different ranks. Figures 9(a), 9(b) and 9(c) answer this question. In contrast to the bandwidth distribution
it can be observed that a majority of the sources (on an average 85% of the sources) belong to the highest
rank. As in figure 8 the trend remains the same across different network sizes. Since in the optimal as
well as the heuristic all the sources are assured at least the max min rate, figure 9 implies that a majority
of the sources in the network are allocated the max-min rate. There are only ∼ 15% of the sources who
have a rate different then the max-min rate whose ordering matters in the final solution. Further as can
be seen from Figures 8 and 9 since the distribution of the heuristic and the optimal are quite similar it
would appear the optimal values are quite insensitive to exact ordering of the sources.

Finally in order to quantify our investigation we require to know the identity of the sources that are
actually belonging to the higher ranks. To answer this we plot the average number of hops versus the
rank of the sources in figures 10(a), 10(b), 10(c) . Figure 10 suggests that higher rank nodes have a much
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(a) Network Size = 10 (b) Network Size = 40 (c) Network Size = 70

Fig. 9. The distributions of the percentage of the total sources that belong to a particular rank for different network sizes. The skewed
distributions highlight that most of the sources belong to the highest rank, while only a few belong to the lowest.

(a) Network Size = 10 (b) Network Size = 40 (c) Network Size = 70

Fig. 10. The dependance of rank on hop count. The largest ranks are much farther away from the root as compared to the hop count of
the smaller ranks.

larger hop count as compared to sources belonging to other ranks. This makes intuitive sense as well since
a larger hop count implies a larger amount of interference, which in turn implies allocating the minimum
possible (max-min) rate to sources having the highest rank.

The above comparison of various metrics related to rank ordering, between the heuristic and the optimal
solutions, justifies our claim that the accuracy of the solution obtained by the heuristic depends solely on
the ‘similarity’ of the ordering obtained by the heuristic as compared to the optimal source rate ordering.
Figures 9 and 10 show that, for the network sizes under consideration, since the number of sources that
affect the solution are small and are primarily within a few hops from the sink, the heuristic is able to
achieve an ordering that is similar to the optimal solution resulting in near optimal performance.

X. RELATED WORK

Application of optimization theory to the design and analysis rate control algorithms was first introduced
in the wireline context in the seminal paper by Kelly et al. [2]. This seminal work established that
distributed additive increase-multiplicative decrease rate control protocols can be derived as solutions to an
appropriately formulated optimization problem. The application of duality and the sub-gradient approach
to solve the same problem was then introduced in the classic work by Low and Lapsley [4]. Since these
two works there has been considerable research primarily in the wired context in understanding not only
rate control algorithms but network protocols in general and their interaction across multiple layers from
the perspective of the optimization problem they aim to solve. A detailed survey of this literature is
presented in an article by Chiang et al. [5].
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For wireless networks, the problem of cross layer optimization has been addressed in the works by
Chiang et al. [6], Johansson et al. [7] and Wang et al. [8]. These works introduce the dual decomposition
technique to address the problem of cross layer optimization in wireless networks and present algorithms
for performing joint transport and power control [6] or joint transport and MAC layer design [8].

The problem of rate allocation in particular has been looked at from different perspectives in the domain
of wireless networks. Liao et al. [18] look at the max-min fair rate allocation problem for packet based
wireless access networks. They achieve their goal by assigning the flows at the access point a concave
utility function and applying a max-min fair criteria on these flows. However [18] addresses the problem
for fixed infrastructure based wireless access networks which is different from our scenario of a data
gathering tree in wireless sensor network. Moreover their objective is to maximize the minimum utility
of all flows and not to maximize the network utilization.

In [19] Calin et al. propose a routing scheme that can optimize resource allocation in a wireless ad-hoc
network in order to maximize the aggregate utility of all flows in the network. They use the shadow price
interpretation of the dual to present a bidding scheme that allows for a combined routing and rate control
heuristic. This work assumes a concave utility function resulting in a notion of proportional fairness. We
differ from [19] since in this work we explicitly try to maximize the network utilization while maintaining
a weaker notion of the max-min fairness criterion.

Kun et al. propose EWCCP [20], a congestion control algorithm for wireless ad-hoc networks designed
to provide proportional fairness to flows in the network. The similarity between EWCCP and the algorithm
proposed in this work is that congestion signaling in EWCCP explicitly takes into account the interference
set of a node while generating a congestion signal for flows traversing that specific node. This is similar
to our ordering of the sources for rate allocation based on the amount of interference generated by each
source. The difference between the two works is that EWCCP is designed to work within the context of
an AIMD protocol, namely TCP, whereas we show in our work that additive increase algorithms are sub-
optimal to the joint problem of maximization of network utilization and achieving the highest minimum
rate possible. Moreover the notion of fairness achieved by EWCCP is proportional fairness as opposed to
max-min fairness.

Wang et al. [15], [16] present algorithms for achieving max-min fairness and lexicographic max-min
fairness [1] for Aloha random access networks. However the objective of [15] and [16] is to ensure fairness
of link rates and not end-to-end flows. In [17] Tassuilas et al. present a centralized algorithm for achieving
lexicographic max-min fairness in wireless ad hoc networks. Our objective in this work differs from that
of [17], since the objective here is to maximize network utilization while maximizing the minimum rate.
Moreover our aim is to present a distributed solution as compared to the centralized solution presented
in [17].

The problem of max-min fair rate control has been looked at in the context of wireless sensor networks.
In an earlier work [9], we presented an additive increase-based rate allocation scheme that guarantees a
weaker notion of max-min fairness. In [9] we present a TDMA-based MAC which guarantees a max-min
rate allocation by assigning slots to various sources. The number of slots correspond to a source rate that
is calculated using an additive increase scheme. Rangwala et al. [11] also present an additive increase-
multiplicative decrease solution for fair congestion control. The source rates in IFRC are allowed to
increase using an additive increase algorithm similar to the one described in section VI. Both these works
try to achieve a max-min fair rate allocation while trying to implicitly maximize network utilization. As
shown in section VI these techniques are sub-optimal when the dual objective of maximization of network
utilization and fairness are taken into consideration.

In the field of wireless sensor networks duality based approaches are not limited to designing and
analyzing rate control algorithms. Our approach of analyzing the dual to achieve a distributed solution
follows the approach presented by Ye and Ordonez [14], where a distributed dual based gradient search
algorithm is proposed for the problem of maximizing data extraction under energy constraints.
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XI. CONCLUSION AND FUTURE WORK

We have formulated the problem of maximizing network utilization while guaranteeing the best possible
minimum rate to sources in a wireless sensor network. We model the problem as two coupled linear
programs. By analyzing the dual we are able to show that existing additive increase techniques are
provably sub-optimal. Moreover our analysis of the dual results in a heuristic that presents near optimal
performance.

There are several directions in which we could extend this work. One of our goals is the implementation
of our dual based algorithm on a real sensor network test bed. The objective of such an implementation
would be to do a performance comparison with existing rate control mechanisms, such as IFRC [11], that
have additive increase algorithms at the core of their design. A real test bed implementation would also help
validate the assumptions we have made while modeling the constraints in our problem. In our modeling
we have made an implicit assumption that every receiver can hear every interferer that is consuming
bandwidth at the receiver. In a real deployment this assumption might be weak since transmitters can
cause interference in receivers that are not within range. A real test bed environment would help us
ascertain the affects of such phenomenon on the results obtained from our algorithm.

In the current problem formulation we have focused on transport layer optimization alone. Interesting
extensions to this work include joint transport/routing/MAC cross-layer design.
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